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In this note we are concerned with β decays to unbound systems1. We attempt
to write an explicit expression for the wave function of the daughter system that
is produced in the decay. The result and its consequences are compared to other
treatments in the literature. I have tried to include the most important definitions
and identities in order to make the note self-contained, but otherwise clarification
may be found section II of [1].

The external region

The wave function of the unbound system in the external region describes the rel-
ative motion of the fragments produced in the particle breakup. In general such a
wave function can be written as a superposition of incoming and outgoing waves,
Ic and Oc . The channel subscript, c , besides specifying the orbital angular momen-
tum and configuration of the breakup, also includes quantum numbers describing
the internal state of the two fragments. The Ic and Oc waves are defined to have
unit flux2 and have the form

Ic = (i
l Y m

l )
Ic

v
1
2
c rc

ψc and Oc = (i
l Y m

l )
Oc

v
1
2
c rc

ψc , (1)

where Ic and Oc are dependent only on the radial coordinate and ψc is the channel
spin wave function which describes the internal degrees of freedom of the frag-
ments. The two real, linearly independent, solutions to the radial Schrödinger
equation in the external region are the regular and irregular Coulomb functions,
F and G. Ic and Oc are defined in terms of the Coulomb functions as

Ic = (Gc − i Fc )exp(iωc ) and Oc = (Gc + i Fc )exp(−iωc ). (2)

1Indeed, the results may be applicable for any transition to an unbound system.
2The exact meaning of this definition is discussed later.
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In this expressionωc is the Coulomb phase shift given by

ωc = σαl −σα0 =
l
∑

n=1
arctan

�

ηα
n

�

, (3)

where α specifies the fragment pair and l is the orbital angular momentum of chan-
nel c . ηα = (Zα1Zα2e2)/(ħhvc ) is the usual Sommerfeld parameter. It should be
noted that σαl = argΓ(1+ lc + iηα) is also sometimes referred to as “the Coulomb
phase shift”, so one must keep the head straight in order not to get confused.

Since we are considering β-delayed particle breakup it seems reasonable to in-
clude only outgoing waves in the particle channels. We write the wave function in
the channel, c , as

Ψext,c =NcOc , (4)

where Nc is a normalisation constant, which is as yet unknown. We define the
surface functions, ϕc = r−1

c ψc (i
l Y m

l
) (not to be confused with the hard-sphere

phase shift, φc ), such that

Ψext,c =Ncϕc Oc v
− 1

2
c . (5)

The surface functions form an orthonormal (and, supposedly, complete) set on the
channel surface, S .

The internal region

Consider the situation where a compound system is fed through only a single chan-
nel, e (for “entrance”). With unit incoming flux in e the wave function for the
internal region of the compound system is given by eq. (IX.1.31) of [1]:

Ψe =−i ħh
1
2Ωe

∑

λµ

AλµΓ
1
2
µe Xλ (6)

Here,Ωe = exp[i(ωe−φe )]withφe = arctan(Fc/Gc )ac
being the hard-sphere phase

shift, Γµe = 2Peγ
2
µe is the partial width of the level, µ, and Xλ is an eigenfunction

of the Hamiltonian in the internal region corresponding to the level, λ, and Aλµ is
the level matrix, defined by

(A−1)λµ = (Eλ− E)δλµ−
∑

c
(Sc + i Pc −Bc )γλcγµc , (7)

where the sum is over all breakup channels, including e . The quantities Ωc and Pc
are determined by the choice of channel radius, ac , and the wave functions in the
external region:

Ωc =
� Ic

Oc

�
1
2

ac

; Pc =
�

ρc

Ic Oc

�

ac

; ρc = kc rc =
Mc vc rc

ħh
(8)
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Barker proposed to treat β decays in the R-matrix framework by adding ingo-
ing β “channels” to the compound system [2, 3]. For these channels the feeding
amplitudes are denoted Gλβ instead of Γλβ in order to distinguish them from ordi-
nary partial widths. This distinction is important as the Gλβ’s do not contribute
to the total level widths. Citing from [3]: “These feeding amplitudes are real and
may be energy-dependent”. This postulate seems to allow setting Ωβ = 1 or, equiv-
alently, to define the feeding amplitudes as

G
1
2
λβ
≡ΩβΓ

1
2
λβ
= real number. (9)

Such an interpretation is supported by a similar definition for electromagnetic tran-
sitions in eq. (XIII.3.10) of [1]. According to [4] the reality of the β-decay feeding
factors can be derived from first principles. We obtain the internal wave function
of the compound system produced in β decay by making the substitution (9) in
(6):

Ψint =−i ħh
1
2
∑

λµ

AλµG
1
2
µβ

Xλ. (10)

It is worth noting that the formalism presented in [2, 3] was not developed specifi-
cally for β decays, but for sequential processes in general. β-delayed particle emis-
sion is clearly a sequential process, in which the parent nucleus emits a β particle,
leaving the daughter nucleus in an unbound state. The ideas should be equally ap-
plicable to a “particle-delayed” particle emission, where for instance an α particle
is emitted by the parent nucleus while producing an unbound daughter nucleus.
The example of 12C∗→8 Be∗+α→ 3α immediately comes to mind. If this is true,
the internal state of the unbound 8Be∗ daughter nucleus can be described by a wave
function similar to (10), only with different feeding factors.

Matching at the channel surface

The total wave function is smooth and continuous everywhere, in particular on the
channel surface at rc = ac (for a clear and pedagogical discussion of the channel sur-
face, see for instance section III of [5]). By construction the logarithmic derivative
of the internal wave function is already matched to the logarithmic derivative of
the Coulomb wave functions of the external region, so we need only be concerned
with the value of the wave function on the channel surface. We require

�

Ψint
�

ac
=
�

Ψext,c
�

ac
. (11)

To proceed we multiply both sides by the channel surface function, ϕ∗c , and inte-
grate over the channel surface:

∫

ϕ∗c
�

Ψint
�

ac
dS =

∫

ϕ∗c
�

Ψext,c
�

ac
dS . (12)
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First, we evaluate the LHS of (12):
∫

ϕ∗c
�

Ψint
�

ac
dS =

∫

ϕ∗c

�

−i ħh
1
2
∑

λµ

AλµG
1
2
µβ

Xλ

�

ac

dS

=−i ħh
1
2
∑

λµ

AλµG
1
2
µβ

∫

ϕ∗c
�

Xλ
�

ac
dS

=−i
�2Mc ac

ħh

�
1
2 ∑

λµ

AλµG
1
2
µβ
γλc . (13)

Here, we have used the definition of the reduced width amplitude, γλc , in eq.
(III.4.8a) of [1]. Mc is the reduced mass of the fragments.

Next, we evaluate the RHS of (12):
∫

ϕ∗c
�

Ψext,c
�

ac
dS =

∫

ϕ∗c

�

Ncϕc Oc v
− 1

2
c

�

ac

dS

=Nc
�

Oc
�

ac
v
− 1

2
c

∫

ϕ∗cϕc dS

=Nc
�

Oc
�

ac
v
− 1

2
c , (14)

where we have used the fact that the surface functions constitute an orthonormal
set on the channel surface. From the relations in (8) it is clear that

�

Oc
�

ac
=
� Ic Oc

ρc

�
1
2

ac

�Oc

Ic

�
1
2

ac

�

ρc
� 1

2
ac

= P
− 1

2
c Ω

−1
c

�Mc vc ac

ħh

�
1
2

, (15)

and the RHS of (12) becomes

∫

ϕ∗c
�

Ψext,c
�

ac
dS =Nc P

− 1
2

c Ω
−1
c

�Mc ac

ħh

�
1
2

. (16)

Equating (13) and (16) we find

Nc P
− 1

2
c Ω

−1
c

�Mc ac

ħh

�
1
2

=−i
�2Mc ac

ħh

�
1
2 ∑

λµ

AλµG
1
2
µβ
γλc

⇔ Nc =−iΩc

∑

λµ

AλµG
1
2
µβ
Γ

1
2
λc

, (17)
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and, finally, we obtain the external wave function in channel c by combining (17)
with (4) or (5):

Ψext,c =−iΩc

∑

λµ

�

AλµG
1
2
µβ
Γ

1
2
λc

�

Oc

=−iΩc

∑

λµ

�

AλµG
1
2
µβ
Γ

1
2
λc

�

(i l Y m
l )

Oc

v
1
2
c rc

ψc . (18)

Interpretation

In this section we discuss how the expression in eq. (18) can be transformed to
a decay amplitude. It is stated in [1] that the Oc waves correspond to unit flux
through any sphere centered at the origin. In order to figure out in which sense
this should be understood we explicitly calculate the flux for such a wave. In eq.
(2.4.16) of [6] the formula for calculating the probability flux of a general wave
function, Ψ, is given:

j=−
� i ħh

2M

�

�

Ψ∗∇Ψ− (∇Ψ∗)Ψ
�

=
� ħh

M

�

Im
�

Ψ∗∇Ψ
�

. (19)

From this expression we find the radial component of j for an Oc wave (the channel
subscript c is suppressed in the following):

jr =
� ħh

M

�

Im
�

O ∗
∂

∂ r
O
�

=
� ħh

M

�

Im
�

�

Y m
l )
∗ O∗

v
1
2 r
ψ∗

∂

∂ r

�

Y m
l

O

v
1
2 r
ψ
��

=
� ħh

M

�

�

�Y m
l

�

�

2|ψ|2
1

v
Im
�O∗

r

∂

∂ r

�O

r

��

, (20)

where in the last line we have used the fact that neither Y m
l

nor the channel wave
function, ψ, is dependent on the radial coordinate. Next, we do the differentiation
and use the explicit form of the O wave in terms of the Coulomb functions.

jr =
� ħh

M

�

�

�Y m
l

�

�

2|ψ|2
1

v
Im
�O∗

r

� 1

r

∂ O

∂ r
−

O

r 2

��

=
� ħh

M

�

�

�Y m
l

�

�

2|ψ|2
1

v
Im





(G− i F )exp(iω)

r

×
 � ∂ G

∂ r + i ∂ F
∂ r

�

exp(−iω)

r
−
(G+ i F )exp(−iω)

r 2

!

. (21)
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This expression simplifies to

jr =
� ħh

M

�

�

�Y m
l

�

�

2|ψ|2
1

v

G ∂ F
∂ r − F ∂ G

∂ r

r 2
. (22)

Using k =M v/ħh and the fact that ∂ /∂ r = k∂ /∂ ρ we get

jr =
�

�Y m
l

�

�

2|ψ|2
G ∂ F
∂ ρ
− F ∂ G

∂ ρ

r 2

=
�

�Y m
l

�

�

2|ψ|2 r−2, (23)

where in the last line we have also used the identity F ′G −G′F = 1 (the prime
denotes differentiation with respect to ρ).

To find the total probability of emission we integrate the flux over a sphere of
some, arbitrary, radius R:

p =
∫

R
jr d S =

∫

jr (R)R
2dΩ=

∫

�

�Y m
l

�

�

2|ψ|2dΩ= |ψ|2, (24)

which must be true since the internal state of the fragments do not depend on the
relative coordinate of the fragments. From this result we conclude that the Oc wave
only corresponds to unit probability of breakup through channel c if we not just
integrate the flux over the entire solid angle, but also integrate over the internal
coordinates, q , of the two fragments and assume the channel wave function to be
normalised, such that

p =
∫ ∫

R
jr d Sd q =

∫

|ψ|2d q = 1. (25)

This results leads us to rewrite the wave function in (18) as

Ψext,c =−Scβ

 

Oc

v
1
2
c rc

!

, (26)

where the factor in paranthesis is an outgoing wave with unit probability of emis-
sion through channel c . The factor Scβ is then

Scβ(E ,Ω, q) = iΩc

∑

λµ

�

AλµG
1
2
µβ
Γ

1
2
λc

�

(i l Y m
l )ψc (27)

and we interpret this factor as the “decay probability amplitude”. The definition of
Scβ makes it almost equivalent to an ordinary element of the scattering matrix (or,
in the language of [1], the collision matrix), except for the inclusion of the angular
dependence and the internal wave function of the decay fragments. Compare for
instance to the result in (IX.1.32) of [1]3

3The intelligent reader will realise that we just spent several pages in order to get from (IX.1.31)
to (IX.1.32) of [1].
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Comparison with literature

It is interesting to compare the amplitude in eq. (27) to some results stated in the
literature. First we try to calculate the spectral density, N (E), of the α particles
emitted in a β-delayed α decay. We do this by squaring the amplitude in (27) and
integrate over the unobserved variables:

Nc (E) =
∫

�

�Scβ(E ,Ω, q)
�

�

2dΩd q

=
�

�

�

�

∑

λµ

AλµG
1
2
µβ
Γ

1
2
λc

�

�

�

�

2 ∫

|ψc |
2d q . (28)

If we assume ψ2 to be normalised4 we get

Nc (E) =
�

�

�

�

∑

λµ

AλµG
1
2
µβ
Γ

1
2
λc

�

�

�

�

2

, (29)

which agrees completely with eq. (26) of [3].
As already mentioned, the results of this note are not limited to β-delayed par-

ticle breakup but applies generally to delayed breakups. This is a case which is also
investigated in the paper by Goulard [7], where a reaction of the type

A+B→C ∗→D +G∗→D + E + F (30)

is treated. In eq. (11) of [7] the asymptotic behaviour of the wave function for the
two products, E and F , is postulated to be

ΨE ,F =
exp(i k ′′ r ′′)

r ′′
Y m′′

l ′′
(θ,φ)ψE ,F

Γ
1
2

λ′
exp[i(ωl ′′ −φl ′′)]

Eλ′ +∆λ′ − EG −
1
2 iΓλ′

. (31)

The notation in the above expression is such that k ′′, l ′′ and m′′ are related to the
breakup channel of G∗, and r ′′,θ and φ are the relative coordinates of the frag-
ments E and F . The internal state of E and F is described by ψE ,F . Γλ′ , Eλ′ and∆λ′
are level parameters for the intermediate level that is populated in G∗, and EG is
the relative energy of the fragments E and F , i.e. the “internal” energy of G∗. The
level shift is defined in the usual way as∆λ′ =−(Sc−Bc )γ

2
λ′c

. Comparing to our eq.
(18) it is clear that eq. (31) is based on at least two approximations: The one-level
approximation, which means that only a single level of the unbound system G∗ is
allowed to contribute, and the single-channel approximation, which means that G∗

can only emit E , F through one channel. The latter approximation implies that
Γλ′ =Γλ′c . Further, it seems that a feeding factor of unit magnitude has been used.

4Speaking of the normalisation of unbound states is not trivial. This point requires further
thought.
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The same approximations can easily be applied to the result in eq. (18) in order
to find an expression equivalent to eq. (31). In particular we have, so far, only been
concerned with the wave function in a single decay channel, and so it is only really
the single-level approximation, which modifies our result significantly. We get

ΨE ,F =− i
O ′′

v ′′
1
2 r ′′
(i l ′′Y m′′

l ′′
(θ,φ))ψE ,F

∑

λ′µ′

�

Aλ′µ′G
1
2

µ′β
Γ

1
2

λ′c

�

Ω′′

→− i
O ′′

v ′′
1
2 r ′′

�

i l ′′Y m′′

l ′′
(θ,φ)

�

ψE ,F

Γ
1
2

λ′
exp[i(ωl ′′ −φl ′′)]

Eλ′ +∆λ′ − EG −
1
2 iΓλ′

, (32)

where, in the first line we have only rearranged and modified the previous notation
slightly to make the result directly comparable to eq. (31), and in the second line
the single-level approximation has been made. The result is very similar to that of
[7], except for a few, minor details: There is an overall phase difference of −i l ′′+1,
and instead of the spherical wave exp(i k ′′ r ′′)/r ′′, we have O ′′/r ′′. Finally, the
factor v ′′−

1
2 is not present in the result of [7]. It is my feeling that these differences

are not very important, but this is a point which is open to discussion. It could be
useful throughout such a discussion to keep in mind that the asymptotic behaviour
of the O wave is

O ∼ exp
�

i(ρ−η log2ρ− 1
2 lπ+σ0)

�

. (33)

Conclusion

We have found an explicit form of the wave function of the unbound daughter
system produced in a β transition. The result is possible valid for any transition to
unbound systems. We have shown that our result to a large degree is in agreement
with other related results in the literature and, compared to eq. (11) in [7], our
expression contains fewer approximations. Still, this note has only treated delayed
breakup through a single particle channel, and the generalisation to multiple exit
channels will be discussed in another note. Another interesting exercise would be
to apply the formalism to processes where two unbound systems are involved in a
sort of “delayed-delayed” breakup, for instance the β-delayed triple-α breakup of
12C.
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