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In a previous note an exact expression for the external wave function following a
transition to an unbound system was obtained for the case of a single exit channel[1].
In the present note the channel concept is discussed in more detail, as well as the
application of the formalism to situations with three particles in the final state.

Specification of channels and channel surfaces

We have earlier treated the concept of of channels without too much care and just
labelled any channel-related quantity with the channel subscript c . It is perhaps
useful to make explicit which parameters are used to distinguish channels from
each other, and we recapitulate the discussion in section III of [2].

When the compound system separates into two fragments we use the greek
letter α to specify the partition of nucleons together with the state of internal exci-
tation of the (bound) fragments, i.e.

α= {α1α2}= {A1Z1λ1A2Z2λ2}, (1)

where we use λ to denote the internal energy levels of the fragments. Furthermore,
the fragments may possess angular momentum, I1 and I2, with projections i1 and
i2.1 These spins can be combined in the representation where, instead of the indi-
vidual spin projections, the total channel spin, s (projection ν) is used:

c = {αI1I2i1i2} or c = {αI1I2 sν}. (2)

Finally, we also include the quantum numbers describing the relative motion of the
fragments, l and m, in the channel specification, such that

c = {αI1I2 s l νm} or c = {αI1I2 s l J M}, (3)

1I think that specifying I1, I2 is somehow redundant, since the internal eigenstates have a well-
defined angular momentum anyways. This may also be the reason why I1, I2 appear in parantheses in
[2].
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where the J M -scheme is just an alternative representation, where s and l are cou-
pled to form a total angular momentum of J . It is straightforward to switch be-
tween the to representations,

Ψαs l J M =
∑

νm
〈s l νm| J M 〉Ψαs l νm (4)

If one of the fragments is emitted in an unbound state I think that the way
of specifying channels, using λ1 and λ2, could run into trouble. Imagine that α1
is emitted in a state of internal energy E1, which is in an energy region that is
dominated by broad, overlapping resonances of the α1 system. Does it then make
sense to say that only one of the eigenstates of α1 is populated, or would it be more
appropriate to use the internal energy and the spin, i.e. E1 and I1, for channel
specification? Is this point also formally relevant for bound states of the fragments?

In the language of [2], the coordinate space of all nucleons is dubbed “configu-
ration space”. The region of configuration space corresponding to the separation of
the compound nucleus into two fragments with {A1Z1A2Z2} is named the channel
region. From the foregoing definitions it is clear that several channels, c , share the
same channel of configuration space, that is for instance all those channels which
correspond to the same partition, {A1Z1A2Z2}, but which differ in some of the
other quantum numbers {λ1λ2I1I2 s l νm}. In the channel region of configuration
space we define Sc to be the channel surface at rα = aα beyond which the nuclear
interaction between the two fragments is negligible. An element on the channel
surface is

dSc = a2
αdΩc d qα, (5)

where Ωc is the angular coordinate of the relative motion and qα are the internal
coordinates of the fragments. To describe the internal states of α1 and α2 we intro-
duce the channel spin wave functions, ψαsν (here written in the sν scheme), which
are normalised and orthogonal on the channel surface

∫

ψ∗αsνψα′ s ′ν ′dS = 4πa2
αδαsν ,α′ s ′ν ′ . (6)

Where the integral is over all the channel surfaces,S =
∑

c Sc . Sinceψαsν describe
the internal states it cannot depend on the relative cordinates of the fragments, so
from the above statement we conclude that the ψαsν ’s are also normalised with
respect to the internal coordinates, i.e.

∫

ψ∗αsνψα′ s ′ν ′d q = δαsν,α′ s ′ν ′ . (7)

There are two reasons for the orthogonality with respect to α: When α and α′

correspond to two different partitions of the nucleons the orthogonality is a conse-
quence of the absence of spatial overlap between ψα and ψα′ (I think one can even
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be more specific and say that ψα only has an appreciable amplitude in the region of
configuration space corresponding to the α channel). When α and α′ correspond
to the same partition, the orthogonality is a consequence of the orthogonality of
the internal eigenstates of the compound system. Orthogonality with respect to
s and ν is ensured by the orthogonality of the spin wave functions. According to
[2] it is possible to think of any set c as specifying a unique channel, even if the
channel spin wave functions overlap in configuration space. A detailed discussion
of the concept of channels in configuration space can be found in section III of [3].

Multiple exit channels

In [1] an expression for the wave function in channel c following a transition to an
unbound system was obtained:
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ψαsν , (8)

where in the last line it has been made explicit which quantities depend on what
parts of the channel specification. To facilitate the following analysis we also note
that in general the wave function in the external region can be written

Ψ=
∑

c
Ψc . (9)

As already mentioned, the breakup channels are completely specified by c = {αsν l m}
(we omit the explicit reference to I1 and I2, since these quantum numbers are im-
plied by α).

Three-particle emission as a sequential process

Until now we have only considered unbound systems breaking into two fragments.
If one of the fragments is itself unbound it can subsequently break up into two
fragments, and we end up with three particles in the final state. This means that
the wave function of the unbound fragment extends over all space and, strictly
speaking, it is no longer possible to factor it out as ψαsν in the total wave function.
If, however, we consider a sequential process in which the first emitted fragments
no longer interact when the secondary breakup happens, we can choose to treat the
relative motion of the two secondary fragments as an “internal” coordinate of the
unbound fragment from the primary breakup. In this way the expression in eq. (8)
is still valid if we let ψαsν depend on the relative motion of the two fragments of
the secondary breakup.2

2It is possible that this kind of reasoning is faulty and meaningless, but in my simple mind it
sounds resonable.
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Before we start expanding the total wave function, we introduce some notation:

Ja , Ma: The total angular momentum quantum numbers of the primary compound
system.

Jb , Mb ,αb : Quantum numbers describing the state of the secondary compound
system.

Ii , ii ,αi : Quantum numbers describing the state of the i th particle in the final
state.

c = {αs l νm} Primary breakup channel.

c ′ = {α′ s ′ l ′ν ′m′} Secondary breakup channel.

First, we introduce some short-hand notation and write the total wave function of
eq. (8) as

Ψαs l νm =Φαl mψαsν , (10)

where Φαl m describes the relative motion of the primary breakup fragments and
ψαsν is the channel spin wave function describing the internal state of the fragments.
We now change to the J M -representation and write

Ψαs l Ja Ma
=
∑

νm
〈s l νm| Ja Ma〉Φαl mψαsν . (11)

Using the same trick we uncouple the channel spin wave function into the wave
functions of its constituents,

ψαsν =
∑

i1Mb

〈I1 Jb i1Mb |sν〉ψα1I1i1
ψαb Jb Mb

, (12)

where ψαb Jb Mb
is the wave function of the unbound fragment. In this notation

αb describes the level, which is populated in the primary breakup and should not
be confused with the α′ which specifies the partition in the secondary breakup.
Since αb is also implicitly specified by α we modify the notation on order get rid of
the redundant index, αb , and to make the connection with the earlier expressions
clearer:

ψαb Jb Mb
→ΨαJb Mb

=
∑

α′ s ′ l ′
Ψα
α′ s ′ l ′Jb Mb

=
∑

α′ s ′ l ′

∑

ν ′m′
〈s ′ l ′ν ′m′| Jb Mb 〉Ψ

α
α′ s ′ l ′ν ′m′

. (13)

Here,Ψα
α′ s ′ l ′ν ′m′

is a wave function of the same type as the one in eq. (8) fed through
the level specified by α. Making a substitution equivalent to eq. (10) we obtain

Ψα
α′ s ′ l ′ν ′m′

=Φα
α′ l ′m′

ψα′ s ′ν ′ =Φ
α
α′ l ′m′

∑

i2i3

〈I2I3i2i3|s
′ν ′〉ψα2I2i2

ψα3I3i3
. (14)
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Φα
α′ l ′m′

is here a wave function for the relative motion of the two fragments from
the secondary breakup and the last equality is a result of the same type of angular
momentum decoupling as in eq. (12).

Combination of eqs. (11) through (14) yields the rather formidable expression
of the channel wave function

Ψαs l Ja Ma
=
∑

νm

∑
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∑
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α
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. (15)

Finally, the total wave function is obtained by summation over the possible exit
channels:

Ψ=
∑

αs l Ja Ma

Ψαs l Ja Ma
. (16)

(In case the reader doesn’t bother to count, the above expression involves sixteen
summation indices) It should be noted that if two or more of the particles in the fi-
nal state are identical bosons (fermions), the wave function should be symmetrised
(antisymmetrised) with respect to exchange of any identical pair. I am slightly con-
fused about this symmetrisation, since one can also consider symmetrisation with
respect to order of emission. This is perhaps a point which could be discussed in
more detail.

Triple-α breakup of Carbon-12

The process we are considering is

12C∗→ α1+
8 Be∗→ α1+α2+α3, (17)

and so 8Be plays the rôle of the unbound fragment from the primary breakup. In
this case we have three α particles in the final state. Since the α particle is a spin-
zero particle the Clebsch-Gordanerie of eq. (15) simplifies considerably. We have
I1 = I2 = I3 = 0 and therefore also i1 = i2 = i3 = 0. This leads to

〈I2I3i2i3|s
′ν ′〉= δ0s ′δ0ν ′ ⇒ s ′ = ν ′ = 0

〈s ′ l ′ν ′m′| Jb Mb 〉= δl ′Jb
δm′Mb

⇒ l ′ = Jb ; m′ =Mb

〈I1Jb i1Mb |sν〉= δJb sδMb ν
⇒ s = Jb ; ν =Mb . (18)

Furthermore the sum over α′ only involves single term, since the α particle channel
is the only open channel for the 8Be breakup. As a consequence we can write the
wave function of eq. (15) as

Ψαs l Ja Ma
=
∑

Mb m

〈 Jb l Mb m| Ja Ma〉Φαl mΦ
α
α′Jb Mb

ψα1
ψα2

ψα3
. (19)
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Due to the properties of the Clebsch-Gordan coefficients we only have contribu-
tions to the sum if Mb +m =Ma , and we get

Ψαs l Ja Ma
=
∑

Mb

〈 Jb l Mb (Ma −Mb )| Ja Ma〉Φαl (Ma−Mb )
Φα
α′Jb Mb

ψα1
ψα2

ψα3
. (20)

We now substitute the Φ’s with the full expression and find
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. (21)

Here, A and A′ denotes the level matrices of the 12C and 8Be systems, respectively,
and G1/2

µβ
is the β decay feeding factor of the level µ in 12C. Since α determines

which level, µ′, that is fed in the 8Be system, it seems reasonable to set G1/2
µ′α
= 1

and omit the sum over µ′, since this sum is done implicitly when summing over α.
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