Angular correlations

Consider an initial resonance of spin j; which decays by emission of a spin-0 particle (e.g.
an alpha particle) to an intermediate resonance of spin j which subsequently decays by
the emission of another spin-0 particle to a final state of spin ja. Let 1 denote the orbital
angular momentum in the first decay and ls ditto for the second decay. The angle of
emission of the second spinless particle relative to the first (as measured in the rest frame
of the decaying intermediate resonance) is denoted /3.

The correlation function W (/) is then given by eq. (45) on p. 741 in Biedenharn & Rose
(1953) with A, given by eq. (69a) on p. 746 and the b,’s given by eq. (79) on p. 752.
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The summing is extended over all even v in the interval 0, ..., min{2ly, 2[5, 25}.
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where the F}’s can be found in the table on page 3. Notice that only numerical values
are given despite the F},’s being expressible in fractions and square roots so the numbers
can combine to give nice fractional numbers.

n Fulz)

0 1

1 a

2 %l 3r° —1)

3 %fnr — 3r)

4 1(352% —302% 4+ 3)

5 1(63z" — 702° + 15x)

6 i(2312° — 3152* 4+ 1052% — 5)

7 75 (4292" — 693z + 3157° — 357)

8 135 (64352° — 120122° 4 6930z° — 1260z° + 35)

9 Ls(lzlaarg — 25740z 4 180182° — 4620z° 4 315z)
10 - (461892 — 1093952° 4+ 900902° — 300302 + 34652° — 63)

Figure 1: The first 11 Legendre polynomials.

Let us take the decay of the 12.71 MeV state in '>C as an example. This state is 17
so j1 = 1. Having unnatural parity its decay goes through the 2% resonance in ®Be,
hence j = 2. Finally jo = 0 because the final state is an alpha particle. Conservation of
angular momentum requires lo = 2 in the second decay. In the first decay we have three
possibilities Iy = 1,2,3, but only /1 = 2 is compatible with parity conservation so that



settles the matter. Hence the sum has to be extended over v = 0,2,4. The A,’s are
obtained by formula (3) with the F}’s given in the table on the page 3. T get Ag = 1,
Ag = 0.1786, and A4 = —0.7619. Carrying out the sum in eq. (1) I get

W(B) =1+0.1786 x 2 x (3cos* B — 1) — 0.7619 x 55 x (35cos” B — 30cos® 3 + 3)

= 15in’(2)

which, by the way, is not normalized.

Whenever the decay proceeds through the 07 ground state in ®Be there is no correlation.
In some cases the first decay is not pure, e.g. when the 27 state decays (necessarily
through the 2% resonance in ®Be) the orbital angular momentum can be both /1 = 1
and /3 = 3. Unfortunately things become somewhat complicated in this case since
interference terms which depend on the phase shift occur in the correlation function. This
is mentioned in Biedenharn & Rose (1953) on page 752. Without knowledge of the phase
shift I do not see how we can derive the correct correlation function. One possibility
would be to neglect the high-I channel because of the increased angular momentum
barrier, but I do not know how good an approximation that is. Come to think of it the
same problem applies to many other states in 2C, e.g. the 27 and the 47 state.
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TaBLE I(a). F2(1717) for integer spins.
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Tasre I(f). Fs(37:5) for integer spins.

\JQ 0 1 2 3 4 \J"\‘ 0 1 2 3 4
1 0.7071  —0.3536 0.0707 0 0 3 1.3056 —0.9792 0.5440 —0.2176 0.0593
2 0 0.4183 —0.4183 0.1195 0 4 0 0.4214 —0.7585 0.6895 —0.3831
3 0 0 0.3464 —0.4330 0.1443 5 0 0 0.2420 —0.6049 0.6979
4 0 0 0 0.313¢  —0.4387
5 0 0 0 0 0.2944
TABLE I(g). Fa(4417) for integer spins.
TaBLE Ib. FF5(2717) for integer spins. Ui
IN 0 1 2 3 4
\JJ\1 0 1 2 3 4 1 0 0 0 —0.4293 0.6010
2 0 0 —0.7257  —0.0726 0.4288
1 0 —0.3535 0.3535 —0.1010 0 3 0 —0.8763 —0.5258 —0.0956 0.2995
2 —0.5976 —0.2988 0.1281 0.3415  —0.1707 4 —0.9687 —0.8234 —0.5554 —0.2101 0.1447
3 0 —0.4949  —0.1237 0.2268 0.3093 5 0 —0.9099 —0.6825 —0.3787 —0.0437
4 0 0 —0.4477  —0.0448 0.2645
5 0 0 0 —0.4206 0
TaBLE I(h). F4(47:7) for integer spins.
TaBLE I(c). F4(2717) for integer spins. \.{
j 0 1 2 3 4
N, | ) 3 : 2 0 0 01718 —0.3436  0.2811
3 0 0.4112 —0.1371  —0.2866 0.0374
2 —1.069 0.7127  —0.3054 0.0764  —0.0085 4 0.6034 0.3017 —0.0901 —0.2860 —0.1408
3 0 —0.4467 0.6700 —0.4467 0.1489 5 0 0.4814 0.0802 —0.2239 —0.2592
4 0 0 —0.3044 0.6087 —0.4981 -
5 0 0 0 —0.2428 0.5665
TaABLE I(i). Fe(4417) for integer spins.
TaBLE I(d). F2(3717) for integer spins. N
N 0 1 2 3 4
\]1\’ 0 1 2 3 4 3 0 0.0218  —0.0392 0.0356  —0.0198
— 4 0.0674 —0.0034 —0.0346 0.0104 0.0243
1 0 0 —0.4243 0.5303 —0.1768 5 0 0.0387 —0.0290 —0.0190 0.0242
2 0 —=0.7171  —0.1793 0.3287 0.4482
3 —0.8660 —0.6495 —0.2742 0.1443 0.4330
g 8 "0'(’)7835 :8%(6)(1) :8?258 8(2)?;(% TABLE 1(j). Fs(4417) for integer spins.
. \J]\1 0 1 2 3 4
TaBLE I(e). F4(3717) for integer spins.
4 —1.4809 1.1847  —0.7539 0.3770  —0.1450
i 5 0 —0.3893 0.7785 —0.8384 0.5989
FAN 0 1 2 3 4
‘; 0.22 32 882?; :8%8‘22 _882?% “8%% tion markedly and the correlation measurement is a
4 0 0.1453  —0.0484 —0.1012 0.0132 sensitive method for the determination of mixture ratios.
5 0 0 0.1159  —0.0773  —0.0852

related to the ratio of reduced matrix elements by

IL1

62:[L1+1_ (Jull La1]] )2

(Al L4l 7)?

(67)

Very often /z,+1/I1,<<1 and only linear terms in é need
be retained, (56). Of course, while the correlation func-
tion for pure multipoles is parity independent, the case
of mixed multipoles gives a parity determination only
if it is assumed that a M, E;,; mixture is much more
likely than an Ez, M., mixture (76a).

It should also be emphasized that the presence of
interference in the correlation may change the correla-

Equations (64) and (65) define the standard y—v
correlation. In particular Eq. (65a) is the standard
v—+ correlation for pure multipoles. We write the latter
in the form

w(B)=2 4,Py(cosp) (68)
and renormalize so that A4o=1 corresponding to unit

value for the average of the correlation function .
Then

Ay=F,(L1j1))F,(L2j27), (69a)
where
By (Ljig)= (=)= 25+ 1)H2L+1)
XC(LLv; 1—1)W (j4LL; vji) (69b)

so that also Fo=1.
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