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Abstract

This thesis presents an extended analysis of the β-delayed triple
α decay of 12N from [1]. The analysis consists of: Reproduc-
ing key spectra from earlier work, estimating geometrical ef-
fects with Geant4 simulations, evaluating the benefits of dou-
ble α coincidence analysis and α-β angular studies for deter-
mining the presence of forbidden decays. The double α co-
incidence analysis yielded around twice the quantity of data
for events that resemble uniform phase space distributed de-
cays and for 8Be ground state decays of 12C excitation energies
around 600 − 2000keV. The Geant4 simulations revealed the
presence of systematic errors from our detector setup and beam
profile. The size of these errors changed the outcome of the α-
β study to a degree in which the presence of forbidden decays
could not be concluded.
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1 Introduction

Studying the structure of the 12C nucleus has been ongoing for ap-
proximately 60 years. This field has its main motivation from stellar
fusion models and has since spiked many interesting debates of scat-
tering experiments in contrast to decay experiments. In this chapter,
we will discuss the earlier research performed, as well as how this mas-
ter thesis can contribute to the field. The studies of 12C often have a
very similar introduction section structure including history, theoret-
ical models, recent studies, and an outline. This introduction chapter
is inspired by the earlier work on the experiment studied in this work
[1], and Andreas Gads’ Ph.D [2].

1.1 Brief history of 12C

Stellar fusion models

Where do we come from? A question that can fit many perspectives.
For a biologist, it might refer to the theory of evolution. To a psy-
chologist, it might spark a debate about the consciousness of humans
in contrast to animals. But to a physicist, it refers to the creation of
the very matter we consist of. We know today that the matter our
planet consists of most likely was produced in stellar fusion processes
[3]. Here the main fusion process for the early life of a star is the fusion
of hydrogen to helium. A long range of different fusion processes and
neutron capture followed by beta-decay allows for a very good under-
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standing of element creation in stars. These models can very easily
be tested by examining our planet/universe. Do we find the same ra-
tios of elements on earth as predicted by these stellar models? When
these models were first proposed, the answer was no. There was an
abundance of a variety of elements e.g. carbon. Since carbon is such
a vital part of life on earth, this was quite an issue. Originally the
production of carbon was believed to occur when an α particle fused
with 8Be (two α particles). The fusion of two α particles to 8Be is very
unstable, and quickly disperses (half-life of 10−17 s) if not a third α in-
tercepts to create 12C. But even then, the excited state of 12C created
in these hot and dense environments will quickly decay into three α
particles again, leaving us where we started. This is referred to as the
triple-α process. It was then suggested by Salpeter and Öpic ([4], [5]),
that if 12C could live long enough to de-excite to a stable state through
the triple-α process 8Be(α, γ)12C, then 12C could be produced. Is this
enough to explain the abundance of carbon? Unfortunately not. To
solve this we must introduce Fred Hoyle. For further studies of the
Hoyle state history we refer to an article written by Helge Kragh [6].

The Hoyle state

Fred Hoyle was the person to improve the understanding of the triple-α
process and explain the carbon abundance in the universe. He showed
that only if the α particle is captured in 8Be resonantly through an un-
observed state (now known as the Hoyle state), then the abundance of
carbon could be explained [7]. The state was verified in a 14N(d, α)12C
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experiment to have the energy and width of E = 7.68(3)MeV above
the ground state and Γ < 25keV [8], which is almost exactly what
Hoyle predicted. Later experiments [9] evaluated the spin and parity
of the state to be Jπ = 0+, in a β decay experiment. The carbon
abundance in the universe was explained by the triple-α process with
the inclusion of the Hoyle state. This result made some very successful
stellar nuclear models possible and made an example of great collab-
oration between astro and nuclear physics. Nuclear states above the
Hoyle state became interesting, and strange broad resonances were
observed.

Broad resonances and ghosts

By measuring the α particle from 12B β-decay, broad resonances at
a peak value of 10.1 MeV and a FWHM of 2.5 MeV was found [10].
The selection rules (See equation (2.2)) for β-decay restricted this to
be 0+ or 2+ states. To complicate matters more Barker and Treacy
[11] showed that an isolated state near a particle threshold (like the
triple α threshold in 12C) gives rise to a satellite peak, above the "real"
peak. This is referred to as the ghost peak. It was predicted that the
ghost peak of the Hoyle state would be located in same area as the
potential 0+/2+ state. However the ghost peak could not account for
the whole broad peak, so two broad resonances at 10 MeV and 11.8
MeV was proposed. This is how the research and the interest in 12C
structure above the Hoyle state started. The newest data of the lower
energy levels can be found in table 1.1. While much more can be said
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about interesting work on 12C (α clustering, disagreement between
decay and scattering experiment etc.) this is enough to understand
the potential struggles of the earlier work and hence the motivation for
this thesis. More elaborate background knowledge of the 12C studies
can be found in [1] and [2].

Energy [MeV] Γ [keV] Jπ

g.s - 0+

4.43982(21) 10.8(6) ×10−6 2+

7.65407(19) 9.3(9) ×10−3 0+

9.641(5) 46(3) 3−

9.870(60) 850(85) 2+

(9.930(30)) 2710(80) 0+

(10.3(3)) 3000(700) (0+)
10.847(4) 273(5) 1−

11.836(4) 230(8) 2−

(12.4) broad (5+ 4− 6− 7+)
12.710(6) 18.1(28) 1+

(13.3(2)) 1700(200) 4+

13.316(20) 360(43) 4−

14.079(5) 272(6) 4+

15.110(3) 45.6(10) ×10−3 1+

15.44(40) 1770(200) (2+)

Table 1.1: Low energy levels of 12C from [12]. The values in parenthesis
are tentative.
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1.2 Earlier studies and outline.

The work in this master’s thesis is based on an experiment from 2014
performed by Jonas Refsgaard [1]. This decay experiment sought out
to study a wide energy range of the 12C spectrum and produce R-
matrix fit [13] to the different decay types in the said spectrum. Study-
ing the underlining resonances in the broad peak around 9-13 MeV,
but also the higher-lying structures above 12.7 MeV (See table 1.1).
A general struggle in decay experiments is that we often have many
near lying states (or ghost peaks), creating "noise" in areas of interest,
while in other areas there are too few data points. Also, our detector
setup can limit us to have a low acceptance of certain decays. In this
work, we will try to improve on the analysis performed by Jonas Refs-
gaard (and other people who have studied 12C with decay experiments)
by examining the potential of double α coincidence analysis. That is
to say, instead of detecting three α particles, we only look at events
where two are detected and reconstruct the third α from conservation
of momentum. We will investigate the acceptance of different decay
types for the double and triple α coincidence analysis method, and
thereby find under which circumstances such an analysis can be ben-
eficial. We will also try to replicate many of the original results and
expand upon the simulation method used in [1]. Furthermore, a later
study (2017) was performed with the same experimental setup as in
[1], in which strong signals of first forbidden 1− and second forbidden
2+ decays from 12C was observed [14]. These signals were determined
from α-β angular analysis. An attempt to replicate these results from
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the [1] data set is performed as well.

It should be noted that all this will be elaborated upon in the
chapters to come.
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2 Theory

The theory described in this work is largely inspired by the original
work on this experiment [1]. The topics to cover are: understanding
the β-decay of 12N, how to analyse the data through the sequential
decay model and presenting these results in Dalitz plots. Furthermore,
we will elucidate under which circumstances an angular correlation
between the β and highest energy α can arise.

2.1 β-Decay of 12N

The reaction of interest for this experiment is the following decay
chain:

12N −→12 C + β + ν −→8 Be + α −→ α + α + α (2.1)

With a half-life of 11 ms [15] the radioactive isotope 12N undergoes
β decay into 12C which can decay to 8Be with α decay. From this
decay chain many possible decay channels can contribute with decays
through different excitation states in 12C and 8Be. A level scheme of
possible decay channels is shown in figure 2.1.
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Figure 2.1: Level diagram of the β-delayed triple-α decay from 12N. Here
numbers on the left side indicate the energy of the state relative to the ground
state 12C in units of MeV. The numbers on the right side of a state is spin
and parity, Jπ. The allowed transitions indicated by the dashed arrows are
described in the text.

From figure 2.1 we can see the relevant nuclear states and possible
decay paths indicated by the dashed arrows. Why only certain decays
are allowed follows from the fact that beta decays are an instance of
the weak interaction. By examining the weak interaction Hamiltonian
in the non-relativistic limit, you find a set of selections rules that dic-
tates the leading order behaviour of beta decays [16]. These selection
rules lead to a restriction on the coupling of the angular momenta of
the lepton pair (electron/positron and neutrino/anti-neutrino). This
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allows for two types of transitions to occur. Fermi-transitions are
when the lepton pair have anti-parallel spin S and hence the angular
momentum of the initial and final states are unchanged ∆J = 0, since
J = L + S where L is the orbital angular momentum which is 0 for
allowed transitions. Gamow-Teller transitions are when the spins of
the lepton pair is parallel, giving rise to ∆J = 0,±1. These transitions
can be written shortly as:

Se + Sν = 0 −→ ∆J = 0

Se + Sν = 1 −→ ∆J = 0,±1
(2.2)

For allowed transitions (L = 0) parity, π, is conserved (π = (−1)l =

0). Hence decays from the ground state Jπ = 1+ in 12N, only allows
for transitions to 0+, 1+ and 2+. Another restriction we have concerns
the energy of the decays. The Q value of the 12N β-decay is:

Q = (M12N −M12C − 2Me)c
2 = 16.316 MeV (2.3)

This implies that only states with excitation energy below 16.316
MeV can be populated in the decays. From restrictions in the energy,
we have 11 possible decay options, in which only 5 (including the
ground state of 12C) are eligible based on the selection rules from
equations (2.2). These are the decays drawn in figure 2.1. To be able
to decay further from 12C to the 8Be the excitation energy of 12C needs
to exceed the triple-α energy threshold:

(3Mα −M12C)c2 = 7.274MeV (2.4)
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Excitation energies above this threshold allow for at least two types
of decays. Namely, γ and α decays. For the α decay we can write
12C −→ 8Be ∗+α, as written in equation (2.1). Here * marks that the
nucleus is in an excited state (as one should be when doing physics).
Since 8Be* is unbound it decays almost immediately into two α parti-
cles (half-life of 10−17 s). This is why this reaction is often referred to
as β-delayed triple-α decay.

2.2 Dalitz-plots

To be able to distinguish the different decay possibilities as shown in
figure 2.1, we need to present our data in a clever way. Introducing
Dalits plots [17]. Dalitz plots are a way to represent the data from
reactions with 3 fragments in the final state. Instead of simply plotting
the energies of the three α particles E1, E2 and E3 (where E1 > E2 >

E3), we change our coordinate system. Our new coordinate system is
defined in figure 2.2.
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Figure 2.2: Overview of how Dalitz plot coordinates are defined. The kine-
matics of a three-particle decay can be completely described in this manner.
Here E1, E2 and E3 are the energies of the particles in order of decreasing
energy, and Etot = E1 + E2 + E3. Further description can be found in the
text.

Here Etot = E1 +E2 +E3. From conservation of energy, the plot is
restricted to the equilateral triangle in the plot. Furthermore from the
conservation of momentum and the fact that our three particles are
identical, the plot narrows down to within a circle of radius of 1. Since
we chose our energies in the order E1 > E2 > E3 this further restricts
the plot so all the relevant kinematic information is available in the
marked grey area of figure 2.2. This is a good way to represent our
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data since a decay with a uniform phase space distribution will show
a uniform data distribution in our plot. All the interesting physics
will then show itself as maximums and minimums in the plot. These
facts about the nature of our Dalitz plots and how uniformly phase
space decays are represented in them are not trivial. They are merely
stated here to make it easier for the reader to follow conclusions and
discussions in later sections. To describe our data in this marked area,
we make the coordinate transformation:

x =

√
3(E1 − E3)

Etot

y =
2E2 − E1 − E3

Etot

(2.5)

Where the origin is E1 = E2 = E3 (centre of the figure 2.2).

2.3 The sequential decay model

In this work, we use the sequential decay model to calculate decay
amplitudes used for our simulations. In this context, sequential refers
to our decay as a two-step process. Step one is the α-decay from 12C

to 8Be, and step two is the 8Be breakup into two α particles. The
breakup amplitude from such a model has been found in [18] and [19].

f1−23 =
∑
mb

〈l ma −mb jb mb|ja ma〉Y ma−mb
l (Θ1,Φ1)Y

mb

l′ (θ2, φ2)

×
√

Γ1Γ2/
√
E1E23e

i(ωl−φl)ei(ωl′−φl′ )

E0 − γ22 [Sl′(E23)− Sl′(E0)]− E23 − i
2
Γ2

(2.6)
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There is quite a bit to cover with the indexing of this monstrosity of
an equation. Down below is an overview of the different symbols in
equation (2.6) in list format.

• ja Spin of decaying state in
12C.

• jb Spin of 8B resonance.

• l Orbital angular momen-
tum in 12C �8 Be + α.

• l’ Orbital angular momen-
tum in 8Be � α + α.

• Γ1 Partial width of
12C � 8Be + α channel.

• Γ2 Partial width of 8Be �
α + α channel.

• E1 Kinetic energy of α1 in
12C rest frame.

• E23 Relative kinetic energy
of α2 and α3.

• E0 Energy of the interme-
diate state in 8Be measured
from the two-α threshold.

• ωl Coulomb phase shift.

• φl Hard sphere phase shift.

• Sl′ R-matrix shift function.

• Ω1,Θ1 Direction of emission
of α1 in the 12C rest frame

• ω2, θ2 Direction of emission
of α2 in the 8Be rest frame.

• mb is the magnetic quantum
number of 8Be

• ma is the magnetic quantum
number of 12C

In equation 2.6, the subscript 1−23 indicates the order of emission.
The two-step process mentioned above. Since we can not determine
in our measurements which α particle was emitted first, we need to
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average out the amplitude in order of emission:

|f |2 =
∑
ma

|f1−23 + f2−31 + f3−12|2 (2.7)

Up till this point, the sequential treatment of the decay chain has not
been introduced to the problem. Inspired by an interesting argument
as presented in [1], we will look at the distance between the first α1

emitted and the 8Be recoil when the second breakup begins. The valid-
ity of treating each breakup separately can be checked by calculating
the expected Coulomb interaction. The range is calculated from the
velocity of α1, v =

√
2ε1/µ and the lifetime of the nuclear state of 8Be.

Where µ is the reduced mass (In the CM system) and ε1 is the energy
released in the 12C break up. As an example, consider the decays from
the 1+ excited state in 12C. According to the selection rules 2.2, the
only open decay channel is to the 2+ state in 8Be. The Lifetime of
2+ state in 8Be is calculated as τ = ~/Γobs, where Γobs is the observed
reduced decay width of the 2+ state from [20]. From this calculation,
we obtain:

(vτ)2+ ≈ 5.1 fm (2.8)

We assume that the distance between α1 and Be from the first break
up is given by the channel radius, which is around 5 fm. The channel
radius, a, is a measure from R-matrix theory for the boundary between
the regime of the strong- and the Coulomb forces. For distances r,
where a < r, the system interaction is dominated by the Coulomb
force, whereas for a > r the system mainly interacts through the strong
force. We calculate a total distance of 10 fm. This is however not
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satisfactory, since at these distances the Coulomb energy between the
8Be and α is around 1.1 MeV. Which is similar to the kinetic energy of
α2 and α3. To correct for this effect, equation (2.6) have been modified
to account for this Coulomb effect. The correction is included in the
calculation of the penetrability which is used to calculate the reduced
width Γ = 2Plγ in equation (2.6). The penetrability is a function of
energy and describes how likely it is for a particle to penetrate the
potential barrier of the nucleus. So in this case it is the likelihood of
an α particles escaping the potential barrier of 12C or 8Be.

2.4 Expected transitions

To be able to interpret the Dalitz plots, we must first understand
how different nuclear transitions appear in such figures. This has
already been done in earlier works [1], and the results are plotted in
figure 2.3 and 2.4. Here each row represents a nuclear transition at
four different Etot values. Namely, 1 MeV, 3 MeV, 5 MeV and 7 MeV.
Each transition is labelled with the three indexes ja, l and jb. A brief
description is in place: ja is the spin of the 12C nuclear state, l is the
orbital angular momentum of the 8Be + α system and jb is the spin
of the 8Be unbound nuclear state. All the allowed transitions are also
shown in table 2.1.
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Figure 2.3: See description in figure 2.4.
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Figure 2.4: Expected Dalitz plot for different nuclear transitions of (2.1),
with indices ja, l and jb(described in text). Here each row is one decay mode
for four total energies, 1 MeV, 3 MeV, 5 MeV and 7 MeV (plotted from left
to right). The color scale is linear in density. The plots are taken from [1].

ja 0 0 1 2 2 2 2
l 0 2 2 0 2 2 4
jb 0 2 2 2 0 2 2

Table 2.1: Allowed decay modes for (2.1), calculated from the selection
rules in (2.2). ja is the spin of the 12C nuclear state, l is the orbital angular
momentum of the 8Be + α system and jb is the spin of the 8Be unbound
nuclear state.
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2.5 β-α angle correlation

One of the motivations for this thesis was to study angular correlations
between the most energetic α particle, α1, from the 12C α-decay and
the β from the 12N β-decay. You might ask "Well why should there be
any angular correlation, to begin with?" Good question! It turns out
the angular correlation only has a significant contribution from the first
forbidden and second forbidden transitions. First, we examine allowed
transitions. We look at the angular distribution of an α-decay from a
polarized nucleus. Here we mean polarised in terms of the magnetic
sub-state of the nuclei in the initial state mi final state mf . The
quantum number, mi,f is the projection of the spin on the momentum
vector of the decaying particle (in this case the 12C). An expression
for such an α-decay can be found in [14].

W (θ) =
∑
mi

p(mi)G(mi,mf )W (θ)mi�mf
(2.9)

where W (θ)mi�mf
is the directional distribution function for initial

spin projection mi to a final state spin projection mf . G(mi,mf ) is
the relative transition probability between the two states. p(mi) is
the probability of decaying to a mi state from the 12N β-decay. A
very long and tedious expression for p(mi) can be found in Siegbahn
K. Alpha-, Beta-, and Gamma-ray Spectroscopy [21]. Here, we merely
note that the p(mi) values for allowed transitions (l=0) gives rise to
an isotropic angular distribution in equation 2.9. However, when we
use a more general expression for W (θ)(from Morita M. [22]) a non-
isotropic contribution arises. This contribution can be simplified and
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written as:
W (θ) = 1− A2 P2(cos θ) (2.10)

where P2(cos θ) is the second-order Legendre polynomial, and A2 is
the anisotropy factor that have contributions from 12C α decay and
12N β decay. This is expressed as A2 = A2α · A2β, where A2α can
be calculated with [14, equation (3.10)] and is fixed. A2β only has
contributions from higher order matrix element from the β-decay. It
has the subscript 2 (referring to 2+ state), since we know 0+ is always
isotropic. The only non-isotropic contribution can arise from the 2+

state or potentially 1− state. It is important to note that transitions
from 2+ in 12C to 0+/2+ in 8Be can occur through an allowed or
second forbidden transition. Where of course the first one is much
more likely. Second forbidden decays should (at best) only account
for 1− 2% of the decays (referring to fig 24.4 in [23]). Therefore it is
highly unlikely that we should measure any significant contributions
from these decays. However, new research [14], have found exactly
such a contribution. They found the second forbidden transition from
2+, to have an anisotropy two order of magnitudes larger than the
calculated values from [24].

3 Experiment

The work presented in this thesis is based on the experiment performed
at the University of Jyväskylä in Finland in 2014. Here the radioactive
beam facility, IGISOL, was used to study the β-delayed α decay of 12C.
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The 12C-ions are produced through β+ decay from 12N-ions. The
experiment goes as follows: 12N-ions are produced through a transfer
reaction and sent into a carbon foil with an energy of 29.9(1) keV. The
foil thickness is chosen to be roughly 110 nm to ensure a complete stop
of the 12N-ions. More on the exact determination of the foil thickness
in section 4.5. The foil is surrounded by double-sided silicon strip
detectors (DSSSD) which have a solid-angle coverage of ≈ 49% out of
4π. The rather large solid-angle coverage is to ensure a good triple-α
coincidence detection efficiency. It is important to note that since I
did not participate in this experiment, most of this chapter will be
based on the description of the previous work [1].

3.1 IGISOL in Jyväskylä

IGISOL stands for Ion-Guide Isotope Separation On-Line and is a
facility that exceeds in producing low energy ion beams. The name is
rather descriptive of its function since it is a technique that separates
the desired ion while it is being transported through an ion-guide. A
visualization of the technique is shown in figure 3.1. The process starts
with a 30 MeV proton beam that hits a primary target made of natural
Carbon. A range of different isotopes is produced and recoiled off of
the target. One of these is 12N, which is created via the 12C(p, n)12N
reaction. The isotopes are then transported together with the flow of
He gas into the ion-guide. The ion-guide works as a mass spectrometer,
and only allows certain isotopes to enter the extraction electrode by
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Figure 3.1: Drawing of the technique used at IGISOL [25] to generate low
energy ion beams. Note that the voltage written is only an indication of the
order of magnitude used in the experiment. The drawing is taken from [1].

applying a specific voltage in the ion-guide. From then the ions are
electrostatically accelerated to the desired experiment. In our case
the 12N ions are accelerated to 29.9(1) keV before they hit our carbon
target foil.

3.2 Detector setup

The detector setup consists of six double-sided silicon strip detectors
(DSSSD) and three silicon pad detectors (PAD). The setup is shown
in figure 3.2.

The DSSSD consist of 16x16 strips and have thicknesses as de-
scribed in table 3.1. Their main purpose is detecting α particles.
However, the U3 and U4 detectors are sufficiently thick to detect β
particles as well. This is needed to study β-α angular correlations.
The DSSSDs are of the W1 type from Micron Semiconductor Ltd.
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Figure 3.2: Overview of the detector setup. Here the detectors labelled U#
is DSSSD and the detectors labelled P# is silicon pad detectors. [1]

The strips consist of 16 front strips, and 16 back strips orthogonal to
the front strips. This gives us a total of 256 possible hit combinations
for one particle detection. We refer to combinations of front and back
strips as pixels. The pixels of the DSSSD are 3 mm wide and have a
0.1 mm spacing between them. This 0.1 mm is effectively a "dead"
area which is an area of the detector that does not detect any par-
ticles. The "active" area of the DSSSD is 50 × 50 mm. While the
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design is of the "W1" type it has however been modified to be able
to detect very low energy α particles. In table 3.1 the thickness and
dead layer of the detectors is presented. A dead layer (similar to a
dead area) is a layer of material on the top/bottom of the detector,
that does not detect any particles. Normally this dead layer is due
to Aluminium strips situated on the front of the detector. The pur-
pose of these strips is to generate an electric potential to "disperse"
electron-hole pairs for measurement, as known from a regular silicon
detector. However regular W1 type design has a dead layer of ≈ 630

nm, where the modified version has around 100 nm. This is achieved
using an Al grid and contacts, instead of the regular Al strips. How
can such a minimal change have a big effect? For an α particle with 1
MeV, the energy loss is ≈ 200 keV for the original design, but only 31

keV for the modified design on average. This calculation for this little
example was done with the SRIM package [26], with the method pre-
sented in section Energy Loss. The PAD’s have the same dimensions
as the DSSSD’s but with no segmentation. They act as a big stopping
block to measure all particles that went through the DSSSD. This is
mostly β particles.

The dead layers listed in table 3.1 can have two origins. If uncer-
tainties are provided, then the value has been measured in the previous
work [1]. If no uncertainty is noted then it is the dead layer thickness
provided by the manufacturer.
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Detector name Thickness(µm) Dead layer (nm) Type

U1 42 115(6) DSSSD
U2 67 132(13) DSSSD
U3 1041 100 DSSSD
U4 524 114(11) DSSSD
U5 69 100 DSSSD
U6 65 94(11) DSSSD
P1 505 600 PAD
P4 1473 600 PAD
P6 1483 600 PAD

Table 3.1: Overview of the different detectors used in the setup. Here
DSSSD refers to double-sided silicon strip detector and PAD to silicon pad
detector. The thickness and front dead layer of each detector are given.
Note the numbers without uncertainties are factory expected thicknesses,
where the numbers with uncertainties are from measurements carried out in
[1].

4 Data reductions and cuts

In this chapter, we will discuss how data is reduced and sorted in this
experiment. From sorting the raw data to identifying the triple α coin-
cidences. Throughout this chapter, we have used the software Ausalib
[27], to automate energy loss calculations, sorting data, calibrations
etc. Whenever the software has been used throughout this work, it
will be explained how it performs the different tasks.
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4.1 Calibration

The calibration used in the work presented in this masters thesis has
its origin from the previous work on this experiment. Therefore to
learn more about the calibration method used in this experiment, we
refer to section 5 of [1]. The measurements of the calibration source
with peaks described in table 5.1, have been checked to verify the
quality of the calibration. An example of this, together with other
information, can be seen in figure 5.1. While this figure is used in
another context, the data graph is from the calibration of U1, and the
vertical line indicates the tabulated peak values for the α source.

4.2 Matching

After we have calibrated our data, we need to match the hits to each
other. Our DSSSD is as the name indicate double-sided. We need to
match hits in the front strips, with hits in the back strips. When this
is done, we will know what pixels the particles hit and can continue to
calculate the energy of the particles E = 1/2(Ef +Eb), as the average
energy of the front and back strips. However, there are many special
matching cases we need to consider.
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Figure 4.1: Overview of different special cases that can occur when match-
ing particle hits in the front and back strips of a DSSSD. Further description
of the figure can be found in the text. The figure is taken from [1].

These cases are presented in figure 4.1. The first case figure 4.1(a)
is the simplest one. Here one particle hits the detector and we can
easily identify the event and its energy. In 4.1(b) two particles hit our
detector. That means that we have to possible combinations of front
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and back matching. Here we choose the combinations with the lowest
difference in energy between the front and back hits Ef,i−Eb,j, where
i,j is the index of the front and back strips. Some of the rarer events
are shown in 4.1(c) and 4.1(d). In 4.1(c) we have charge summation
in one of the strips. That is when two particles hit the detector, and
the two front(or back) strips deposits are summed into one strip. We
then have one front(back) hit and two back(front) hits. Here we split
the front strip energy:

E ′f1 = (Eb1/(Eb1 + Eb2))Ef1 and E ′f2 = Ef1 − E ′f1 (4.1)

After which we match as in case (b). The last case 4.1(d) is charge
sharing. The pixels in our DSSSD has a little gap between each other.
The gap size is 0.1 mm. When a particle hits this region, the neigh-
bouring pixels can share the charge carriers. There is no way for us
to identify these events, from charge summing. We, therefore, ignore
every event combinations where neighbouring strips have detected a
hit. The amount of data where charge sharing occur is similar to the
relative area of the pixels and gaps. With a gap size of 0.1mm with
pixels of 3 mm width, we expect charge sharing to account for 3 % of
our data.

4.3 Energy Loss

When analysing the data from the 12N decay (2.1), it is important to
remember that the measured energies in our detectors are always too
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small. This is because the particles lose some of their energy when
travelling out of the target foil, and through the "dead layer" on the
front of our detectors. To correct for this energy loss we use the Ausalib
software [27]. Ausalib makes use of the SRIM package [26], which
includes a tabulation of the depth different ions travel in a chosen
material for a given energy. We can e.g. find how deep a 5 MeV α

particle will penetrate silicon material that is 500 nm thick. By using
cubic spline interpolation we can create a continuous energy range
function R(E). Here the cubic spline interpolation basically creates
a polynomial that interpolates ranges for energies not tabulated. We
can write:

R(Ei) = R(Ef ) + ∆xd (4.2)

Where Ei is the initial energy of the α particle, Ef is the final energy
and ∆xd is the thickness of the material. We can then find the inverted
function R−1(Ei), since R(Ei) is monotonic, so we obtain the initial
energy of the particle.

Ei = R−1(R(Ef ) + ∆xd) (4.3)

We know from the previous work [1], that the 12N will have a close to
Gaussian distribution throughout the target foil. It was estimated(in
figure 4.3 in [1]) that the peak position of this distribution was at 64
nm implementation depth in the target foil. That is to say, that we
assume in the analysis that every decay took place at 64 nm implemen-
tation depth. This assumption will also be tested in the simulation
section, where we simulate decays with varying implementation depth
to compare with data.
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4.4 Identify triple-α and double-α events

Triple-α

Now that we have finished the matching of our events and identified
how to calculate the energy loss in our setup from various sources, we
must now address how to find the triple-α coincidences (and double
α later). We start by only looking at events with 3 hits or more. We
then calculate the total momentum for all possible configurations of
three hits. The configuration of hits with the lowest total momentum
is assumed to be triple-α particles. If any hits were detected that had
an energy deposit in both a DSSSD and a PAD, they are marked as
possible β particles. From this selection, we can draw a total momen-
tum vs total energy scatter plot, as shown in figure 4.2.
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Figure 4.2: Total momentum vs total energy of a triple-α coincidence
event. The black line represents a momentum energy cut in which the real
triple-α events should be under the line. The cut is described in equation
(4.4)

In figure 4.2, we expect the true triple-α decays to have the lowest
momentum. Theoretically, it should be 0 if we assume that 12N lies
perfectly still inside our foil. However in reality we have uncertainty
from imperfect energy loss corrections from the foil and dead layer of
our detectors. Also, the pixel width of our DSSSD is 3 mm which
gives rise to an angle uncertainty as well. It is therefore of no surprise
that our triple-α events have total momentum different from 0. The
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higher momentum events in figure 4.2, mainly arise from events where
we accidentally find two α’s and one β. We can make an energy-
momentum cut in figure 4.2 to discard these events. In previous work
on this experiment [1] the momentum energy cut of equations 4.4 have
been used.

|
3∑
i=1

pi| <
1

2

√√√√ 3∑
i=1

Ei + 800 keV and
3∑
i=1

Ei > 600 keV (4.4)

Equation (4.4) is not derived from any theoretical work, but is found
from experience to work very well. The cut has been drawn as a
black line in figure 4.2. The structure we see in figure 4.2 below the
cut resembles that indicated from the level scheme in figure 2.1. The
narrow hot spot around 5425 keV, corresponds to decays through the
1+ excitation state in 12C:

12N −→12 C*(1+) + β + νe −→8 Be*(2+) + α −→ α + α + α (4.5)

The broader hotspot between 1500-4500 keV arises from decays to the
ground state 0+ of 8Be. Generally, all the decays to the 8Be ground
state, that can arise from 12C excitation energies between the triple
α threshold (7274 keV) and the β window (16315 keV), can be seen
in this broad signal. Many of these structures have been covered and
discussed in previous work [1]. The same resonances can be seen in the
total energy plot in figure 4.3. The 1+ 12C peak is located at 5425.6(4)
keV with a FWHM of 122 keV.
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Figure 4.3: The total energy of three α particles from the reaction in
equation (2.1). In linear and logarithmic scales respectively.

In table 4.1 we give an overview of how the different cuts have
decreased the amount of data. From this table it is clear that the
biggest impact on the data is the momentum-energy cut from equation
(4.4). This motivates the analysis of double-α coincidence analysis.
If we can reconstruct the lost information when we only detect two
α’s there is a large potential of additional data to gain. If we can
understand the error we induce in reconstructing α particle data there
may be a big net gain in statistical precision. The decay channels
through the 8Be ground state and excited state is separated with an
energy cut in relative energy of the two lowest energy alphas E23. This
can be calculated since we already have the momentum vectors of α2

and α3. We can find the energy in their common centre of mass system
with:

E23 = 2
~p 2
23

2mα

and ~p23 =
1

2
(~p2 − ~p3) (4.6)
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A plot of E23 can be found in figure 4.4. The sharp peak at 92.34(3)
with a FWHM at 39 keV is the 8Be ground state peak. At larger E23

the spectrum rises again, representing all the decays through the 8Be

excitation state. The cut off as indicated in figure 4.4 is chosen at 250
keV.

Cuts No. of events

Event multiplicity >2 21563015
momentum and energy cut 522823
Be-groundstate 393506
Be-excitation 123745

Table 4.1: Overview of how different data cuts affect the total amount of
events available for triple-α coincidences.

Double-α

As mentioned in the previous section the motivation for analysing two-
α’s coincidence is to gain a larger uncorrelated data set. Let us first
look at events with two detector hits to see what we can gain from
this (in contrast to finding two α candidates from 3 hits). So we only
take events with 2 hits detected and assume those are α’s. From the
conservation of momentum, we calculate what direction and energy
the missing alpha should have to give total momentum 0. We then
plot the total energy of the three α’s, as shown in figure 4.5. We see in
figure 4.5 the 1+ excitation peak(at 5−6 MeV) as we have seen earlier
from the triple α coincidence plot of figure 4.3. Besides that, we see a
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Figure 4.4: The relative energy of the two lowest energy α particles a2 and
a3. The black line at 250 keV indicates the border between 8Be ground state
decays (E23 < 250keV) and decays through the 8Be excitation state(E23 >
250keV).

major peak in the 1-4 MeV interval. However, the intensities between
the broader peak at 1-4 MeV and the 1+ peak are very different. Also,
a new peak around 1 MeV is visible. This is somewhat expected since
the biggest issue in reducing the data is to avoid the case where we
find one α and one β. These cases have the largest contribution at
lower total energy since the β particles have lower energy compared to
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Figure 4.5: The total energy of double α coincidence events. Here the
third alpha is reconstructed based on conservation of momentum. The data
has been plotted in linear and logarithmic scales respectively.

the α particles in these decays. To clean up this data set, we have to
make two data cuts. The first is to discard all the data where a hit is
detected in both a DSSSD and the PAD behind it. Since our thinnest
DSSSD U1, with a thickness of 42 µm, should stop all α’s under 7 MeV,
we assume any hit in both DSSSD and the PAD is a β. The second
cut relates to the direction of our reconstructed α particle. We assume
that if the reconstructed α has a direction which is into a detector, we
would have detected it already. To evaluate this cut, we can plot the
polar angle θ and the azimuthal angle φ of the reconstructed α. Such
a plot is shown in figure 4.6. Here we see three heat spots, however,
spots at θ ≈ 90, φ ≈ 180,−180 are linked together and are in the
beam direction (z-direction). The spot at θ ≈ 90, φ ≈ 0 is in the
-z-direction. We find that most of the lost α particles go in the beam
direction or the opposite to that. The shapes drawn onto figure 4.6
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indicates where detectors are located. So hits inside these areas are
discarded. There are also some bright spots around θ ≈ 90 − 120,
φ ≈ 50, 150. This is expected since decays through the 8Be ground
state often produce a high energy α and two low energy α’s from the
8Be break up, that is they go in opposite directions. This indicates
the cases where we detect two low energy alphas in the U5 DSSSD
and detect no high energy alpha in θ ≈ 90− 120, φ ≈ 50, 150 since no
detector is placed here.
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Figure 4.6: The azimuthal angle φ and polar angle θ of the reconstructed
α particle from the double-α coincidence analysis. The shapes drawn with a
black line indicates where a detector is located.
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After making both of these cuts we can plot the total energy once
again. Such a plot is shown in figure 4.7. This compares much better
to the triple α total energy plot from figure 4.3. The 8Be ground
state peak between 1-4 MeV is still a little skewed to the left, which
indicates that we did not discard all the fake alpha events, but the
overall result is a lot better. A discussion of the peak broadening and
general smearing of the double-α coincidence data follows in section
4.7 (and in the simulation section 5.2) where we make the double-α
analysis on the triple-α analysed data. In table 4.2, we present the
remaining events after each cut. The cuts accumulate so that row two
have the cuts of both row 1 and 2 and so forth. Here two things are
important to notice. Firstly, after performing the two cuts presented
above, we still have 859036 events left. If we compare that to table
4.1(Same table but for triple α coincidences), that is an≈ 66% increase
of data available. Secondly, we have more data of the 8Be excitation
decay channels than in the 8Be ground state decay channels, wherein
the triple analysis it is opposite. As previously mentioned, this is
expected since in the decays through the 8Be ground state the high
energy α, and the two low energy α’s should be moving in opposite
directions. Since the detectors are placed in opposition (except U5) we
expect that if one is detected the other should be as well. However, for
decays through the 8Be-excitation state, the angles between the three
α’s are more "arbitrary", so the double-α is more useful here. This is
further studied in the simulation section 5.4, where we calculate the
acceptance of the triple and double α analyses for different decay types.
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In figure 4.7 we see the same overall structures as in the corresponding
energy plot for the triple coincidence analysis in figure 4.3. The 1+

peak is located at 5419.3(7) keV with a FWHM of 522 keV. This is≈ 4

times bigger than the FWHM measured from the triple coincidence
analysis. Also, the peak position has been shifted down 5 keV, which
is not a lot compared to the quality of calibration (which is also around
a 5 keV resolution) but still noticeable.
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Figure 4.7: The total energy of double α coincidence events. Here the
third alpha is reconstructed based on conservation of momentum. We plot
the data with a linear y-axis(left) and log(y) axis(right).

4.5 Determination of the foil thickness

In the original work of Jonas Refsgaard [1] the foil thickness was mea-
sured. This was done before the experiment started and after it was
finished. The method to determine the foil thickness was to measure
the energy of a known calibration source first with the foil in front of
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Cuts No. of events

Event multiplicity = 2 23.13523 ·106

No beta allowed 1.64768 ·106

Direction 859036
Be-groundstate 386386
Be-excitation 472650

Table 4.2: The number of events remaining after each data cut. The cuts
accumulate, where the first row includes cut one and the second row includes
cuts one and two etc.

the source and then without the foil. From the shift of position of the
peaks in the two measurements, you can infer a foil thickness. The
results of these measurements are in table 4.3. From table 4.3 it ap-

Runs ∆xf (nm)

66 and 68 96(4)
294 and 314 123(3)

Table 4.3: Measurement of the foil thickness from before and after the
experiment. The data is divided into runs where the experiment goes from
run 70 to run 290. ∆xf is the foil thickness. Data is taken from [1].

pears that the foil thickness is increasing throughout the experiment.
So a linear interpolation of the foil thickness was originally made in
relation to the run time. We will now test if we can find evidence of
such an effect. Since the data is split up in many consecutive "runs"
we can look for any accumulating effects. If we locate the position
of the well determined 1+ peak of 12C for each run, we can see if the
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position changes accordingly for increasing runs. We analyse the data
first with a fixed value of the foil thickness and then with a thickness
that increases linearly with the run number. For each run, we find the
bin x0 with the highest count value between 5000-5800 keV and fit a
Gaussian function in the range [x0-120keV, x0+120keV]. An example
of such a fit is given in the appendix, figure 6.9. The results of these
fits are shown in figure 4.8 and figure 4.9.
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Figure 4.8: Positional changes of the 1+ peak in 12C vs the run number
(described in the text). Data is analysed with a fixed foil thickness of 96
nm. The black line at 5425 keV is graphed to show the measured value of
the peak position for the whole data set with 96 nm foil thickness. The red
line is a linear fit to the data.

In figure 4.8 we see the fits for a fixed foil thickness of 96 nm. The
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error bars are not shown here since they are rather large, σ ≈ 70 keV,
and would disturb the clarity of the graph. Furthermore only runs
with more than 1500 events in the energy range of 5000-5800 keV

have been included to ensure the fits are of a good enough quality. A
linear function has been fitted to evaluate any increasing/decreasing
tendencies. From this fit, we can see that there is a slight downward
drift for increasing runs. This implies that the energy loss correction of
the foil is too small for increasing run numbers. That is to say that the
foil thickness is growing and the energy loss correction is staying the
same. Since the errors of the points are around the σ ≈ 70 keV, it is
difficult to say for sure that such a small drift is a significant increase of
the foil thickness. If we try to let the foil thickness increase from 96 nm
to 123 nm linearly with the run number, we can see in figure 4.9 that
we heavily induce a systematic drift in the 1+ peak position. More
investigation is needed here to check for non-linear drift effects and
possible correction methods. You could e.g. increase the foil thickness
with run time and not run number since some runs are longer than
others. In this work, it is assumed that the foil thickness is fixed at
96 nm in the analysis since the drift found in figure 4.8 is rather small
and correcting it would have an equally small effect.
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Figure 4.9: Positional changes of the 1+ peak in 12C vs the run number
(described in the text). Data is analysed with a linearly increasing foil thick-
ness, from 96-123 nm in contrary to figure 4.8. The black line at 5425 keV
is graphed to show the measured value of the peak position for the whole data
set with 96 nm foil thickness. The red line is a linear fit to the data.

4.6 Spectra

Fynbo plots

In the last section, we were able to produce the total energy spectrum
of the triple α decay. We did this for the triple and double α coin-
cidence analysis in figure 4.3 and 4.7 respectively. Another way to
present this data is with a so-called "Fynbo" plot (named after Hans
Fynbo). This is a scatter plot in which you plot the total energy on
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the x-axis and the energy of the individual α particles on the y-axis.
Such a plot is presented in figure 4.10. It should be noted, that one
decay event produces three data points on this type of plot, since for
each event we have one total energy and three separate α1,2,3 energies.

Figure 4.10: The energy of the individual α particles on the y-axis and the
total energy of the three α particles on the y-axis. Note that one decay event
produces three points on this plot. The data is extracted with the triple α
coincidence analysis.

Figure 4.10 is for the triple α coincidence analysis. Here we see
three distinctive clusters at Etot ≈ 5400. These are the decays through

43



the 1+ excited state in 12C. The two other clusters of data, that
stretches over the whole spectrum of total energy, are decays through
the ground state in 8Be. These can be isolated with the same energy
cut as described in section 4.4. Namely E23 < 250 keV, where E23 is
defined in equation (4.6). The same scatter plot with this energy cut
is shown in figure 4.11.

Figure 4.11: The energy of the individual α particles on the y-axis and
the total energy of the three α particles on the y-axis. Here an energy cut of
E23 < 250 keV is used to isolate the decays through the 8Be ground state.
Note that one decay event produces three points on this plot. The data is
extracted with the triple α coincidence analysis.
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Here we see two energy bands. However, we do actually have a
band for each α particle but the two bands of the lower energy α

particles overlap and create one very broad energy band. Remember
that the way we read these plots is as follows: For a given total energy
e.g 3 MeV, we find the most energetic α particle in the upper energy
band at ≈ 2 MeV. This means that the two lower energy α particles
are in the lower band, with an energy between 200-900 keV. You could
of course also make a plot with the opposite energy cut, E23 > 250

keV, to isolate the data of decays through the 2+ state in 8Be. This is
shown in the appendix figure 6.10. These Fynbo plots, have also been
made for the double coincidence α particle analysis, and are shown in
figure 4.12, 4.14 and 4.13. Figure 4.12 has the same structure as seen in
figure 4.10. For the 1+ peak we see three clusters as expected, but with
more broadening in Etot. It is important to note that this broadening
does not have horizontal symmetry. There looks to be some energy-
dependent systematic effect that shifts some of the data from the 1+

peak to higher total energy. This effect will be investigated further in
the simulation section 5.2 and section 4.7. If we take a look at figure
4.13 we also see a lot of data under the 1+ peak. This is mostly data
from the 8Be ground state that does not get excluded with E23 > 250

keV energy cut. If we look at the plot for the E23 in figure 4.4, we
note that the 8Be ground state peak does not stop at 250 keV, but
rather the 8Be excitation peak dominates for larger energies. You can
imagine that the ground state peak continues under the 8Be excitation
peak and diminish for higher energies. This effect is stronger for the
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Figure 4.12: Fynbo plot (see description in figure 4.10) of data extracted
with the double α coincidence analysis.

double coincidence α analysis since our energy measurement has a
generally higher uncertainty (As seen in the peak broadening in e.g.
figure 4.7).

The decay through the 8Be ground state is seen in figure 4.14. Here
the most striking feature is the very sharp energy band for the most
energetic α particle. Also the energy bands for the two lower energy α’s
has been narrowed. Of course, the narrowing of these bands should not
be interpreted as an increased precision, but rather a loss in precision
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Figure 4.13: Fynbo plot (see description in figure 4.10) of data extracted
with the double α coincidence analysis. Here the decays through the 8Be 2+

state is isolated with the energy cut E23 > 250 keV

due to forcing the total momentum to be 0.

Dalitz plots

In section 2.2, we discussed Dalitz plots and why they were useful to
present data of decays with three fragments in the final state. With
coordinates as defined in equation (2.5), we present the Dalitz plots
from the triple α coincidence analysis in figure 4.15 and the double α
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Figure 4.14: Fynbo plot (see description in figure 4.10) of data extracted
with the double α coincidence analysis. Here the decays through the 8Be
ground state is isolated with the energy cut E23 < 250 keV

coincidence analysis in figure 4.16. It is tempting to interpret these
plots based on the theoretical expectations of different decay modes
from figure 2.3 and 2.4. However, without acceptance corrections, it is
not possible to interpret any signal as evidence of a given decay mode.
By acceptance, we mean our detector and geometrical acceptance.
Based on our detector and how they are placed, different alpha decays
might be more or less probable to detect. This could e.g. be seen
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as bright and dim spots from uniform phase space distributed events
in our Dalitz plots. A strong signal would then be overestimated and
vice versa. In section 6.5 we calculate this acceptance from simulations
and apply the correction to our Dalitz plots. What we can do now, is
compare figure 4.15 to the earlier work in figure 6.8 in [1]. What we
see there is a definite agreement with the earlier work. All the Dalitz
plots in figure 4.15 resemble their corresponding plot in figure 6.8 in
[1]. That we can reproduce earlier work, indicates that our method
is correct, in the sense that two independent analyses give the same
result. Or that we made the exact same mistakes (hopefully not).
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Figure 4.15: Dalitz plots of the triple α coincidence analysis with E23 >
250 keV. The binning is 60×60 and the total energy range is written above
each of the plot. x- and y-coordinates are defined as in (2.5).
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Figure 4.16: Dalitz plots of the double α coincidence analysis with E23 >
250 keV. The binning is 60 × 60 and the total energy range is written over
each plot. x- and y- coordinates are defined as in (2.5).
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4.7 Reconstruction of triple α coincidence

data.

To investigate how the reconstruction of α particles affects our data,
we try to reconstruct a known α particle and observe the changes it
induces. That is to say, for each event where we find three α particles,
we "remove" a random α and then reconstruct its information. We
can then see how that affects our angle, energy and hence momentum
resolution. A Fynbo scatter plot, similar to figure 4.10, has been made
from this reconstruction method. It is plotted in figure 4.17. From fig-
ure 4.17 we see the same energy broadening as first observed in figure
4.12. However the asymmetric broadening around the 1+ peak (which
decays through 1+ state in 12C) does not seem to be reproduced. We
will discuss this later in the section 5.2. The FWHM of the 1+ peak
is 207(1) keV and the peak position is 5411.2(8) keV. The effect of
reconstructing a random α particle is therefore a shift in the peak po-
sition (≈ 14 keV) and a broadening of 70 % (FWHM was originally
122 keV). The additional FWHM up to 522 keV that is observed
can therefore not be explained on reconstruction alone. Furthermore
there seems to be an effect that shifts the peak position to a higher
energy, which mitigates the original down shift from the reconstruc-
tion. The angular resolution is tested by calculating the angle between
the momentum vector of the measured α and reconstructed α. A plot
of this can be seen in figure 4.18. If we fit a landau function to this
histogram we find a mean peak value of 6.53(2)◦ with σ = 3◦. An
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Figure 4.17: Same plot as figure 4.10 where one of the α particles has been
"removed" and reconstructed based on conservation of momentum.

angular uncertainty of 6.5◦ is still small enough to be useful for β-α
angular correlation studies, since the non-isotropic behavior studied
in [14] is observed on a resolution of 3.5◦. Here I refer to the binning
of figure 5.20 in [14].
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Figure 4.18: Angle between a measured α particle and a reconstructed α.
Here the reconstructed one is based on conservation of momentum

5 Simulation

So we beat on, boats against
the current, borne back
ceaselessly into the past.

The Great Gatsby - F Scott
Fitzgerald

While the spectra presented in the previous section includes a lot of
information about our experiment, it is with simulations that we can
truly test our understanding of the physics in said experiment. In this
chapter, we will perform several simulations of different decay channels
from figure 2.1 and compare them with the data. With the GEANT4
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[28] framework, we are able to perform Monte-Carlo simulations of
α and β particles from calculations of equation (2.6). Furthermore,
the detector geometry and the frames our PADs are situated in can
be simulated as well. That means we can include β back-scattering
effects. WithGEANT4 we can simulate how different foil implantation
depths and beam sizes affect our data. We will analyse the acceptance
of both the double and triple α coincidence analysis for different decay
channels.

5.1 Software

As mentioned earlier the simulations are carried out with the GEANT4
software made at CERN [28]. While we use version 1.0, the software
has been modified by the Aarhus subatomic group under the name
G4SIM 1. The calculations of the decay weights are done with equation
(2.6) to predict the behaviour of the α and β particles. This calculation
was not done in G4SIM, but rather in the software SIM3a2 which was
developed for the work done in [1]. This software was used to generate
particle events, that could then be simulated in G4SIM. The reason for
this was simply to reduce human error. SIM3a was already well tested
and capable of outputting raw event files based on equation (2.6) but
also including β-ν recoil effects (described in section 7.1 in [1]). In
recent work [29] the frames surrounding the PAD and the Al contacts

1https://gitlab.au.dk/au479664/G4Sim
2https://gitlab.au.dk/ausa/sim3a
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on top of the DSSSD have been added to G4SIM. From the inclusion of
the frames we expect to be able to simulate β back scattering effects.
The Al contacts cover 3 % of the active area on the front of our
DSSSD’s. That means 3 % of our data experience a higher energy loss
than expected. This will result in physical satellite peaks in our energy
spectrum (here physical implies that the satellite peak is a consequence
of a physical disturbance), with a lower energy than our main peaks.
We use the Low Energy Electromagnetic Physics - Livermore 3 physics
package from Geant4 since it gives good results for low energy particle
decays. Compared to the SIMX used in previous work [1], Geant4
has the possibility to simulate β particles as well. Where earlier real-
world β noise was mixed into the simulation. Furthermore, the GNU-
PARALLEL software [30] was used to run the simulations in parallel
to speed up the process.

Electronic noise simulation

When doing our simulations we of course would like it to replicate re-
ality as well as possible. One of the things to consider in this regard is
the electronic noise in our experiment. Our electronic equipment and
cables induce noise in our experimental measurements. This noise sig-
nal can be included in G4Sim. To estimate our electronic noise, we
fit a Gaussian function on our calibration data and use the σ value
in G4Sim to fold a Gaussian noise signal around our simulated data.
This is a very simple method, and will only give us a rough estimate

3https://geant4.web.cern.ch/node/1619
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of electronic noise in our experiment. The information about the cal-
ibration source used in the experiment is presented in table 5.1. The
table shows the most presiding line in our calibration isotopes. Unfor-
tunately, G4Sim does not include an energy-dependent noise signal.
We can then only include an average noise disturbance over the whole
energy range. For each DSSSD a Gaussian function was fitted to the
main peak of each isotope in 5.1 and from this an average value was
calculated. The results are shown in table 5.2. Here U3 is not included
since no measurement of an α source directly in front of the DSSSD
was made. The main point of U3 is to measure β so this is not an
issue.

Isotope Iα(%) Eα(keV)
239Pu 73.3(8) 5156.59(14)

15.1(8) 5144.3(8)
11.5(8) 5105.8(8)

241Am 85.1(3) 5485.56(12)
13.3(7) 5442.80(13)

244Cm 76.4(12) 5804.77(5)
23.6(12) 5762.16(3)

Table 5.1: The intensity and peak energy of the most dominant lines in
the calibration sources used in this experiment. The data is from [31].

The electronic noise estimates of each DSSSD from table 5.2 is
included in our Geant4 based simulation software G4Sim. A simula-
tion of the α source as described in table 5.1 was performed on each
DSSSD. That is to say, the source of the simulations was placed in
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DSSSD U1 U2 U4 U5 U6
σ (keV) 16 14 13 13 13

Table 5.2: The electronic noise for each DSSSD where an α measurement
was available. The σ is extracted from a Gaussian fit to calibration data for
each DSSSD. Further explanation is in the text above.

front of each DSSSD. This is to mimic the circumstances of the ex-
periment. An example of such simulations compared to data can be
found in figure 5.1. Here we look at data from U1. From the figure
we can see that the simulation fits the data fairly well, while still a bit
too narrow. The two plots have been scaled for easier comparison.

General simulation technique

The way our Monte Carlo simulation work is as follows. Generally,
the information about the particles we want to simulate is drawn ran-
domly from e.g. an energy distribution. Our simulation events are
pre-generated in Sim3a from an energy distribution and/or angle dis-
tribution depending on the simulation of interest. Here it is important
not to use the same seed for your random sampling of events when you
run simulations in parallel. Perfect randomness can be difficult to ob-
tain. We often measure something random in nature (the falling of
snowflakes e.g.) and use that to generate random numbers. So the
"seed" in this context is the index of the file that includes the mea-
sured "noise" you want to generate random numbers from. If you
run two simulations with the same seed they will generate the same
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Figure 5.1: Comparison between simulation (red line) of α source in table
5.1, and data (black line) from U1.

"random" events and create a bias in the simulation. What kind of
information the events are sampled from, is presented later in each of
the simulation’s sections. For each event, three α and one β particle
are generated. The Qβ is determined and the βν recoil is applied to
the 12C nucleus. The generated data is simulated through the G4SIM
program with the geometry shown in figure 5.2. The figure shows the
6 DSSSDs and 3 PADs as discussed in the experimental section. The
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Figure 5.2: Graphical visualization of the simulated geometry. Here is
shown the 6 DSSSDs and 3 PADs with their frames. The target and the
target holder is simulated as well.

target and target holder are also simulated. Figure 5.2 is made with
Geant4’s graphical visualization tool. The beam profile is estimated
from simulations of the 1+ state in 12C since this decay has only one
decay channel (through 2+ states in 8Be based on the equation (2.2))
and has no energetically close states to create "noise" in our data (see
figure 2.1). The beam profile, in this case, refers to the distribution of
implantation depth and distribution of the beam size(both asumed to
be Gaussian).
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5.2 Simulations of decays through 1+

excitation state of 8Be.

We will start by simulating decays of the 1+ state in 12C (equation
(4.5)). From the selection rules given in (2.2) we know this can only
decay to the 2+ state in 8Be. The information given to the Sim3a
program is:

1. –JC 1+ –JBe 2+ -L 2 –ExC 12.7MeV –ExBe 3030keV -N 200000
–seed index -o path/index.root

Where –JC is the excited state in 12C, –JBe is the excited state in
8Be, -L is the orbital angular momentum for 8Be+α system, –ExC and
–ExBe are the excitation energy of 12C and 8Be, -N is the number of
events to be simulated, -o is the output name and/or path and/or data
type and last –seed is the index of the file used for generating random
numbers as stated earlier. The index is just a placeholder for a given
number. Since this is run in parallel, a different index is given for each
run. We simulate 2.000.000 events. Here the specific Q value is given
(from the 12C excitation energy), so the information of the α parti-
cles is calculated from the energy and momentum restrictions of the
decay. The generator from the ROOT library TGenPhaseSpace does
this calculation. This generator calculates a weight for a given event,
such that we can sample our events based on their weight to make our
samples uniformly distributed in phase space. The theoretical weight
is calculated with (2.6) to give the total weight as a product of the
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two. When we know the maximum weight of the total weight we can
use the Von Neumann method [32] of choosing the events we want to
simulate. Now we are ready to run the data through G4SIM. For our
first simulation the implantation depth is set to 64 nm in the target
foil, and the beam has no width(the decay happens in the surface cen-
ter of the foil). The simulated data is then sorted and analysed with
the same method and software as described in section 4. The same
scatter plot as seen in figure 4.2 is generated from the simulation and
presented in figure 5.3. In figure 5.3 many of the same features from
figure 4.2 is replicated. The three clusters above the main heat spot
stem from β noise. The triplet structure of this β noise is a conse-
quence of equation (2.6). Simulations without the weighted sampling
from equation (2.6) will produce a uniformly distributed β noise in the
same place. That equation (2.6) replicates this structure is new infor-
mation compared to previous work [1], where they did not simulate β
particles but rather mixed in real world data into the simulation. A
thing to notice is the distribution of total momentum. The primary
heat spot are located in the 0-20 MeV/c range, compared to figure
4.2 where the 1+ peak is near the 0-50 MeV range. This has to do
with the beam profile being only located on the surface centre of the
foil. Changing the beam width has the biggest impact on the angle
measured, which heavily influences the momentum vectors generated
from the energy and direction. To investigate the beam profile further
we plot Etot and Ptot (total momentum) separately in the range of 5-6
MeV. We use the energy and momentum cut from equation (4.4) and
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Figure 5.3: Scatter plot of 1+ excited state in 12C simulation (equation
(4.5)). No beam profile is added (events simulated from 64 nm implantation
depth in foil surface centre).

E23 > 250 keV. A comparison plot between data and simulation is
shown in figure 5.4.
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Figure 5.4: Comparison of total energy(right) and total momentum (left)
of the 1+ peak(data from equation (4.5) decay chain) between simulation
(blue) and data (red). Energy and momentum cut from equation (4.4) as
well as E23 > 250 keV is applied. No beam profile is added (Events simulated
from 64 nm implantation depth in foil surface centre). The y-axis is of an
arbitrary unit since the plots have been scaled to be more easily comparable.

Multiple things draw attention in figure 5.4. First, if we look at
the total energy spectrum (right). The main peak is located close to
the same position as the data at 5429.1(5) keV which is found from
a Gaussian fit to the main peak. Secondly, I specify the main peak.
A satellite peak is generated below the main peak in the simulation
but not in the data. This peak is due to the inclusion of the Al con-
tacts of the DSSSD’s surface. Around 3 % of the events experience a
larger energy loss (since Al contacts cover 3% of the active area of our
DSSSD’s) than is accounted for in our energy loss corrections. That
is to say, those events are energy shifted below our main peak due
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to lack of correction. Besides the satellite peak, the FWHM value of
the main peak in our simulation is only 23 keV. This is 18.8 % of
our data peak with a FWHM of 122 keV. The satellite peak could
be hidden in the data plot due to peak broadening. This would also
explain the antisymmetric from of the 1+ data peak. In the Ptot plot
(left in figure 5.4) we see that the peak is positioned too low and is
too narrow. The shape looks similar, that is, they both have a Poisson
looking distribution. The question is now, where does the broadening
of energy and momentum come from? This is where we introduce the
beam profile. In our data analysis, we do not know the implantation
depth of 12N. We make a qualified guess based on simulations of the
stopping range of 29.1 keV 12N in carbon (figure 4.3 in [1]). So by
analysing all data with an implantation depth of 64 nm we get an en-
ergy broadening from errors in our energy loss corrections. Similarly,
we induce a momentum broadening by assuming the beam to have no
width and that it is hitting the foil in the centre. Here the broadening
arrives from errors in the direction calculations of our particles. We
now try a simulation where the coordinates in the position vector of
our starting point are sampled from a Gaussian distribution for each
event. Our z-value (implantation depth) is sampled from a distribu-
tion around 64 nm with a σ = 40 nm. For the x,y values we sample
from a Gaussian distribution around (0mm,-1mm) with σ = 1.5 mm.
In the case where the value x, y or z is outside the foil (e.g. you choose
a large σ or off-set) a new value will be generated. The results of this
are plotted in figure 5.5. With the added beam profile the spectral
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Figure 5.5: Same plot as figure 5.4, but with the added beam profile as
described in the text.

comparison in figure 5.5 looks a lot better. The momentum spectrum
(left) has a small offset but besides that, the shape and width of the
peak are very similar. Fitting a landau function to the two momentum
graphs, we found a mean peak value of 13.2(4) MeV/c with σ = 5.2

MeV/c for the simulation, compared to 14.0(5) MeV/c with σ = 7

MeV/c for data. The energy spectrum (right) has also improved sig-
nificantly. While the peak position is close to unchanged (found to
5428.4(1) keV), the FWHM has increased to 42.7 keV. While still
only ≈ 34% of the FWHM of the data peak (122 keV), it is still an
improvement. One might suggest further increasing the σ of the im-
plantation depth distribution. However, 40 nm is already stretching
it pretty far, compared to figure 4.3 in [1], which from the looks of it
suggests a σ between 20-30 nm. From section 4.5 we suggested that
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while the foil does not seem to grow linearly with each run, there does
seem to be a change during the experiment. So while increasing the σ
might yield better results in terms of energy broadening, it most likely
does not represent the experiment. In this work, the described beam
profile will be used in future simulations. However, if time permitted
it, one should have remade the simulation of 12N in carbon and used
that distribution to simulate data from. From this, a more extended
analysis of the foil thickness and possible alteration should be con-
ducted. The beam profile described has been found through trial and
error of many simulations. In principle, one might be able to fit the
beam width and depth in the foil given enough computer power, since
each simulation takes a fairly long time (5-20 min ). Such a fit would
be constrained by the expected momentum and energy of a decay.

5.3 Simulations of decays through the 8Be

ground state

In this section, we will simulate decays through the 8Be ground state.
We simulate 1.000.000 events through the 0+ state in 8Be with an
uniform energy distribution from 600 - 5000 keV total energy. Hence,
the Q value of our events can be between 7.8 − 12.5 MeV, but only
decays through the 0+ 8Be state are allowed. The reason for choosing
this range is to compare β-α angular correlations with the results from
[14]. As before we specify the settings given to Sim3a:
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1. –JC 0+ –JBe 0+ -L 0 –ExC 12.5MeV –ExBe 0keV –seed index
-o path/index.root -N 1000000

The options given here are the same as described in the previous sec-
tion. Again, an analysis of the data following the same recipe from
section 4 results in the scatter plot 5.6. At a first glance, the figure
might not resemble the data, due to the large bright spot at the bot-
tom of the plot. However, this can be explained by the energy range
and uniformity of the used Q-value. Since the great bright spot in
4.2 at Etot between 2 and 5 MeV with Ptot < 40 MeV/c, consists of
many possible transitions through the 8Be ground state, it is difficult
to make a realistic simulation of this area. Nonetheless, the simulation
can be used to check the β noise above our energy and momentum cut
from (4.4), as well as the β-α angular correlation. The β response of
the simulation seems to mimic the nature of the data.
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Figure 5.6: Scattering plot from simulations through the 8Be ground state.
1.000.000 events are simulated, with a uniform Q between 7.8− 12.5 MeV.

Having achieved simulations of the decays through the 8Be ground
state as well as the decays through the 8Be 2+ excited state, we can try
to recreate the so called Fynbo scattering plots from 4.10. By mixing
the results of both simulations, we obtain 5.7 and 5.8. The difference
between these two plots is the analysis applied. In figure 5.7 the triple
α coincidence analysis has been used, whereas the double α coincidence
approach was applied in figure 5.8. The branching ratios have not
been included, so the relative intensities of the two simulations are

69



not important. The point of these figures is to visualise the general
structure of our simulation, which should mimic the nature of the data.

Figure 5.7: Fynbo plot from simulations of decays through the ground
state and 2+ state of 8Be. Triple α coincidence analysis have been used.
The general Fynbo plot is described in figure 4.10.

Generally, the two figures resemble the structure of figure 4.12 and
4.10. From figure 5.8 we see the antisymmetry of the 1+ peak around
5425 keV. This feature was not reproducible in section 4.7, where we
tried to remove a known α and then reconstruct it for each event.
The cause of this effect is still unknown. However, this phenomena
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is reconstructed in our simulation. We also see the sharpness of the
α1 (most energetic α) band in the 8Be ground state decays. The 1+

peak is also more narrow in the simulation, but this we already saw
in figure 5.5.

Figure 5.8: Same as in figure 5.7, but with the double α coincidence anal-
ysis instead of triple α.
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5.4 Acceptance and sensitivity

For a better understanding of the simulations, as well as how the ge-
ometry of the setup affects the analysis, we now take a look at the
acceptance and sensitivity of our simulation. The acceptance refers to
the percentage of the generated events that are actually detected and
analysed. To know this, we must learn how many decays occur and
what fraction survives the analysis. Originally a Germanium detector
was present in the experiment to detect γ radiation. The γ’s in our
experiment was generated from the de-excitation of 12C. In figure 2.1,
we can see that γ decays can occur between states in 12C. Hence the
detection of γ radiation will measure how many of the different states
in 12C were populated. By knowing this, we can calculate an accep-
tance when compared to the results of the analysis. Unfortunately,
this γ radiation detector was located too far away from the experi-
ment, which led to noisy data. Thus, we are left with results from our
simulations. We create a histogram of Etot for the events that we want
to simulate, and another from our simulated and analysed results. A
histogram of the acceptance is achieved from this by dividing the two
histograms. We first take a look at our simulation through the ground
state in 8Be, which is shown in figure 5.9. Here, the results from both
the triple and double α coincidence analysis are plotted. The triple
coincidence acceptance is as expected from earlier work [1]. The ac-
ceptance increases for increasing Etot and it converges towards ∼ 20%

of our generated events. Our double α acceptance increases faster for
low Etot and then declines for larger Etot values. The reason for this
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Figure 5.9: Acceptance of decays through the ground state in 8Be, based
on simulation from section 5.3.

is related to the angular correlation of the three α’s. As previously
stated, due to the law of conservation of momentum, the momentum
vector of α1 will generally be opposite that of the α2 and α3 particles,
where the latter move in the same direction. So generally if we detect
α1 we detect α2,3 in the opposite detector and vice versa. Therefore,
for this particular event, we expect a greater number of detections in
the triple α analysis as compared to the double α analysis. However,
for Etot below 2000keV the β recoil will have a greater influence, result-
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ing in larger angular dispersion of the three α particles. This allows
for the double α method to be more effective. For greater Etot, this ef-
fect is diminishing and the momentum vectors of α1 and α2,3 become
increasingly parallel. But what about decays where the α particles
have a more uniform angular distribution? To compare with earlier
work, we will perform a simulation with a uniform phase space distri-
bution. This will give us insight into the sensitivity of decays different
from the 8Be ground state. This simulation is performed similarly to
the previous 8Be ground state simulation, but without using the Von
Neumann sampling with weights from (2.6). The results are plotted in
figure 5.10. The results for the triple α analysis is in agreement with
previous work [1, figure 7.3]. However, the double α analysis yields
almost double the acceptance for most values of Etot. Not surprisingly,
the acceptance is higher for the double α analysis. This was already
hinted at in table 4.2. In many ways, figure 5.9 and 5.10 sums up the
benefits of the double α analysis. By examining the decays where the
α1 and α2,3 do not have a strong anti-parallel angular correlation, this
analysis is very beneficial. Typically, twice the data is available this
way (Three times the data if you combine the two data sets). How-
ever, for 8Be ground state decays, between twice and half the original
data size is available dependent on the energy range. No matter what
you are investigating a separate uncorrelated data set can always be
regarded helpful to check for the same trends in both data sets.

The results from figure 5.10 can also be plotted as a Dalitz plot.
This type of plot can more naturally present potential dead spots in

74



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Total energy [keV]

0

0.05

0.1

0.15

0.2

0.25

0.3

A
c
c
e
p
ta

n
c
e
 [
5
 k

e
V

 p
r 

b
in

]

Legend

Triple alpha coincidence

Double alpha coincidence

Figure 5.10: Acceptance of uniform phase space decays from simulation.
The red line is data analysed with the triple α coincidence analysis and the
blue line is analysed with the double α coincidence analysis.

the setup. Such spots can give information of whether some decays
are unlikely to be detected in the given setup. The same energy ranges
for the Dalitz plots in figure 4.15 and 4.16 are used. The results are
plotted in figure 5.11 and 5.12. Events with a uniform phase space
distribution give uniform Dalitz plots. In both plots, we see a cut
off at the lower right and upper right corner. The lower right cut off
is due to the restriction of E23 > 250 keV. The excluded events are
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primarily E23 ≈ 91.84 keV as seen in 4.4. However, this only leads to
trivial structures in our Dalitz plots as can be seen by:

E1 =
2

3
(Etot − E23) ⇐⇒

3E1

Etot
= 2− 2E23

Etot
. (5.1)

The resulting Dalitz structure is one long line of constant 3E1/Etot.
The missing data at the upper right corner is due to the lower energy
cut off, of E > 250 keV. This the lowest energy we allow a particle
to have in our analysis. The cut reduces the amount of data for low
energy α3. In figure 5.11, a bright spot is shown at the tip (to the
right) of the Dalitz plots for Etot > 4000keV. These are back to back
decay events. These are the events of highest E1 energy and the lowest
E23 (that were not excluded by E23 > 250keV). Here the direction of
α1 and α2,3 is close to anti-parallel, and the geometry of our setup is
especially good at detecting these types of events. However, this is only
for the triple α coincidence analysis. The double α data (figure 5.12)
does not have this same bright spot. This is as expected. However, it
does have a great bright spot at the lower right side of the plots, for
Etot > 2000keV. Generally, both plots show a uniform distribution
of events. Hence, we expect to be able to detect all decay transitions
with both methods. The acceptance correction that can be produced
from these plots will be used to examine our data in section6.5.
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Figure 5.11: Dalitz plot for the acceptance of a uniform phase space decay
simulation. Data is analysed with the triple α coincidence analysis.
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Figure 5.12: Same plot as in figure 5.11 but with the double α coincidence
analysis.
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6 Analysis and discussion

We have arrived at the last chapter of this master’s thesis. Here we
will investigate the angular correlation between the α1 and the β par-
ticle. As mentioned in the theory section, a non-isotropic correlation
could imply a second forbidden transition from the 2+ excited state
in 12C around 9.87 MeV (See table 1.1). We will analyze the angular
correlation in both the triple and double α coincidence analysis. The
produced data sets of these two analysis methods are uncorrelated, and
should therefore yield the same results. Furthermore, we will generate
acceptance corrected Dalitz plots based on the simulation of uniform
phase space distributed events from section 5.4.

6.1 β-α angle correlation

Our method for this analysis is as follows: The correlation implied by
equation (2.10) can be used in a simple one-parameter fit proportional
to the second-order Legendre polynomial. Our fitting function is then:

F (x0) = 1 + A · P2(cos(θ)) (6.1)

Where A is our fitting parameter. The data we will be fitting is
simply a histogram of the angle between the β and α1 particle of our
data, divided by the same histogram from our simulation. The integral
of the histograms will be normalized to the same value, to make them
comparable. The uncertainties here are based on the counts in each
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bin of the histogram, in the familiar relation ∆x =
√
N . Here N is the

number of counts in bin number x. The errors undergo standard error
propagation under scaling and division of histograms. The simulation
uses the same beam profile found in section 5.2 and data is cut as
described in each section to come. The fit is evaluated with the χ2

method, performed with ROOT’s TFitResultPtr function.

6.2 Check of known isotropic β-α angle

correlation

A general challenge in this experiment and its analysis is understand-
ing the many decay channels that can be possible through the 8Be
ground state. Many of which are responsible for the very broad peak
in figure 4.3 between 1-4 MeV (together with the ghost peak). Hope-
fully, interesting physics is hidden in here. But because of the broad
nature of this area, it is very difficult to test the reliability of our
analysis method. Are our analysis correct or are the results obtained
due to geometrical effects in our setup that we did not include? Or
is there a bug in our code (hopefully not)? As we did when exam-
ining the beam profile, we turn to the 1+ peak (equation (4.5)). We
know from equation (2.6) (and general β-decay theory), that this de-
cay channel has an isotropic β-α1 angular correlation, and it is easily
separated from other transitions in the data. We therefore, use this
as a "baseline" test to see if we can even find isotropic β-α behaviour
at all. We use the simulation performed in section 5.2. The data cut
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used is Etot > 5300, Etot < 5900 and E23 > 250keV (relative energy
between α2,3 as seen in figure 4.4). The uncertainty in the fit value
A is scaled with

√
χ2/ndf , where χ2 is from the fit and ndf is the

number of degree of freedom in our fit (the binning of the histogram).
It is to ensure our fit errors scale with how well the data fits the fitting
equation. A more thorough explanation for this error scaling can be
found in [33, section 2.5.5]. The results and the fit can be seen in
figure 6.1.
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Figure 6.1: Angular correlation plot of 12C excitation energy between 12.3-
12.9 Mev. The number of events from data is 14101 and 27034 from simu-
lation. Further description can be found in the text.
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We find an A value from equation (6.1) of -0.014(20), which, within
uncertainties, tells us the β-α1 correlation is found to be isotropic for
this energy range. This result adds to the certainty that we understand
the theory and geometrical effects in this area. So if we find any non-
isotropic signal in other energy ranges, new physics might be implied.
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Figure 6.2: Same figure as in 6.1 but without the beam profile from section
5.2.

The fit dependency of the x,y coordinates of the beam profile (the
beams width and offset on the foil surface) can be roughly estimated by
removing the beam profile implemented in section 5.2. The resulting
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fit can be seen in figure 6.2. We find a fit coefficient of A = −0.063(19).
So now the 1+ peak data does not have an isotropic signal. It is
tempting to conclude that we got it right by including the beam profile,
and from this, we can trust any future non-isotropic signal that we may
find. However, we estimated a beam width of 1.5 mm and an offset of
-1 mm based on the "smearing" in Ptot. This smearing could perhaps
have been achieved by another choice of x,y. That is to say, we might
just have found one of the multiple-beam profiles to fit the Ptot peak
signature. Due to time restrictions, no further analysis on this will
be performed in this work, but this should be done in future work.
We do conclude, however, that the inclusion of the beam profile had
a positive impact on our fit, and made the fit of the 1+ peak isotropic
as it should be. We continue our α1-β correlation examination onto
the 8Be ground state decays.

6.3 β-α Angular correlation of reactions

through the 8Be ground state

We use the same simulation as conducted in section 5.3. As previously
we calculate the angle between the α1 and the β particle. We use the
momentum and energy cut from equation (4.4) and E23 < 250. In
principle, the potential 2+ state above the Hoyle state in 12C, could
decay to the 2+ state of 8Be. But since this would require a more
complex simulation we only investigate signals to the ground state of
8Be. Different from the previous fit we now want to examine a variety
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of energy ranges. We divide our data into 500 keV 12C excitation
energy (ExC) ranges. That is to say we make an angular fit with
equation (6.1) on data between ExC 9-9.5 MeV, 9.5-10 Mev etc. An
example of the scaled histograms of α1-β angular correlation from the
simulation and data can be found in figure 6.3. This is for ExC between
10-10.5 MeV. Similar to the last section we use χ2 statistics. The fit
value for all the ExC ranges can be seen in figure 6.4, together with a
comparison of the fit values obtained in [14].
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Figure 6.3: Histograms of the angular distribution between α1 and β for
8Be ground state decays, between 10-10.5 MeV 12C excitation energy. The
histograms have been scaled to have the same integral. The simulation is
described in section 5.3.
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Figure 6.4: (Upper plot) Fit values from α1-β angular correlation fits
for different 12C excitation energy (ExC) ranges. The simulation used is
described in section 5.3. The error in the x-direction indicates the ExC
range used. (Lower plot) The amount of data available for each fit. Here
the dark blue is experimental data, and the light blue is the simulation.

The fit results plotted in figure 6.4 is also printed in table 6.1. In
short, all the fit values are different from an isotropic α1-β distribu-
tion, except from ExC between 10-10.5 Mev. It is worth noticing that
besides the fit values being different from 0, some of them are quite
a bit away from zero. Where the furthest is A = 0.15(6). Now we
examine what the fit coefficient actually represents a bit more deeply.
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You can write it as:

A =
∑
i

bi × A∗i (6.2)

Here A∗i is the anisotropy of a decay mode, with relative strength
bi (bi can have values between 0 and 1). In [14], most of the anisotropy
is suggested to arrive from the 2+ state in 12C. This would place the
anisotropy in the order of 10−1 (given one decay mode mainly con-
tributes to A), which for the 2+ state is two orders of magnitude
larger than the theoretical value of 0.64 × 10−3 [24]. It is of course
tempting to discard this measurement since not much data is available
in this area (≈ 600 events), but it is still of interest. We should also
note that any fit value around 0.06 could still be isotropic since we
in the previous section found that the beam profile alone was able to
move the fit value 0.05. The earlier work by R. Garg [14], is drawn in
as a red line in figure 6.4. As seen in the figure we were not able to
replicate the findings in this work. While we also find a non-isotropic
signal, the graphs don’t agree on the strengths of these signals and
their relation to the 12C nuclear excitation energy. This means ei-
ther that there are some disagreements in the data reduction method,
simulation method, geometrical or detector/setup corrections (detec-
tor/setup corrections is energy loss, detector response, etc.). In our
setup, we have two DSSSDs to measure β particles. Namely U4 and
U3. The way we differentiate between particles in these is different.
In U4 we mark a hit as a possible β if a signal is also detected in
the PAD P4 behind it. Else we mark it as an α. With hits in U3, we
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always mark them as β’s since we expect any α particles to be stopped
in U2 in front of U3. This might give some bias in the β’s detected
since we can see very different fits for the data from U4 and U3. Two
similar fits as in figure 6.4 have been made, but for β’s only detected
in U4 and another for U3. This can be seen in figure 6.5 and 6.6.
Here we see that the data from U3 gives a very isotropic signal over
the whole energy range, while the U4 fit gives, a more non-isotropic
signal for lower energy but otherwise agrees (not including the 11.5-12
MeV). Here we remember that our fits are dependent on our simu-
lation. So does our simulation have a bias against one or the other
detector? There is no big difference in the amount of data detected
in the two DSSSDs. We observe a difference between simulation and
data of 0-15 %. If there is any difference it should be in what kinds
of β particles they detect. By looking at figure 5.2 we also note that
the U3 does not have a frame programmed. Backscattering electrons
from the frame might be of importance here as well. Since the U3 has
a simpler way of detecting β particles, this should be the more trusted
detector of the two. The data from this detector yields no sign of a
non-isotropic signal. Unfortunately, due to time restrictions, this will
not be investigated further.

ExC 9-9.5 9.5-10 10-10-5 10.5-11 11-11.5 11.5-12
A 0.064(27) 0.036(22) 0.015(23) 0.039(22) 0.039(37) 0.152(75)

Table 6.1: Fitting values from figure 6.4. ExC is excitation energy for 12C
in MeV. The fitting function used (6.1).
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Figure 6.5: Same figure as in 4.11 but only for β particles detected in U3.
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Figure 6.6: Same figure as in 4.11 but only for β particles detected in U4.

6.4 β-α angle correlation Double-α events.

In figure 5.9, we saw that the double α coincidence analysis was less
effective for decay to the 8Be ground state, for most of the energy
range. We still, however, check to see if any relevant information
could appear from a α1-β angular analysis as in the last section. We
can not approach this analysis with the same method as in section 4.4,
since we now have to include events with three hits. Hopefully two
α and one β particle. We make use of the relative energy of the two
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low energy α’s namely α23. As calculated in figure 4.4, we expect the
relative energy for 8Be ground state decays to be around 91.84 keV.
For events with three hits, we then try every combination to find the
particle pair with the lowest relative energy. With this approach, we
find 27000 events, which is about half the events found in figure 6.4.
Here ≈ 66% of them are located in U5. This is not strange since as
previously stated α1 and α23 have close to an anti-parallel trajectory
for the 8Be ground state decay, and we do not have a detector above
our set up. So all the α23 detected in U5 would have their α1 in the
top of the setup where no DSSSD is placed. The simulation does
unfortunately not replicate data in a good enough way for a fit to
be possible. Since the simulation is that much off, the fit will always
give a value far away from 0, with great uncertainties (Since equation
(6.1) does not fit data very well). It was therefore determined that
the double α analysis would not benefit this α-β angular analysis in
any useful way.

6.5 Acceptance corrected Dalitz plots.

As mentioned in section 4, we will now revisit our Dalitz plots (figure
4.15 and 4.16) and try to apply an acceptance correction to them. The
ideal way to do this is to simulate all the possible events and weigh
them accordingly to their branching ratios. We can then simply divide
the Dalitz plot of the events we want to simulate with the simulated
and analysed events. This plot tells us how many of the different
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decays survived. Hence you can use that to correct your data. Of
course, if we could do it this way, there would be no reason to do the
experiment in the first place since we already have the information
of interest. What we do instead is use the simulation of α particles
uniformly distributed in phase space from figure 5.12 and 5.11 to gen-
erate an acceptance Dalitz plot from this, as described prior. The
resulting acceptance corrected plots are presented in figure 6.7 and
6.8. These figures will be involved in a more qualitative discussion of
the possible decay modes that could have produced these plots. More
extensive Dalitz plot fits is needed to be able to conclude further, sim-
ilar to what was done in the earlier work [1]. Due to time restrictions,
this was not done here. in figure 6.7 we note that the few yellow
points in the plots 600-5000 keV, are an error from the acceptance
correction. If we expect very few points in an area, and we find some
anyway they get blown out of proportion since we divide the bin with
a very small number. The z-scale have been adjusted so it is easier
to see structures in the plot itself. Qualitatively what we can see is
an agreement between the two plots at 2000-3000 keV, 3000-4000 keV

and 5000-5600 keV. The 600-2000 keV plots seem to disagree. Where
the triple α analysis gives a more uniform plot, the double α analysis
gives something different from uniform. The shape of the plot does
not resemble any of the theoretical estimations from figure 2.3 and
2.4. More examination is needed here. In the 4000-5000 keV range
we have the same bright spot in the upper right corner in both plots,
but the triple α data also have a spot on the left tip. This could be
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a combination of a (2,2,2) and a (2,2,0) from figure 2.3 and 2.4. But
interestingly enough we do not see this in the double α plot. In the
5000-5600 keV range a very clear 1+ peak is seen. This peak, how-
ever, is also seen in the 5600-6000 keV range for the double α plots.
This is because of the energy broadening of the double α analysis. So
this range is difficult to compare. The 6600-7600 keV and 7600 - 9000
keV ranges are where the double α analysis is most beneficial. The
structure of the 6600-7600 keV range between the double and triple
α plots agrees well, but with simply more data in the double α plot.
The same structure is seen in the 7600 - 9000 keV range for double α.
This could resemble a (2,4,2) decay together with a (2,2,2) or (2,0,2)
decay. While this more qualitative approach can give some intuition of
the two analysis methods, a more quantitative method is very much
needed. We do expect that the two methods should give the same
Dalitz plots after acceptance correction, and with only a qualitative
comparison it is difficult to tell how much they disagree and where.
Similarly, instead of estimating the possible decay modes that could
give rise to these plots, it would be much better to simulate the de-
cay modes, run them through the two analysis methods and then fit
the different decay modes to the observed plots. Time restrictions,
unfortunately, deny us of this possibility.
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6.6 Improvement for future

experiments/analysis

In this section we take a look at how to improve the experiment and
the analysis in future work. The α-β angular studies from section 6.2
indicated a strong influence from geometrical effects. This highlights
the importance of momentum measurements in our setup. A greater
pixel resolution in our DSSSDs together with beam width measure-
ments would therefore be beneficial. This will also improve the double
α analysis, since it depends on conservation of momentum for recon-
structing the third α. However, charge sharing/summing will become
an increasing problem with higher pixel density. While α-β angular
studies rely more on beam width estimations, double α analysis also
greatly benefits from a better understanding of beam implantation
depth. While a foil thickness of 100nm is a good choice for stopping
14N with 29.1MeV, the understanding of foil changes during the ex-
periment should be improved. This could be done with more frequent
measurements of the foil thickness during the experiment. Besides ex-
perimental improvements, the R-matrix fits of the newly acquired data
from double α coincidence analysis should be performed. Especially
in the higher 12C excitation energy regime.
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Figure 6.7: Acceptance corrected Dalitz plots from triple α coincidence
analysis.
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Figure 6.8: Acceptance corrected Dalitz plots from double α coincidence
analysis.
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6.7 Summary

In this master thesis, we extended the analysis of earlier work [1] by
including double α coincidence analysis, Geant4 simulations and α-β
angular studies. Many of the main spectra from the earlier work were
verified in this independent analysis, which is best seen by comparing
the main spectra such as figure 4.10, 4.2 and 4.15 to the corresponding
figures in [1]. The purpose of the double α coincidence analysis was
to test in which cases such analysis was beneficial. This can mainly
be seen in the acceptance plots of figure 5.9 and 5.10. Here the accep-
tance of the method was tested against simulations of uniform phase
space distributions and of 8Be ground state decays from reaction (2.1).
These plots show that the main benefit of this analysis lies in the en-
ergy spectrum (12C excitation energies > 5 MeV). Here about twice
the data could be found, compared to the original triple α coincidence
analysis. The benefits of this can especially be seen in figure 6.8, where
signs of 12C(2+) −→8 Be(2+) can be found in 7.6-9 MeV 12C excitation
energy region. The Geant4 simulations yielded interesting results in
regards to β signals and estimations of the beam profile. The β noise
signal seen in figure 4.2 was replicated in the simulation. The beam
profile was estimated as a Gaussian distribution with σx,y = 1.5mm,
around (0 mm, -1mm) center. The depth of the beam in the target foil
was estimated to σz = 40 nm around 64 nm peak value. A comparison
between the simulation and data of the 1+ peak (equation (4.5)) in
figure 5.4 and 5.5, shows a good agreement in Ptot but less in Etot. This
is most likely due to changes in the target foil thickness and structure

96



during the experiment. In earlier work [1] the foil was thought to
be growing in thickness. However by examining the 1+ peak position
with a fixed and a linearly increasing thickness for increasing mea-
surement number (e.g. 1 is the first measurement and 100 is the last
measurement), we found little tendencies for a linearly increasing foil
thickness. The result of the two analysis methods is illustrated in fig-
ure 4.8 and 4.9. However, even though the foil thickness did not seem
to increase linearly, missing information about the foil and its change
during the experiment could explain the missing Etot broadening of the
1+ peak between the simulations and data. The examination of the
α-β angular correlation was motivated by earlier results from Ph.D. R.
Garg [14], in which a non-isotropic signal was found for 12C excitation
energies between 9-11.5 MeV. This behavior was explained to arise
from first forbidden decay 1− and second forbidden decays from the
2+ state in 12C and should be proportional to the second-order Legen-
dre polynomial. A fit of such a relation (equation (6.1)) was tested on
data. While a non-isotropic signal was found, the values and energy
relation were not reproduced. A comparison of the fitted values of
this work and R. Garg can be found in figure 6.4. The α-β angular
relation was also tested on the 1+ peak (equation (4.5)), where the
expected isotropic behavior (fit value A = -0.014(20)) was only found
if a suitable beam profile was included in the simulation. Otherwise,
the fit yielded A = 0.063(19). That is to say, any signal around 0.063
could be explained by potential systematic errors. Furthermore, if we
separated our data into events where the β particles were detected in
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U3 and U4 respectively, we obtained different fit results. The U3 data
set gave an isotropic signal over the entire energy range, while the U4
data gave a non-isotropic signal between 9-10 MeV and 11.5-12 MeV.
The data from U3 should be more trustworthy since it is easier to
differentiate between α and β particles compared to U4. The spread
in the current results indicates that systematic errors are present and
that it is too early to conclude if forbidden decays are present or not.

In conclusion, the double α coincidence analysis produced an addi-
tional useful data set. The data output was significant for the higher
and lower excitation energies for 12C, where data was lacking from the
triple α coincidence analysis. Geant4 simulations were very useful in
the determination of geometrical effects from our detector setup and
beam profile. These effects were estimated to have a sizable effect on
our α-β angular studies, to a degree that it is not possible currently
to conclude if any forbidden decays are present in our data.
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Appendix
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Figure 6.9: Gaussian fit of triple α coincidence analysis. The fitted peak
arise from the (4.5) decay.
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Figure 6.10: Fynbo scattering plot from triple α coincidence analysis.
E23 > 250keV(relative energy of α2 and α3 ) has been applied to isolate
decays from (4.5).
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