Minimising of functions with constraints

It is often necessary to minimise a function f(x;,x2,...x,) which is subject
to constraints:

gi(x1,x2,..xn) =0
g2(x1,x2,..%n) =0 (1)

gm(X1,Xx2,..x,) =0 where m < n.

A straightforward method fo solve this problem is to incorporate the
constraints into the fitting function by elimination of variables. This method
works, however, only very simple problems.




Ex. Take a measurement of two angles that we know should add up fo
90°. The function to minimise is then

2 _n 2
xz(nl,nz)zx(%) = mimimum
i=1

with 2
g=Ym-90"=0'
i=1

as constraint.

Substitution of M, using the constraint then gives

2 0 2
Zzz[)ﬁ;nl] +[)’2_(9(3 _771)) — minimum
| 2

This has the solution ( assuming 01 = 02 )

= ;(900+y1 )=y ;(900 -,)
fls=5(90° =3y +32) =2+ 5(90° 3y - 32




The uncertainties in these angles is found by applying the error propagation:

V(i) =SV(F)ST

This gives
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=> The accuracy of the fitted values for the angles are a factor of V2
smaller than the measured ones.

=> The constraints introduce an (anti)correlation between the fitted values.

Elimination of variables becomes very quickly (too) complicated. A widely used method
for minimising functions with constraints is the Method of Lagrangian Multipliers.




Lagrangian Multipliers: Method

Take a function f(x,y,z) = w which is to be minimised subject to the constraints:

g/(xyz) =0
gZ(X’y’Z) =0 (2)

Here g; and g, describe a surface in the 3-d space.

=> their infersection is a curve in space and we should minimise the function, f(x,y,z),
along this infersection curve.

This means that

(3)
Ui, U U
ax 8 E)Z

Vf =

must lie in a plane normal to this curve at a minimum. Vg and Vg must
also lie in the same plane.




Generally, if three vectors are coplanar there exist two scalars A; and Az such that

VF+A Vg +A,Vg, =0 4)

In 3-d space this represents three scalar equations:
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These three equations, together with the constraints (2) represent five equations that
can be solved with respect to the five unknowns: x9, y0, z0, A; and Az. These A's are called

Lagrangian multipliers.




In the general case, one forms the N equations for the function

g—){{f(fH 28 () + A8, (X)+ ..+ A,8,(X)} =0 i=12,..N (6)

and the M equations for the constraints

X : (7)
gj(x):O j=12,.....M
to solve the N + M unknowns: , A\; (j = 1,2,....M ).
Matrix notation:
X (é) - (y - Aé)T v (y - Aé) = minimum (8)
GO-g=0




The introduction of the Lagrangian multipliers, 1, gives
X 0,14)= (y - Aé)T v (y — Aé) +2A7 (Gé — §) = minimum ©)

N. B. The term with the Lagrangian multipliers adds zero to the X if the constraint
equations are fulfilled.

The minimum is found by setting the derivatives of %2 (0,1) o zero:

Vo’ ==2(ATV'y-ATV7A0)+2G" 1 =0 (10)
V.2 =2(Go-5)=0

Introduce C=ATV'A and EEATV_ly and rewrite (10) as

{C§+ G'Al=¢
(11)

GO=3




(1D)

CO+G'A=c¢
GO=3

Multiply the upper Eq. (11) by GC™' from the left and use the lower one:

§+GCG"A=GC ' (12

Introducing V. = GC~'G' gives the solution, 2., for the Lagrangian multipliers:
A=V;'(GC e -g) (13)
(13) substituted into into the upper Eq. (11) gives the solution for 0 as

0=C"e-C'G"V;'(GC e -3) (14)

\ measures how much the constraint Egs.

are violated by the measurement




An expression for V(é) is obtained from the error propagation formula:

v@)=c"'-(cc) v;'(6c)= (1, -G"V;'GC) (15)

where Iy is the unitary matrix. Equations (14) and (15) provide an exact
solution since all matrices and vectors are known.

N.B. For the unconstrained problem is C~'¢ the solution and C~' the covariance matrix.
The uncertainties in the estimated parameters are usually smaller in the constrained
case.




Lagrangian multipliers: Iterative procedure

X = a vector of N observables for which we have the first approximation
i. e. a measurement y with its uncertainties contained in the covariance matrix V(y).

g: {gl,’g’z,,__,,éjj} = a set of unmeasured variables which are deduced from the
measurement via the constraints. The N measured and J unmeasured variables are
related and have to satisfy a set of K constraint equations:

86 Xty &5 E) =0 k=12,..K (16)

According to the principle of Least Squares we should minimise (c. f. Eq. (8))
— — A\ «,—1,—\(— = . .
x’(x)=(y—x) V')(y - X)=minimum

_ (17)
g(x.6)=0

Eq. (17) is solved by the method of Lagrangian multipliers
=> Introduce K additional unknowns 1 =(4,,1,,...,A,) and rewrite (17) requiring (c.f. (9))

2 7E ) =(7-%) V'(F)(§-%)+2A"g(%,E) = minimum (18)




W% have a total of N+J+K unknowns. To find the minimum we take the derivative of
X with respect to these unknowns and fake the result to be equal to zero:

r

V.x'=-2V'(y-X)+2GIA1=0
< Vgxz :2G5T/_l:0 (19)
V. x*=2g; =0

\

The elements of the matrices G, (K X N) and Gg (K x J) are defined as

_98 . _0g
(Gx )ki == (Gé )kj ==z (20)

The solution of (19) for the N+J+K equations must generally be found by iteration.




Assume that iteration number v has been made and that want to make one more
iteration. We then make a Taylor expansion of the constraint equation around the

point (x¥,&") :

g, (%,E)=g'(x",E )+2£agk} (! = x; )+i[ag'€) (& -&)+HO0.=0 (1)

J=1

Eq. (21) can be rewritten using Eq. (20) (neglecting the higher order terms):

2 +Gv( — v+l )—Cv)+G§v(gv+1_gv):0 (22)

The first two equations of (19) now read for the (v+1):th iteration

(/-1 ()—Cvﬂ _ y) 4 (Gf )V 1 =0
( (23)

GI) 2" =0

These equations make it possible to express all the unknowns of the (v+1):th
iteration.




- Multiply the first Eq. of (23) by V from the left to get an expression for Xx'*'.

- Substitute the result into Eq. (22):

g+ G (-v(6]) 1) x ) Gi (B -8) =0 4

This may be rewritten in short form as
74 G%/ (EV+1 . Ev) _ SZV+1 (25)
using

F=g"+G,(y-%") and S=GV(G!)

Multiplying (25) with S~ from the left gives an expression for AV

Substituting this expression into the lower Eq. of (23) gives an equation where only

EV*! is unknown:




(Gg ) S (7+ G! (EV“ —EV)) =0 (26)

This equation can be solved for EV“ and the result can be substituted
back into (25) to obtain A”*' and finally get X" from (23):

E=g"-(Gls7q, )_1 GIS'F 27)
v+ = g (7 n Gg (gm . Ev )) (28)
V= y . VGszH (29)

Good starting values x°, £° are important for the convergence of the iterations:

x° : start with X°= y, i. e. the measured values
50 : to be evaluated from the most convenient constraint equation inserting
the measured x° for x.




Summary: The minimisation procedure with constraints using Lagrangian
multipliers should proceed in the following steps:

1) Evaluate the vector 7 and the matrix S from the definitions in Eq. (25)
using the starting values for x° and &°

2) Find the new vector for the unknowns EV“ from Eq. (27).

3) Find the new vector 1"*' of the Lagrangian multipliers from Eq. (28).

4) Find the new vector X" of measured quantities from Eq. (29).

v+1
5) Calculate the new chi-square value()(z) from Eq. (18).

6) Compare the result from 5) with the previous iteration. Stop if satisfactory
results are obtained otherwise proceeds to 1).




Lagrangian Multipliers: Error calculation

The uncertainties in the final estimates of the measured and unmeasured variables are

found by applying the law of error propagation.
) and (E (= EV“ ) as functions of the measurements:

Write the estimators X ( = x""
x=a(y)
A (30)
E=b(y)
The forms of @ and b are given by the Equations (27 - 29). and by
using the definition of rin Eq. (25).
a=5-VG'S" [IK -G.(GIs'G,.) GgTS‘l}[§+Gx (7-%)] a
) 2}/{+1 ’
_E T o-1 1= S —
b —5—(G§S Gé) GLS[2+G,(5-%)]
\ r
where [ is the unity matrix.




In these formulae (Eq. 31) are X and &, as well as g and the matrices G and S
evaluated in the last iteration.

The covariance matrices for x and £ are given by the error propagation law as
(assuming a linear dependence on X )

-
V(E)= [j’;]m)(f;j (32)
cov(3.8)= [d“]m)[d” ]

y y

The derivatives can be calculated using Eq. 31:

N

(dﬁ_ — T o1 T o1 T o1 1o
—IN—V(y)[GxS G.-G'S Gg(GgS Gg) GIS™G,

. (33)
T -1 T o—1

—(GéS Gé) GIS'G,

Y
[l




By defining

A=G;S"G,,B=G/S"'G, and U™ =G;S"'G, (34)

one obtain after "some" algebra

V&)=V 1y -(A-BUB V()]

VE=U (35)
cov(x,E)=-V(¥)BU

"

N

These formulae imply

i) The uncertainties of the constrained fitted quantities are generally smaller
than the uncertainties in the observations of V.

ii) The fitted quantities will be correlated even if the measurements are
uncorrelated.




A useful test of the quality of a constrained fit is to use the "pull” or "stretch” variable:

(% = %)

o —o (36)

It can be shown that this quantity is normally distributed with a mean of O and a variance
of 1. If the pulls are not normally distributed it is an indication of that either the
uncertainties are badly estimated or that they are inherently non-normal. In the latter
case is the ¥ not a reliable measure of the goodness of the fit.




Lagrangian Multipliers: Example of kinematical fitting

A frequently used application of minimisation with constraints is kinematical fitting,
i. e. a fit of the kinematical variables of a measured reaction/decay using energy
and momentum conservation to improve the result.

As an example, take the two-body decay of a particle:

A>p+m

This type of decay is often called V°-decay because it involves the decay of a neutral
particle (unobserved) into two charged ones. The topology of such decay looks as a Vee
in the detector.




Assume that we have measured the momenta and directions of the decay particles but
the origin and momentum of the A-particle is unmeasured. We then have six measured
quantities

X = {pp 0,.0,,P7.0; ’¢”}

and three unknown variables

g = {PA 0, 9¢A}

Spherical coordinates: p = momentum
O = polar angle
@ = azimuthal angle




There are four constraint equations of momentum and energy conservation:

g =—p,sinf, cos¢, + p,sin@, cos¢, + p,sin6, cosp, =0 (p,)
g, =—p,sinf, sing, + p sin6 sing, + p, sinf, sing, =0 (p,)
gy =—p,cosO, +p,cos6, + p,cosO, =0 (p,)

g, =—\ps +m, +\p;+m; +/p.+m, =0 (E)

=> There are four constraints and three unmeasured quantities.

# of constraints - # of unknowns =1, i. e. one overconstraint.
Such a fit is called a 1C fit ( C = # of overconstraints).

2 _ 2
N. B. % # of overconstraints X 1%




From Eq. (20) we have that the matrices Gx(4><6)and G§(4>< 3) are
obtained from taking the derivatives of the constraint equations as

ox; Bl
giving
sin@, cosg, p,cos6, cos¢, —p, sinf sing,  sin6, cosg, p,cos0_cosd,
sinf, sing, p,cosf sing ~ p sinf cose, sin@,_ sin¢, p,€osO_sing,
cos6, —p,sinb, 0 cosO, —p,Sinf,
P 0 0 P 0

/2 2 /2 2
pP+mP p7r+m7r

—p,sinf,_sing,

p,Sin6_cos¢,




and

—sinf, cos¢,  —p,cosO,cosp, p,sinb, sing,
—sinf, sing,  —p, cosB,sing, —p,sin6, cosg,
Gé -
—cos0, P, sSinf, 0
—DPa 0 0
DL+,

To start the iterations we take the measurement as the initial x°:

y={p}.00.0).p5.65.5]
For £0we can take, for example, the value
E0={1p}.600.0%

by demanding that the first three constraint equations are fulfilled, i. e. momentum

conservation satisfied. The fourth constraint equation will then, in general, not be
satisfied.




From this latter consideration we then have an initial value of
the vector r from Eq. (25) as

r=1{0,0,0,g,1

The matrices G_ and G, can now be calculated using Eq. (20) and the
approximations (x°,£") ‘and to obtain the (4 X 4)matrix S from Eq. (25)

s=G%(G°)

By inverting this matrix we can find the next iterative values, 51, )_,1, x'in
succession from Equations (27 - 29).
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Figure 59. Improvement of the n-p invariant mass resolution with the kinematic fit
routine. The n-p invariant mass is reconstructed from 1352 MeV Monte Carlo data,
and the difference between the real and reconstructed invariant mass is plotted for
each event. The solid line corresponds to reconstruction before the kinematic fit,
and the dashed line how the mass is reconstructed after the kinematic fit has been
applied. The FWHM resolution is improved from 40 to 4 MeV.
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Figure 66. Chi-square probability distribution of the 3-C fit applied to 1352 MeV
data.
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Figure 67. (a) Dalitz plot obtained with 1250 MeV data (below threshold) treated
as 1352 MeV n production data. In (b), the corresponding chi-square probability
distribution is shown.




Events
]
‘] T
Events

- Exp.

125
o M 0 f a
nb g
g 23
°o Ofl 0:2 Ofl 0‘.1 Of} D‘,O Df" Ofl Of. 1 °ﬂ ﬂl.l o.lz OIJ n‘l 015 Bfl 0‘7 Gl.l O‘l il m
2
Prob(x) Prob(x) ot
8 »f a » L
5 h g ot
<SP E |m M
XP. C
Ly °o“::l‘_ro|z o3 a[nn :r:-'“;l T
o Prob(y)
b o Figure 5.3: The probability distribution for 2n°-data (generated from Monte Carlo)
for the kinematical fit with constraints matching n-data.
Prob(x’) Prob(x)

Figure 5.4: The probability distributions for the kinematical fit for n-data. Upper
left: data 1350 MeV, upper right: MC 1350 MeV; lower left: data 1296 MeV and
lower right: Monte Carlo 1296 MeV.




