
Minimising of functions with constraints

It is often necessary to minimise a function f(x1,x2,...xn) which is subject 
to constraints:

g1(x1,x2,...xn) = 0
g2(x1,x2,...xn) = 0


 
       .

 
 

.
gm(x1,x2,...xn) = 0
 where m < n.

(1)

A straightforward method to solve this problem is to incorporate the 
constraints into the fitting function by elimination of variables. This method 
works, however, only very simple problems.



Ex.! Take a measurement of two angles that we know should add up to 
900. The function to minimise is then

χ 2 η1,η2( ) = yi −ηi
σ i
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with

as constraint.

Substitution of η2 using the constraint then gives 

χ 2 = y1 −η1

σ1
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This has the solution ( assuming σ1 = σ2 )

η̂1 =
1
2

900 + y1 − y2( ) = y1 +
1
2

900 − y1 − y2( )
η̂2 =

1
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900 − y1 + y2( ) = y2 +
1
2

900 − y1 − y2( )



The uncertainties in these angles is found by applying the error propagation:

V (η̂) = SV (y)ST
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This gives

=> The accuracy of the fitted values for the angles are a factor of  
smaller than the measured ones.

2

=> The constraints introduce an (anti)correlation between the fitted values.

Elimination of variables becomes very quickly (too) complicated. A widely used method 
for minimising functions with constraints is the Method of Lagrangian Multipliers.



Lagrangian Multipliers: Method

Take a function f(x,y,z) = w which is to be minimised subject to the constraints:

! ! g1(x,y,z) = 0

 
 g2(x,y,z) = 0!! !                                                       (2)

Here g1 and g2 describe a surface in the 3-d space.

=> their intersection is a curve in space and we should minimise the function, f(x,y,z), 
along this intersection curve.

∇f = ∂f
∂x
i + ∂f

∂y
j + ∂f

∂z
k

(3)
This means that

must lie in a plane normal to this curve at a minimum.      and      must 
also lie in the same plane.

∇g1 ∇g2



Generally, if three vectors are coplanar there exist two scalars λ1 and λ2 such that

∇f + λ1∇g1 + λ2∇g2 = 0 (4)

In 3-d space this represents three scalar equations:

∂f
∂x

+ λ1
∂g1
∂x

+ λ2
∂g2
∂x

= 0

∂f
∂y

+ λ1
∂g1
∂y

+ λ2
∂g2
∂y

= 0

∂f
∂z

+ λ1
∂g1
∂z

+ λ2
∂g2
∂z

= 0

⎧
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⎪
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⎩
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⎪

(5)

These three equations, together with the constraints (2) represent five equations that 
can be solved with respect to the five unknowns: x0, y0, z0, λ1 and λ2. These λ's are called 
Lagrangian multipliers.



In the general case, one forms the N equations for the function

∂f
∂xi

f (x)+ λ1g1(x)+ λ2g2 (x)+ ...+ λM gM (x){ }  = 0    i =1,2,...,N (6)

and the M equations for the constraints

gj (x) = 0      j =1,2,.....,M
(7)

to solve the N + M unknowns: , λj ( j = 1,2,...,M ).

Matrix notation:

χ 2 θ( ) = y − Aθ( )T
V −1 y − Aθ( ) =  minimum

Gθ − g = 0

⎧
⎨
⎪

⎩⎪
(8)



The introduction of the Lagrangian multipliers,   , givesλ

χ 2 (θ ,λ) = y − Aθ( )T V −1 y − Aθ( ) + 2λT Gθ − g( ) =   minimum (9)

N. B. The term with the Lagrangian multipliers adds zero to the χ2 if the constraint 
equations are fulfilled.

The minimum is found by setting the derivatives of           to zero:χ 2 (θ ,λ )

∇θχ 2 = −2 ATV −1y − ATV −1Aθ( ) + 2GTλ = 0

∇λχ
2 = 2 Gθ − g( ) = 0

⎧
⎨
⎪

⎩⎪

(10)

C ≡ ATV −1AIntroduce                 and                 and rewrite (10) asc ≡ ATV −1y

Cθ +GTλ = c
Gθ = g

⎧
⎨
⎪

⎩⎪
(11)



Cθ +GTλ = c
Gθ = g

⎧
⎨
⎪

⎩⎪
(11)

Multiply the upper Eq. (11) by        from the left and use the lower one:GC−1

g +GC−1GTλ =GC−1c (12)

Introducing                 gives the solution,   , for the Lagrangian multipliers:VG ≡GC−1GT λ̂

λ̂ =VG−1 GC−1c − g( ) (13)

(13) substituted into into the upper Eq. (11) gives the solution for   asθ̂

θ̂ = C−1c −C−1GTVG−1 GC−1c − g( ) (14)

measures how much the constraint Eqs.
are violated by the measurement 



An expression for       is obtained from the error propagation formula:V (θ̂ )

V (θ̂) = C−1 − GC−1( )T VB−1 GC−1( ) =  C−1 IN −GTVB−1GC−1( ) (15)

where IN is the unitary matrix. Equations (14) and (15) provide an exact 
solution since all matrices and vectors are known.

N.B. For the unconstrained problem is        the solution and      the covariance matrix. 
The uncertainties in the estimated parameters are usually smaller in the constrained 
case.

C−1c C−1



Lagrangian multipliers: Iterative procedure

  = a vector of N observables for which we have the first approximation 
i. e. a measurement   with its uncertainties contained in the covariance matrix       . 

                     = a set of unmeasured variables which are deduced from the 
measurement via the constraints. The N measured and J unmeasured variables are 
related and have to satisfy a set of K constraint equations:

x
y V (y)

ξ = ξ1,ξ2 ,....,ξJ{ }

gk (x1, x2,..., xN ,ξ1,ξ2,...ξJ )= 0    k =1,2,...,K (16)

According to the principle of Least Squares we should minimise (c. f. Eq. (8))

(17)

Eq. (17) is solved by the method of Lagrangian multipliers 
=> Introduce K additional unknowns                       and rewrite (17) requiring (c.f. (9))λ = (λ1,λ2 ,...,λK )

χ 2 (x,ξ ,λ) = y − x( )T V −1(y) y − x( ) + 2λT g(x,ξ ) =minimum (18)

χ 2 (x) = y − x( )T V −1(y) y − x( ) =minimum
g(x,ξ )=0

⎧
⎨
⎪

⎩⎪



We have a total of N+J+K unknowns. To find the minimum we take the derivative of    
    with respect to these unknowns and take the result to be equal to zero:χ 2

∇xχ2 = −2V −1 y − x( )+ 2Gx
Tλ = 0

∇ξχ
2 = 2Gξ

Tλ = 0

∇λχ
2 = 2gξ

T = 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(19)

The elements of the matrices               and              are defined asGx  (K × N ) Gξ  (K × J )

Gx( )ki ≡
∂gk
∂xi

   ;   Gξ( )kj ≡
∂gk
∂ξ j

 (20)

The solution of (19) for the N+J+K equations must generally be found by iteration.



Assume that iteration number ν has been made and that want to make one more 
iteration. We then make a Taylor expansion of the constraint equation around the 
point            :(xν ,ξν )

gk (x,ξ )= gkν (xν ,ξν )+ ∂gk
∂xi
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N

∑
v

xiν+1 − xiv( ) + ∂gk
∂ξ j
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j=1

J

∑
v

ξ jν+1 −ξ jv( ) + H .O.= 0 (21)

Eq. (21) can be rewritten using Eq. (20) (neglecting the higher order terms):

gν +Gx
ν x ν+1 − x ν( ) +Gξ

ν ξ ν+1 − ξ ν( ) = 0 (22)

The first two equations of (19) now read for the (ν+1):th iteration

V −1 xν+1 − y( ) + Gx
T( )ν λν+1 = 0

Gξ
T( )ν λν+1 = 0

⎧

⎨
⎪

⎩⎪
(23)

These equations make it possible to express all the unknowns of the (ν+1):th 
iteration. 



- Multiply the first Eq. of (23) by V from the left to get an expression for      .          
- Substitute the result into Eq. (22):

xν+1

gν +Gx
ν y −V Gx

T( )ν λν+1( )− x ν( ) +Gξ
ν ξ ν+1 − ξ ν( ) = 0 (24)

This may be rewritten in short form as

r +Gξ
ν ξ ν+1 −ξν( ) = Sλν+1 (25)

using

r ≡ gν +Gx
v y − xν( )   and  S ≡Gx

vV Gx
T( )ν

Multiplying (25) with      from the left gives an expression for      . S−1 λν+1

Substituting this expression into the lower Eq. of (23) gives an equation where only
       is unknown:ξν+1



Gξ
T( )ν S−1 r +Gξ

ν ξ ν+1 −ξν( )( ) = 0 (26)

This equation can be solved for      and the result can be substituted 
back into (25) to obtain       and finally get      from (23):

ξν+1

λν+1 xν+1

λν+1 = S−1 r +Gξ ξ v+1 −ξν( )( )
(27)ξν+1 = ξν − Gξ

T S−1Gξ( )−1Gξ
T S−1r

(28)

xν+1 = y −VGx
Tλν+1 (29)

x 0 ξ 0Good starting values   ,    are important for the convergence of the iterations:

!   : start with    =   , i. e. the measured values
: to be evaluated from the most convenient constraint equation inserting 
the measured     for   .

x 0 yx 0

ξ 0

x 0 x



Summary: The minimisation procedure with constraints using Lagrangian 
multipliers should proceed in the following steps:

1)  Evaluate the vector    and the matrix S from the definitions in Eq. (25) 
using the starting values for    and   .

r
x 0 ξ 0

2)  Find the new vector for the unknowns      from Eq. (27).ξν+1

3)  Find the new vector       of the Lagrangian multipliers from Eq. (28).λν+1

4)  Find the new vector      of measured quantities from Eq. (29).xν+1

5)  Calculate the new chi-square value          from Eq. (18).χ 2( )ν+1

6)  Compare the result from 5) with the previous iteration. Stop if satisfactory 
results are obtained otherwise proceeds to 1).



Lagrangian Multipliers: Error calculation

The uncertainties in the final estimates of the measured and unmeasured variables are 
found by applying the law of error propagation. 

Write the estimators   ( =       ) and    ( =        ) as functions of the measurements:x̂ xν+1 ξ̂ ξν+1

x̂ = a(y)

ξ̂ = b(y)

⎧
⎨
⎪

⎩⎪
(30)

The forms of    and   are given by the Equations (27 – 29). and by 
using the definition of   in Eq. (25).

a b
r

 

a = y −VGx
T S−1 IK −Gξ Gξ

T S−1Gξ( )−1Gξ
T S−1⎡

⎣⎢
⎤
⎦⎥ g +Gx y − x( )⎡⎣ ⎤⎦

λν+1
  

b = ξ − Gξ
T S−1Gξ( )−1Gξ

T S−1 g +Gx y − x( )⎡⎣ ⎤⎦
r

  

⎧

⎨

⎪
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⎩

⎪
⎪
⎪

(31)

where Ik is the unity matrix.



In these formulae (Eq. 31) are   and   , as well as   and the matrices G and S 
evaluated in the last iteration.

x ξ g

The covariance matrices for   and   are given by the error propagation law as
(assuming a linear dependence on   )x

x̂ ξ̂

V (x̂) = da
dy
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⎠⎟
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(32)

The derivatives can be calculated using Eq. 31:

da
dy

= IN −V (y) Gx
TS−1Gx −Gx

TS−1Gξ Gξ
T S−1Gξ( )−1Gξ

T S−1Gx
⎡
⎣⎢

⎤
⎦⎥

db
dy

= − Gξ
T S−1Gξ( )−1Gξ

T S−1Gx

⎧

⎨
⎪⎪

⎩
⎪
⎪

(33)



By defining 

A ≡Gx
TS−1Gx ,  B ≡Gx

TS−1Gξ  and U −1 ≡Gξ
T S−1Gξ (34)

one obtain after "some" algebra

V (x̂) =V (y) IN − A − BUBT( )V (y)⎡
⎣

⎤
⎦

V (ξ̂ ) =U

cov(x̂,ξ̂ ) = −V (y)BU

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(35)

These formulae imply

i)  The uncertainties of the constrained fitted quantities are generally smaller   
    than the uncertainties in the observations of   .

ii) The fitted quantities will be correlated even if the measurements are
    uncorrelated.

y



(36)

A useful test of the quality of a constrained fit is to use the "pull" or "stretch" variable:

! ! !                                        .!! !

It can be shown that this quantity is normally distributed with a mean of 0 and a variance 
of 1. If the pulls are not normally distributed it is an indication of that either the 
uncertainties are badly estimated or that they are inherently non-normal. In the latter 
case is the    not a reliable measure of the goodness of the fit.

xi − x̂i( )
σ xi
2 −σ x̂i

2

χ 2



Lagrangian Multipliers: Example of kinematical fitting

A frequently used application of minimisation with constraints is kinematical fitting, 
i. e. a fit of the kinematical variables of a measured reaction/decay using energy 
and momentum conservation to improve the result.

As an example, take the two-body decay of a particle:

Λ →  p + π −

This type of decay is often called V0-decay because it involves the decay of a neutral 
particle (unobserved) into two charged ones. The topology of such decay looks as a Vee 
in the detector.



Assume that we have measured the momenta and directions of the decay particles but 
the origin and momentum of the Λ-particle is unmeasured. We then have six measured 
quantities

x = pp ,θ p ,φp , pπ ,θπ ,φπ{ }

and three unknown variables

ξ = pΛ ,θΛ ,φΛ{ }

Spherical coordinates: p = momentum
! ! !             θ = polar angle
! ! !             Φ = azimuthal angle



There are four constraint equations of momentum and energy conservation:

g1 = −pΛ sinθΛ cosφΛ + pp sinθ p cosφp + pπ sinθπ cosφπ = 0    (px )
g2 = −pΛ sinθΛ sinφΛ + pp sinθ p sinφp  + pπ sinθπ sinφπ  = 0    (py )
g3 = −pΛ cosθΛ           + pp cosθ p            + pπ cosθπ         = 0    (pz )

g4 = − pΛ
2 +mΛ

2         + pp2 +mp
2          + pπ2 +mπ

2         = 0    (E)

=> There are four constraints and three unmeasured quantities.

# of constraints - # of unknowns = 1, i. e. one overconstraint. 
Such a fit is called a 1C fit ( C = # of overconstraints).

N.B.  χ# of overconstraints
2  = χν

2



From Εq. (20) we have that the matrices             and              are 
obtained from taking the derivatives of the constraint equations as

Gx 4 × 6( ) Gξ 4 × 3( )

Gx( )ki ≡
∂gk
∂xi

   ;   Gξ( )kj ≡
∂gk
∂ξ j

 

giving

Gx =

sinθ p cosφp pp cosθ p cosφp −pp sinθ p sinφp sinθπ cosφπ pπ cosθπ cosφπ −pπ sinθπ sinφπ

sinθ p sinφp pp cosθ p sinφp pp sinθ p cosφp sinθπ sinφπ pπ cosθπ sinφπ pπ sinθπ cosφπ

cosθ p −pp sinθ p 0 cosθπ −pπ sinθπ 0

pp
pp2 + mp

2
0 0 pπ

pπ2 + mπ
2

0 0
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟



and

Gξ =

−sinθΛ cosφΛ −pΛ cosθΛ cosφΛ pΛ sinθΛ sinφΛ

−sinθΛ sinφΛ −pΛ cosθΛ sinφΛ −pΛ sinθΛ cosφΛ

−cosθΛ pΛ sinθΛ 0

−pΛ
pΛ
2 +mΛ

2
0 0

⎛
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⎜
⎜
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⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

To start the iterations we take the measurement as the initial    :x 0

y = pp0 ,θ p
0 ,φp

0 , pπ0 ,θπ
0 ,φπ

0{ }
For    we can take, for example, the valueξ 0

ξ 0 = pΛ
0 ,θΛ

0 ,φΛ
0{ }

by demanding that the first three constraint equations are fulfilled, i. e. momentum 
conservation satisfied. The fourth constraint equation will then, in general, not be 
satisfied.



From this latter consideration we then have an initial value of 
the vector   from Eq.  (25) asr

r = 0,0,0,g4{ }

GxΤhe matrices     and     can now be calculated using Εq. (20) and the 
approximations           and to obtain the         matrix S from Eq. (25)

Gξ
(x 0 ,ξ 0 ) (4 × 4)

S =Gx
0V Gx

0( )T

By inverting this matrix we can find the next iterative values,              in 
succession from Equations (27 – 29).

ξ 1, λ1, x1



p+p → p+p+η  
↵2γ

Here 5 constraints: 4 from energy - momentum conservation
                        1 from invariant γγ mass = η mass
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