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1 Introduction

I have now been a member of the experimental nuclear physics group in Aarhus for one and a half year,
and in this report I will describe my work during that period. Since my work is very much motivated
by problems in nuclear astrophysics, I start by introducing some of the most basic concepts of nuclear
astrophysics. This should hopefully lead to an easier understanding of the following sections containing
the more detailed background and motivation for my work. The last part of the report is then dedicated to
my own work and the two experiments I have taken part in, the KVI-experiment and the JYFL-experiment.

2 Thermonuclear reactions

Let us have an overview of the mechanisms involved in the thermonuclear reactions that occur in stars.
If we consider a simple situation with only two nuclear species, 1 and 2, that can take part in a nuclear
reaction, we can write the reaction rate as

r = N1N2vσ(v)

where N1 and N2 are the densities of the two species, v is their relative velocity and σ(v) is the reaction cross
section. The expression assumes that all the nuclei moves with the same, fixed, relative velocity, but this
is of course never true. Rather their velocity is described by a probability distribution, P(v), that satisfies∫ ∞

0 P(v) dv = 1, and from this we find the reaction rate

r = N1N2

∫ ∞

0
P(v)σ(v)v dv = N1N2〈σv〉,

where 〈σv〉 is now the reaction rate per particle pair.
We now consider only stellar environments where the particles are non-relativistic, non-degenerate and

in thermodynamic equilibrium. In other words, the nuclei behave as a gas and this means that their velocity
distributions are Maxwellian. The relative velocities between the nuclear species are then also described
with a Maxwell-Boltzmann distribution, that is

P(v) = 4π
( m
2πkT

) 3
2

v2 exp
(
−

mv2

2kT

)
,

where m = m1m2/(m1 + m2) is the reduced mass of the particles. With this knowledge we can write the
reaction rate per particle pair as

〈σv〉 = 4π
( m
2πkT

) 3
2
∫ ∞

0
σ(v)v3 exp

(
−

mv2

2kT

)
dv

=

( 8
πm

) 1
2 1

(kT )
3
2

∫ ∞

0
σ(E)E exp

(
−

E
kT

)
dE. (1)

In this result we have also substituted v for the center of mass energy E = mv2/2. Our expression for 〈σv〉
now explicitly takes the thermal velocity distribution into account, but there is more physics still hidden in
σ(E), particularly we will now investigate the properties of charged particle reactions a bit further.

Consider two positively charged ions at a distance r to each other. The interaction potential V(r) is
sketched in Figure 1, and it consists of two parts: A Coulomb-repulsion that dominates at large r and the

1



Distance
P

o
te

n
ti

al

E

classical turning-point

E C

Figure 1: A sketch of the Coulomb barrier that the charged particle has to tunnel through in order for a
reaction to occur. The reaction rate depends strongly on the height of this barrier.

attraction by the strong nuclear force that dominates at small r. If the center of mass energy E of the two
ions is smaller than the maximum value of the potential EC , then there is a classical turning-point beyond
which they cannot approach each other any further and nuclear interactions will be impossible. This barrier
is called the Coulomb-barrier, and naïvely we would expect nuclear reactions to occur only at temperatures
where a significant fraction of the ions have kinetic energies larger than EC . From quantum mechanics,
however, we know that it is possible for a particle to tunnel through a potential barrier, and this effect
actually turns out to allow nuclear reactions already at much lower temperatures where kT � EC .

Obviously, the probability for the ions to penetrate the Coulomb-barrier must go into the reaction cross
section. At low energies (E � EC) this penetration probability can be approximated with the so-called
Gamow-factor, such that

σ(E) ∝ exp(−2πη)

where η = Z1Z2e2/(4πε0~v) is known as the Sommerfeld-parameter and proportional to E−
1
2 .

Another factor we need to take into account is the “size” of the ion. In a very simple interpretation we
can imagine the ion as a sphere with a radius equal to the de Broglie wavelength, o. The sphere would then
have a geometrical cross section πo2 ∝ E−1, and we incorporate this energy dependence into our reaction
cross section by writing

σ(E) =
1
E

exp(−2πη)S (E), (2)

where we have introduced the astrophysical S-factor, S (E), which now incorporates all the interesting
nuclear physics.

To summarize, we have factorised the cross section for thermonuclear reactions into a part that is related
to the de Broglie-wavelength, a part that is related to the Coulomb-interaction, and the astrophysical S-
factor, S (E). One motivation for doing so is the fact that σ(E) may vary by many orders of magnitude
over the range of astrophysically interesting energies while S (E) can be almost constant or at least slowly
varying over the same range of energies. we will see in a minute why this property is useful.

With the cross section in the form of (2) , let us rewrite our expression for the reaction rate per pair from
(1).

〈σv〉 =

( 8
πm

) 1
2 1

(kT )
3
2

∫ ∞

0
S (E) exp

(
−

E
kT

)
exp(−2πη) dE.

If we assume S (E) ∼ const. we can move the S-factor outside the integral and the integrand becomes
exp(−E/(kT )) exp(−2πη). For a fixed temperature the product of these two exponentials is a function only
of energy and describes an asymmetric peak called the Gamow-peak, see Figure 2. The main contribution
to the reaction rate comes from this peak, and the peak position, E0 can be calculated from

E0 =

[(
π

~

)2(Z1Z2e2

4πε0

)2(m
2

)(
kT

)2
] 1

3

.

As sketched in Figure 2, E0 is usually much higher than kT , and if we take the particular example of the
12C(α, γ)16O-reaction which occurs during quiescent He-burning in stars at T ∼ 0.1 GK, we get E0 ∼

300 keV while kT ∼ 10 keV.
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Figure 2: The energy of the ions follow a Maxwell-Boltzmann distribution. Only the most energetic ions
have a good chance of penetrating the Coulomb-barrier, which means that nuclear reactions mainly take
place where the two probability distributions overlap, in the Gamow-peak.

The existence of the Gamow-peak (also called the Gamow-window) means that it is of particular impor-
tance to know the behaviour of the cross section at and around the peak energy if we want to determine the
reaction rates in stellar environments. Unfortunately this energy range is normally too low to be accessible
through nuclear experiments, and the cross sections are only known through extrapolation from measure-
ments done at higher energies. Now, this is where the astrophysical S-factor comes in handy! As already
mentioned, cross sections can vary very rapidly, and especially at low energies it is difficult to do robust
extrapolation of the cross section. The S-factor, on the other hand, has no extreme variations and it is more
often the S-factor that is extrapolated from higher energies, and from this the cross section can be obtained
for energies in the Gamow-window.

What has been described in this section is the non-resonant contribution to the nuclear reaction rate.
Non-resonant reactions are one-step processes and one example could be a direct proton- or α-capture
where the charged particle is captured and a γ-ray is emitted “in the same go”. Now, we will turn to another
type of reactions that also contributes significantly to the production of elements in stars.

2.1 Resonant reactions

Resonant reactions proceed through the formation of an intermediate compound nucleus and are essentially
two-step processes. The scheme is illustrated in Figure 3. This compound nucleus is also called a resonance

Figure 3: A projectile hits a target and a compound nucleus (a resonance) is formed (1). The compound
nucleus is now highly excited, which is illustrated by its deformed shape (2). Since the system is unbound it
can get rid of the excitation energy by particle emmision (3a), but it can also relax by γ-emission (3b) and
form a stable nucleus.

and it is an unbound state which has a wavefunction that inside the range of the nuclear potential is very
similar to the wavefunction of a bound state. In the remainder of this section we will consider α-capture
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followed by γ-emission, but this is only one example of a radiative capture-reaction. For the cross section
of such a reaction we can formally write

σ ∝
∣∣∣∣〈B

∣∣∣Hγ

∣∣∣B∗〉∣∣∣∣2 ∣∣∣∣〈B∗
∣∣∣Hα

∣∣∣A + α
〉∣∣∣∣2 = ΓγΓα,

where Hα takes both nuclear and Coulomb interactions into account, B∗ represents the resonance and Hγ

is the electromagnetic interaction responsible for γ-emission. Furthermore we have introduced the partial
widths, Γγ and Γα.

If a resonance exists at the center of mass energy of the projectile and target, E, it may show up as a
peak in the cross section described by the Breit-Wigner line shape

σ(E) ∝
ΓγΓα

(E − ER)2 + (Γ/2)2 . (3)

Here ER is the resonance energy measured from the A + α threshold and Γ = Γγ + Γα is the total width of
the resonance. Resonances come in two flavours: The narrow resonances where the width is much smaller
than the resonance energy (Γ � ER), and the broad resonances where the width is a significant fraction of
the resonance energy. If the resonance is narrow it is usually permissible to ignore the energy dependence
of the partial widths when integrating (1) to get the reaction rate, but in general the widths are functions of
energy.

When substituting (3) into (1) we see that it is the overlap between the Maxwellian energy-distribution
and the resonance peak that determines the reaction rate. If we consider a narrow resonance, reactions
essentially only occur at the resonance energy, and integration gives us

〈σv〉 ∝
ΓγΓα

Γ
exp

(
−

ER

kT

)
. (4)

In a way we can then, if the resonance is narrow, consider the resonance peak to be the Gamow-peak.
A narrow resonance can be of particular importance if it occurs at low energy, i.e. a resonance located
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Figure 4: An overview of the different contributions to the reaction rate or, equivalently, to the astrophysical
S-factor. The hatched area marks the Gamow-window. There is a sub-threshold resonance with a tail that
extends into the Gamow-window, there is a narrow resonance in the middle of the Gamow-window and then
there is a tail contribution from a broad resonance at high energy. All this is on top af the non-resonant
contribution.

just above the particle threshold. Here the Boltzmann factor, exp(−ER/(kT )), enhances the contribution
from the resonance exponentially as ER approaches kT , and the resonant contribution to the reaction rate
quickly becomes dominating. Narrow resonances near threshold play an important rôle in the 3α-process
that produces 12C.

Reactions can also proceed through broad resonances. Since these are often located at high energies
(ER & 1 MeV) it is only the part of the resonance which “tails” down into the Gamow-window that con-
tribute to the reaction, see Figure 4. As mentioned in the previous section it is often impossible to measure
cross sections at energies in the Gamow-window, so most of the time we perform experiments at higher
energies to determine the properties of resonances. To be able to extrapolate the resonance tail down to the
Gamow-window we need a detailed understanding of the partial widths’ behaviour as functions of energy.
For the particle channels we achieve this by introducing the reduced width, γ2, such that

Γl(E) = 2γ2Pl(E,Rn), (5)
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where Pl(E,Rn) is the penetration factor which includes the probability of penetrating both the Coulomb
barrier and the centrifugal barrier. With the centrifugal barrier determined by Vcf(r) = l(l + 1)~2/(2mr2) and
the nuclear radius, Rn, the penetration factor is naturally dependent both on the orbital angular momentum,
l, and on Rn. A somewhat involved treatment results in Pl(E,Rn) = (F2

l (E,Rn)+G2
l (E,Rn))−1, where Fl and

Gl are the regular and irregular Coulomb functions[1]. This procedure is analogue to the procedure from
earlier when we found the penetration probability through only the Coulomb barrier to be proportional to
exp(−2πη), and indeed we have P0(E,Rn) = exp(−2πη) which makes perfect sense, since the centrifugal
barrier is absent for l = 0. The situation is a bit different for the γ-decay channel, where the partial width
behaves as

ΓL(Eγ) = αLE2L+1
γ (6)

where L is the multipolarity of the emitted γ-photon. Extrapolation of the resonant contribution to astro-
physical energies is now straightforward since we know the energy-dependence of the partial widths. The
interpretation of the S-factor is no longer very clear since the penetrability is now incorporated in the partial
widths, but we can actually define it in a sort of “backward” way by inverting (2), so

S (E) = E exp(2πη)σ(E),

which will still mostly reflect nuclear physics properties.
One complication that we have to consider, is the effect of interference between two broad resonances

or between a resonance and the non-resonant background. If there are multiple broad resonances that
can contribute to a reaction, we have to sum the contributions from each to get the total reaction rate. If
two overlapping resonances even have the same spin and parity (Jπ) we have to sum the contributions
coherently which opens up for quantum mechanical interference effects and these can both be constructive
and destructive. When interference occurs in the Gamow-window it is necessary to know the parameters of
the involved resonances very accurately in order to calculate a realistic reaction rate.

Finally, imagine a nucleus with an excited state just below the particle-threshold. This state will always
have the possibility to γ-decay to a lower state or the ground state, and this means that it must have a finite
width in energy. As a result the particle-channel opens up beacuse the state now has a tail which extends
up to energies above the particle-threshold, and this tail makes particle capture through the subthreshold
state possible. When this happens we are dealing with a subthreshold resonance, and these can also play
significant parts in capture-reactions, most notably in the 12C(α, γ)16O-reaction.

3 He-burning in stars

The main part of the life of a star is spent on the main sequence where quiescent H-burning in the core
supplies the star with energy. When the hydrogen fuel in the core is exhausted, the star is left at the end of
the main sequence with a core consisting mainly of the ashes from the H-burning, helium, and the H-burning
continues in a surrounding shell, depositing even more helium in the core. Slowly the core contracts and as
a result the temperature and density rise until the point where helium ignites and the production of heavier
elements begins. The temperature in the He-burning regions of the star is typically around 0.1 GK to 0.2 GK
and the star is now in the red giant phase of its evolution. We are particularly interested in the production
of 12C and 16O and in the following sections we will take a look at the two involved processes, namely the
(3α, γ)12C-reaction (normally just called the triple-alpha-process) and the 12C(α, γ)16O-reaction.

3.1 The triple-alpha process

After the idea that all heavy elements were synthesised in stars had been accepted, the question of how the
so-called mass gaps at A = 5 and A = 8 (meaning that no stable isotopes exist with these mass numbers)
where bridged, remained open for some time. Since we observe a lot of 12C in the universe there must be
a way to effectively combine the α-particles that are the ashes of H-burning to produce 12C. The first step
could be the reaction between two α-particles which would have 8Be as its product, but since 8Be is an
unbound nucleus with the ground state 92.1 keV above the α + α-threshold, the newly formed 8Be would
immediately break up again with a lifetime of ∼ 1 × 10−16 s.

How about a reaction where three α-particles collide and produce 12C directly? Well, although this is
energetically possible, the probability for three α’s to be at the same place at the same time is negligible,
so we have to come up with some other idea. As it turns out, the ground state in 8Be acts as a narrow
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Figure 5: A diagram with relevant levels for the triple-alpha process. The data are taken from the compila-
tion [2] which is now somewhat dated, but we can nevertheless get a general overview of the level structure.
The lightly hatched region represents the very broad resonance structure that is observed which may be the
result of several overlapping resonances. It is this region that we are particularly interested in.

resonance for reactions between two α’s and for T ∼ 0.1 GK it is placed right in the middle of the Gamow-
window, thus enhancing the reaction rate enormously. This means that we achieve an equilibrium for
α + α � 8Be where the concentration of 8Be is actually significant (N(8Be)/N(4He) = 5.2 × 10−10[1]).
Now the 8Be(α, γ)12C-reaction must do the remaining job and finally we got our 12C produced.

When these ideas came up in the early 1950s there were no known excited states in 12C near the 8Be+α
threshold that could act as a resonance for the 8Be(α, γ)12C-reaction, but the astrophysicist Fred Hoyle
showed in 1953 that a non-resonant contribution to the reaction rate could not alone explain the observed
abundance of 12C in the universe. This fact led Hoyle to predict that there should also be a resonant
contribution, and he even used the observed elemental abundance ratio 4He:12C:16O to calculate its energy
to be 7.68 MeV, or 310 keV above the 3α-threshold[3]. Later that year a state was found experimentally
at the predicted energy[4], and Hoyle’s prediction has since been regarded as one of the most remarkable
successes of astrophysics. As a note of historical interest I would like to point out that some experimental
evidence for what would later become known as the Hoyle-state actually already existed before 1953, but
the early observations were not conclusive[5, 6].

3.2 Production of oxygen

With a way to produce 12C, the stellar nucleosynthesis proceeds with the production of heavier elements.
The next step on the ladder is 16O which is the product of α-capture on 12C, a reaction that has a signifiant
rate already at 0.1 GK. As a result the 3α- and 12C(α, γ)16O-reactions take place simultaneously, and the
relative universal abundance of the two elements is determined exclusively by the ratio between the reaction
rates at stellar He-burning temperatures. For the 12C(α, γ)16O-reaction the Gamow-peak is at approximately
300 keV and the cross section at this energy therefore determines the reaction rate.

Several of the mechanisms discussed in sections 2 and 2.1 play important rôles for the reaction: There is
a non-resonant contribution which because of fundamental isospin selection rules gives only the possibility
of E2-capture to the ground state. There are also multiple resonances through which α-capture can take
place, as is seen on the level diagram in Figure 6, and for instance the 2+-resonance at E = 6.92 MeV
(corresponding to a resonance energy of ER = −245 keV) is a good example of a subthreshold state acting
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Figure 6: Levels relevant for the 12C(α, γ)16O-reaction. Also, the level of the 16N ground state is shown to
indicate the idea behind the KVI-experiment. All data is from the compilation [7].

as a resonance. Since a capture through the high-energy tail of the 2+-resonance also involves an E2-
transition, we cannot distinguish this reaction from the non-resonant capture, and the two contributions
must be added coherently which, as discussed earlier, means that interference effects will show up, either
constructive or destructive. There are two more states that can act as resonances, namely the 1−-states at
7.12 MeV and 9.59 MeV (ER = −45 keV and ER = 2418 keV, respectively). Again, since the spin-parity
are 1− for both states, α-capture through any of them involves an E1-transition and there will be interference
between the two contributions. The entire situation is sketched in Figure 7.

Figure 7: A sketch of the two contributions to the 12C(α, γ)16O-reaction and the important effect of interfer-
ence between different reaction channels. The contributions to the S-factor from individual resonances and
the non-resonant capture are shown with dotted lines in (a) and (b) for E1- and E2-capture, respectively.
The resulting S-factor is also shown with constructive (solid line) and destructive (dashed line) interference
terms taken into account. In (c) we see the total S-factor for each of the four interference-schemes. The
figure is reproduced from [1].

It is worth noting that although there are several resonances for the 12C(α, γ)16O-reaction, none of them
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are positioned inside the Gamow-window and hence they only contribute through their relatively weak
tails and the reaction rate is limited. This fact has profound consequences for the observed elemental
abundances, because if a resonance had appeared in the Gamow-window, as is the case for the 2α →
8Be- and 8Be(α, γ)12C-reactions, the reaction rate would have been greatly enhanced. In this way the 12C
produced in the 3α-proces would have been almost depleted at the end of stellar He-burning and carbon-
based life as we know it would not have existed.

4 The nuclear physics cases

We have now covered most of the fundamentals and also seen some hints of the astrophysical significance
of the nuclear properties of 12C and 16O. It is now time to take the plunge and look at the nuclear physics
motivation for the two experiments I have taken part in.

4.1 Excitations of the Hoyle-state

Because of the importance of the Hoyle-state in 12C-synthesis it has naturally been the subject of much
attention since its existence was established in 1953. Already in 1956, Hirohito Morinaga noted that the
self-conjugate nuclei 8Be, 12C, 16O, 20Ne and 24Mg all had low-lying 0+-states accompanied by a 2+-state
not too far above[8]. Morinaga showed that this structure could be explained by considering the low-
lying 0+-states to be highly deformed (i.e. non-spherical) nuclei with large moments of inertia, and the
2+-states would then be rotational excitations of the deformed states. In 16O and in 24Mg the spacing
between the levels even seemed to fit with the moment of intertia of a chain-like structure with four and
six, respectively, α-particles in a line, and it was suggested that the Hoyle-state could fit in this scheme as a
chain of three α-particles. If this was indeed the case, the Hoyle-state had to have spin-parity 0+ and there
had to exist a 2+-state at around 9.7 MeV excitation energy. After the spin and parity of the Hoyle-state had
been established experimentally to be 0+ and after some resonance strength with ER = 10.1(2) MeV and
Γ ≈ 2.5 MeV that could be either 0+ or 2+ had been seen[9, 10], Morinaga reiterated his hypothesis and
argued that the broad resonance had to be 2+, which would agree with it being interpretated as a rotational
excitation of the Hoyle-state[11]. Although this picture may seem appealing, it is probably oversimplified.
That the 12C-nucleus has a high degree of α-clustering is beyond doubt, though, and we shall later hear
about several experimental results that supports this fact.

An alternative interpretation of the resonance strength around 10 MeV was put forth in 1962[12], where
the broad resonance-like structure in the spectrum was explained as the ghost of the Hoyle-state. Now, a
ghost is a peak in the spectrum that is not a real resonance, but rather associated with a lower-lying state near
the particle-threshold. The cross-section from this level is described by the Breit-Wigner line shape from
(3), and this cross section can actually produce two peaks if, in some energy range, the numerator grows
faster than the denominator as function of increasing energy. In other words, if the penetrability grows
faster than the high-energy tail of the Lorentzian falls off. It was estimated that the Hoyle-state, which is
a level near the particle-threshold, would give rise to a ghost peak at around 9.2 MeV with a FWHM of
approximately 5 MeV, and the ghost was thought to be able to account for all the observed strength in this
energy range. Later experiments involving β-decay spectroscopy of both 12B and 12N produced spectra that
were not well fitted with the ghost as the only contribution[13], but instead needed two broad, resonant
contributions on top of the ghost.

The last theoretical model of the 12C-nucleus that we shall describe, is a model that assumes D3h-
symmetry of the 12C ground state[14]. This is just a fancy and non-intuitive way of saying that the 12C
ground state is an equilateral triangle with an α-particle at each vertex, and in this respect it is also one of
the cluster-models. With this as the starting point all other (cluster-like) excitations are considered to be
rotational and vibrational excitations of the triangular system, and the energy levels can be calculated as

E = E0 + Av1 + Bv2 + CL(L + 1) + D(K ± 2l)2. (7)

where v1 and v2 are the vibrational quantum numbers for a breathing mode and a bending mode vibration,
respectively, L is the angular momentum, K is the projection of angular momentum onto a body-fixed axis
and l is somehow the angular momentum of the bending mode vibration. The result is the energy level
diagram in Figure 8 where each rotational band is labelled by the vibrational quantum numbers (v1, vl

2).
The levels in the (0, 00) rotational band are rotations of the ground state and the levels in the (1, 00)-band
are rotations of the Hoyle-state. Very recently some experimental evidence supporting the triangle-model
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Figure 8: The figure shows the energy levels of the ro-vibrational excitations, calculated with (7). The
numbers in the parantheses indicate the quantum numbers (v1, vl

2) of each rotational band. It should be
noted that the level spacing are the same in all bands, which is the result of the formula not taking the
moment of inertia’s dependence on the vibrational excitation into account. Reproduced from [14].

appeared, because the 5−-state that it predicted at the top of the ground state band, was observed in inelastic
scattering experiment with 40 MeV α-particles scattering of a 12C-target[15]. In the same paper the triangle
model are revisited, and the fact that the moments of inertia are dependent on the level of vibrational
excitation is now taken into account. As a result the Hoyle-band now have a smaller level spacing or,
equivalently, a larger moment of inertia. This is sensible from the point of view that the Hoyle-state itself
should be a breathing mode vibrational excitation of the ground state with the excitation resulting in the
triangle becoming more extended. For now, let us just note that the triangle-model, if we accept it as a good
model, provides us with quite detailed predictions of which states we should expect to appear in 12C.

In the last decade numerous experiments experiments have been performed with the purpose of improv-
ing our understanding of the broad resonances in 12C. In a β-decay study of 12N and 12B[16] a common
analysis was done for experiments parformed at the IGISOL-facility in Jyväskylä (see section 6) with seg-
mented detectors and full kinematical information on the 3α-breakup, and at KVI in Groningen (see section
5), which showed that the experimental data could be fitted with two broad states, respectively a 0+ and a
2+, with E0+ = 11.2(3) MeV, Γ0+ = 1.5(6) MeV, E2+ = 11.1(3) MeV and Γ2+ = 1.4(4) MeV, and an addi-
tional state above the 12.7 MeV-resonance with either 0+ or 2+. Another analysis of data from inelastic p-
and α-scattering on 12C[17] seems to indicate a narrower 2+-resonance at somewhat lower energy, namely
at E2+ = 9.75(15) MeV with a width of Γ2+ = 0.750(150) MeV, and finally a 12C(γ, 3α)-experiment[18, 19]
shows a 2+-state with E2+ = 10.03(11) MeV and Γ2+ = 0.80(13) MeV. If it is the same state that is measured
in the three experiments then clearly the results are not compatible.

In conclusion, the situation regarding the character of the broad resonances above the Hoyle-state is still
quite confusing. It seems clear, though, that the region is dominated by 0+-strength and that there must be
some 2+-strength buried somewhere underneath. Whether or not it can be regarded as a rotational excitation
of the Hoyle-state is also a question open for interpretation. Further experiments are required which are
able to give a good handle on the spin and parity of the observed states in order to distinguish the different
contributions, and in that way hopefully help clarifying the situation.

4.2 Determining the 12C(α, γ)16O reaction rate

As already mentioned in section 3.2 there are many states and effects that contribute significantly to the
12C(α, γ)16O-reaction. Direct measurement of the cross section is not feasible because of its rather small
value for energies in the Gamow-window, σ(300 keV) ∼ 1 × 10−17 b, so the only option is to measure at
higher energies and extrapolate down to E0 = 300 keV. Measurements exist for energies down to approx.
1 MeV, but to be able to do a reliable extrapolation the α-widths of the involved states must be known with
good accuracy[20]. One way to get information on these is to study the β-delayed α-spectrum from the
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Figure 9: A high-statistics measurement of the β-delayed α-spectrum from 16N, performed at TRIUMF[21].
On top of the data points is an R-matrix fit and the dashed lines show that both p-wave and f -wave com-
ponents are needed to fit the data. The horizontal axis displays the α-particle energy. Reproduced from
[20].

decay of 16N (you can see the decay scheme in Figure 6) and do an R-matrix fit1 to extract the α-widths,
at least for the states relevant for E1-capture, and a lot of work has been done along these lines. Most of
the important experiments are reviewed in [22], and it seems that the state of the art spectrum has been
produced by a group at TRIUMF[21], see Figure 9. Since the E1 cross section at 300 keV is dominated
by the subthreshold 1−-resonance at 7.12 MeV, the α-width of this state is a very important parameter to
determine. As should be clear from Figure 7(a), there is interference between the 7.12 MeV-state and the
9.6 MeV-state, and this shows up in the β-delayed α-spectrum in Figure 9 as a deformation of the tails of the
broad peak with 2.4 MeV breakup energy (corresponding to an α-particle energy of 1.8 MeV). A scenario
with constructive interference is currently favoured, but that is still a matter of discussion. In other words,
the shape of the tails, most notably the low-energy tail, of this α-peak is quite sensitive to the properties of
the subthreshold 7.12 MeV-state, and that is why the spectrum is useful for determination of the α-width of
this state.

From [21] the recommended value for the astrophysical S-factor is S E1(E0) = 79(21) keV b, but it is
also clear from [22] that the β-delayed α-spectrum of 16N has been the subject of considerable controversy
in the last 20 years, and some authors even claim that a value for the S-factor as low as S E1(E0) = 10 keV b
is consistent with the known data[23]. Therefore it would be desirable to constrict some of the parameters
that go into the R-matrix fit, for instance the branching ratio for the β-decay of 16N to the broad 9.6 MeV
1−-state in 16O. The current value for this branching ratio was found in the early 1970s to be 1.13(8) × 10−5,
but a more precise determination would help reduce the error on S E1(E0) significantly[22, 24].

5 The KVI-experiment

The purpose of this experiment (officially named P20) is to measure the branching ratio for the β-decay of
16N to the 9.6 MeV-state in 16O. A collaboration of scientists from Aarhus University and KU Leuven went
to the Kernfysisch Versneller Instituut (KVI) in Groningen, the Netherlands, to do the experimental work
at the AGOR/Triµp facility which consists of the AGOR cyclotron and the Triµp magnetic separator[25].
Here a radioactive beam of 16N with an energy of ∼ 60 MeV/ion were produced in inverse kinematics by
leading the primary beam of 15N with energy 105 MeV/ion through a gas cell 10 cm long containing CD2
gas at 1.2 atmospheres, producing 16N in a (d, p)-reaction. Most of the primary beam and various beam
contaminants like other isotopes or different charge states of 16N were removed in the magnetic separator

1The R-matrix formalism is just a way of describing the properties of a nuclear state with parameters like the energy, spin, parity,
total width and partial widths.
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and in the end it was a quite pure (∼ 60 %) beam of 16N that entered our target chamber. The beam was
implanted in an active stopper and it is now our job to count (1): The number of implanted 16N-ions and
(2): The number of α-decays from the 9.6 MeV-state in 16O. Since the statistical uncertainty goes as 1/

√
N

we need to observe at least 2500 decays to achive 2 % accuracy.

5.1 Experimental setup

Several detectors were employed in the experimental setup, a sketch of which is shown in Figure 10: The
∆E-detector is an unsegmented Si-detector with a thickness of 60 µm and part of a socalled telescope setup
with the DSSSD, furthermore acting to slow down the beam such that it doesn’t punch through the DSSSD.
The DSSSD-detector seen in Figure 11 is described in detail in [26]. It is a highly segmented Si strip-
detector with dimensions 16 mm×16 mm×78 µm. With 48 300 µm wide strips on both front(p) and back(n)
side it has a total of 2304 pixels, each representing an active volume of approximately 300 µm × 300 µm ×
78 µm silicon. The advantage of a detection volume this small is that the β-particles, which always comes

16N-beam

∆E-detector

DSSSD-detector

Back-detector

NaI-scintillator

NaI-scintillator

Figure 10: A sketch of the experimental setup (not to scale). Details on the different detector can be found
in the text.

Figure 11: A picture showing the DSSSD-detector. The copper surrounding is a part of the liquid cooling
system.

in coincidence with the α-particles of interest, doesn’t get the chance to deposit a significant part of their
energy in the pixel before leaving it. This is both an advantage when we have to distinguish between β-
and α-particles and also the effect of β-summing is minimised. The final Si-detector is the socalled back-
detector which is 300 µm thick and unsegmented. All these detectors were placed in a vacuum chamber at
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∼ 10−6 torr and two NaI-scintillators were placed outside the chamber. The trigger was an OR between the
DSSSD-, the ∆E- and the NaI-detector.

The idea is now to let the 16N-ions in the beam pass through the ∆E-detector and deposit some of their
energy in this detector. With the right choice of beam energy and detector thickness the ions should now
have just enough energy to pass half-way through the DSSSD-detector and stop. By measuring the energy
loss in the ∆E-detector and the remaining energy that is deposited in the DSSSD we can make a ∆E − E
plot and each ion species in the beam will show up in different loci (“blobs”) in the plot, thus enabling us
to use the ∆E − E plot for particle identification. This is useful since the beam will never be completely
pure, and it will also allow us to discriminate between beam-triggered events and decay-triggered events
because we should see a signal in the ∆E-detector for all beam-triggered events. On the other hand an event
with a signal in the DSSSD and no signal in the ∆E-detector must be a decay-event. The Back-detector
was placed in close geometry with the DSSSD in order to catch the β-particles going “straight” out of
the DSSSD. In principle the DSSSD-spectrum from these events should be a slightly cleaner α-spectrum
since the β-particles leaving the DSSSD orthogonally to the detector plane are those depositing the least
amount of energy in the DSSSD. The two scintillators were used during the experiment to confirm that it
was indeed 16N that was implanted in our detectors. Looking for the characteristic γ-lines in 16O is far
quicker and more robust way of identifying the 16N than waiting for a PhD-student to produce a ∆E − E
plot with properly calibrated energies. With a good efficiency calibration the scintillators can also provide
an independent estimate of the total number of implanted 16N-ions.

Each implanted 16N-ion deposited 30 MeV to 36 MeV in the DSSSD but with the dynamic range ex-
tending to these energies it would not be possible to get a high-resolution α-particle spectrum in the range
around 2.4 MeV. In order to circumvent this challenge two independent amplifier chains were used for the
DSSSD, with the low-gain chain having a dynamic range of 80 MeV and the high-gain chain having a dy-
namic range of 8 MeV. This allows us to use the signal in the low-gain channels for particle identification in
implantation events and the signal in the high-gain channels to get a good spectrum from the decay-events.

5.2 Course of events

The original plan was to run with continuous beam for the entire experiment and use the ∆E-detektor to
identify beam-events and decay-events. A calibration with an external calibration source containing the
three α-emitters 239Np, 241Am and 244Cm was to be complemented with an internal calibration done with
implantation of 20Na which also emits α-particles with well-known energies. The plans changed slightly
during the experiments, and in Table 1 you can find an overview of the most important events. If the reader
feels confused by the fact that most gains were changed between the 16N-runs and the internal calibration
with 20Na, the explanation is that the heavier 20Na-ions simply deposits more energy, around 120 MeV, and
this was outside the dynamic range with the old amplifier settings. In that way the 20Na-calibration almost
defied its purpose, and in the clarity of hindsight it would probably have been smarter to add a thicker
degrader foil before the detectors, in order to reduce the beam energy.

5.3 Calibration of the DSSSD

I have already shown a picture, Figure 11, of the DSSSD that was used in this experiment. To familiarise
the reader with this kind of detector we will take a short introduction to the basic principles. DSSSD stands
for double sided silicon strip detector, and it is basically a silicon wafer, doped to act as a diode-detector,
where the charge-collecting contacts are segmented into thin strips running along orthogonal directions
on the front side and the back side, as sketched on Figure 12. Normally the detector would be operated
with a reverse bias voltage sufficient to deplete the free charge carriers (electrons and holes) in the entire
silicon wafer, so the silicon effectively makes up the active layer of the DSSSD. When an energetic charged
particle travel through the active volume, it gradually loses its energy by forming electron-hole pairs in the
silicon until it either comes to rest or leaves the detector again. The free charges are then swept out of
the active volume and collected on the metal contacts on both sides, and since the collection electrodes
are segmented, the detector is actually position sensitive. One of the drawbacks of the design is that the
aluminium contacts and the oxide insulation on the surfaces acts as dead layers through which the charged
particles must pass before reaching the active volume, and this in turn means that some of the energy of the
particle is deposited in the dead layers and thus is not detected. Energy loss in the dead layers is one of the
big challenges when working with precision energy spectroscopy, and the effect must be carefully taken
into account when the detector is calibrated.
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Table 1: A short overview of the most important events during the KVI-experiment. The experiment was
done during May 2013.

Date Description

13th Our beam time starts and by the end of the day the beam has been guided through
the separator to our setup. For now we are running in continuous mode

14th Because it hadn’t been possible to extract a clean decay spectrum from the data, we
switched in the late evening to a pulsed beam, i.e. 15 s beam on followed by 15 s
beam off in cycles.

15th A logic signal was fed from the beam chopper to our acquisition such that it is pos-
sible to distinguish whether an event occurred during beam on or beam off. Finally
it was possible to see the α-particles from the decay of 16N and the experiments was
left in this state until there was a break in the beam time of a few days, due to Pente-
cost.

18-20th During Pentecost a 24 h calibration run with the external α-source was done.
21st The facility was restarted and by mid afternoon we again had the 16N-beam directed

to the target chamber.
22nd To be able to detect a larger portion of the decays we switched to a cycle with 1 s

beam on and 7 s beam off.
23rd End of the 16N-beam. The cyclotron team was asked to produce a 20Na-beam instead

and meanwhile the gains of both DSSSD-chains were changed.(!)
24th Several unfortunate circumstances hampered the experiment and it was not until the

late afternoon we got useful data with 20Na. The rest of the time we were running
with 0.5 s beam on and 1 s beam off.

25th End of experiment. After some short calibration runs with the external α-source and
a 60Co γ-source we packed up and went home.

Figure 12: This figure shows the basic principles behind the construction of a DSSSD. It is seen how the ac-
tive layer of silicon is sandwiched between layers of aluminium contacts and insulating oxide. Reproduced
from [27].
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External calibration

To calibrate the detector, we used, as already mentioned, an external source with three α-emitters whose
α-energies are listed in Table 2. A typical spectrum from a calibration is seen in Figure 14a, and we will

Table 2: A list of reference α-energies and intensities for the α-emitters that was used for calibration of
the DSSSD. It should be noted that with typical energy resolutions ∼ 25 keV it is not possible to distinguish
the two 239Pu-peaks with the highest energies, and one must use the weighted mean (5148.89 keV) as
calibration energy. The values are those recommended by [28].

Isotope Iα [%] Eα [keV]
239Pu 73.3 5156.59

15.1 5144.3
11.5 5105.8

241Am 85.1 5485.56
13.3 5442.80

244Cm 76.4 5804.77
23.6 5762.16

have a brief look at how such a spectrum is produced and some of its general features: When a particle hits
the detector it will produce a signal in one of the front strips and one of the back strips and trigger an event
in the data acquisition (the DAQ). If noise is present in some of the channels it will also be recorded. In the
analysis of a calibration run one defines a threshold at, say, channel 1000 (for common ADCs with 12 bit
resolution there are 4096 chanels in total), and for each event ignores all signals smaller than this threshold.
Furthermore, if there is exactly one of the front strips and one of the back strips with any signal larger
than the threshold, it is assumed that they belong to the same physical particle, and that the particle hit the
detector at the intersection between the two strips. One ends up with a spectrum similar to Figure 14a for
each of the front and back strips, and the task is now to determine the positions of the three main α-peaks
and correlate it with the α-energy, to get a calibration for the channels.

The calibration spectrum in Figure 14a is dominated by the three primary α-peaks. For 241Am and
244Cm the two secondary α-peaks are also clearly distinguishable and for 239Pu we can see the tertiary
α-peak. Also readily visible on the plot are the low-energy tails of the α-peaks which extends down to zero
energy. This tail is a consequence of the nature of the energy deposition of charged particles in solids, and
the entire peak-shape is described by a socalled Landau-distribution. This makes determination of the peak
position a little flaky, since the Landau-distribution has no mathematically defined mean, and the method
most suitable depend somewhat on the amount of counting statistics available. One way could be to fit the
peak with a Gaussian peak folded with an exponential tail on the low-energy side, and then use the mean of
the Gaussian as the peak position. In this work I have used a peak finding algorithm based on a numerical
deconvolution of the spectrum with a Gaussian function[29] which arguably does not return a value with a
very well-defined meaning, but it is very robust and stable, even with low statistics spectra.

The energies in Table 2 are raw α-energies, but since the source is sealed, and because the DSSSD has
a dead layer thickness of 339(3) nm Si-equivalent, we must bear in mind that the α-particles have lost some
of their energy before entering the active volume. The energy loss in the detector dead layer with thickness
d can be estimated as

∆E = d
dE
dx

(E = 5.5 MeV),

and since dE/dx(E = 5.5 MeV) = 1350 MeV cm−1 for silicon [30], we get ∆E = 45 keV. This loss is only
for particles travelling straight through the dead layer, and it would be larger if the particle was to travel
through the dead layer with an angle to the normal of the detector surface, see the sketch in Figure 13. It
is possible to use this effect to determine the dead layer thickness by looking at the position dependence of
the detector signal. If the source is placed centrally in front of the detector, and not too far away, then for
each strip the signal will be smaller near the edge of the detector and largest near the middle. Looking at the
situation in Figure 13, if a particle is emitted with an angle θ to the axis its path through the dead layer will
be extended by a factor 1/ cos(θ), and the energy loss will go as ∆E(θ) = ∆E(θ = 0)/ cos(θ). The maximum
effect is found at the edge where θ = arcsin(l/(2D)), and for our case, where D = 5 cm and l = 1.6 cm, it
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Figure 13: An α-particle hitting the DSSSD near its edge needs to travel a longer distance through the
dead layer (hatched area) before reaching the active volume of the detector.

amounts to a variation in the energy loss of 0.6 keV, or roughly one quarter of an ADC-channel, which is
much too small to be of any use in the determination of the dead layer thickness of our detector with the
amount of counting statistics in our calibration runs.

I had not done these simple estimates before I looked for the effect in the data because in that case
I would probably never have spent the effort, but to my surprise there seemed to be a mechanism with
the exact opposite effect. The signal was smaller in the center of the DSSSD than at the edges, which is
illustrated in Figure 14. I divided each strip into three sections and filled individual spectra for each section.
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Figure 14: In (a) we see the calibration spectrum from the entire DSSSD for the longest calibration run
during the KVI-experiment, taken during Pentecost. The plots in (b), (c) and (d) are explained in the text.

For each spectrum I found the position of the three primary α-peaks and for each peak subtracted the peak
position in the middle section from the mean peak position of the two outer sections. The results are shown
in Figure 14b, 14c and 14d for the 239Pu-, 241241- and the 244244-peaks, respectively. It is clear that there
is a systematically smaller response in the middle of the DSSSD than at the edge, and it even seems to
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be an energy dependent phenomenon, since the typical response difference is around two channels for the
239Pu-peak while it is closer to three channels for the 244Cm-peak. Because the effect is significant, with
a response difference of three channels corresponding to roughly 5 keV, I naturally sought for its possible
origin.

External effects One possible explanation could be that the dead layer thickness of the detector is not
uniform, and that the maximum thickness is in the middle of the detector. It is not uncommon to see
this kind of variation, although it normally occurs on larger detectors.

Internal effects If the concentration of impurities in the semiconductor material was significantly larger in
the center of the detector than at the edge, it could explain why the signal is smaller in the center. The
reason would be that impurities (or defects) can trap the free charge carriers and act as recombination
centers, and in that way less charge would be collected by the surface electrodes.

One way to distinguish between the two effects would be to look for the same effect in the internal calibra-
tion with implanted 20Na because if it was a dead layer effect it would not affect the response to internally
emitted α-particles. On the other hand, if the effect was caused by impurities in the semiconductor it would
appear for the internal αs also. In the end my analysis was hampered by poor statistics and no conclusion
was reached through analysis of the data. I believe that the matter is settled now, though, through personal
communication with Professor Phil Woods from the University of Edinburgh, who is one of the designers
behind the DSSSD we used. It turns out that it is completely normal to see a degradation of the charge pulse
shape of the detector as it is being used for implantation experiments. For every single implantation you ba-
sically introduce an impurity to the semiconductor crystal and this kind of detector does in general not have
a very long service life. As the leakage current also went up monotonously during the KVI-experiment,
also indicating a rising concentration of impurities, I think that many arrows now point in the direction of
an internal effect.

Internal calibration

The internal calibration was done by implanting 20Na in the detector at the end of the experiment. This
isotope emits α-particles with very well-measured energies and should provide a calibration free of annoy-
ing dead layer effects. A direct calibration of the 16N data is not possible because, as has already been

Energy [MeV]
0 1 2 3 4 5 6 7 8

C
o
u
n
ts

/(
2
k
eV

)

1

10

210

310

410

Figure 15: A DSSSD spectrum produced from the entire 20Na data set. The two highest peaks are used for
internal calibration.

mentioned, the gains of all the amplifiers were adjusted in the break when the beam was changed from 16N
to 20Na. A short (∼ 1 h) run was done with the external α-source on the last day of the experiment, i.e.
with the same amplifier settings as during the 20Na-runs, and this has made it possible for me to compare
the two types of calibrations. Since I know the expected energy loss of the α-particles in the detector dead
layer, I know their initial energies from Table 2, and I know the energy they deposit in the active volume of
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the detector (using the internal calibration from 20Na), it is possible to calculate any residual energy losses
that the α-particles may have suffered. These losses are expected because the α-emitters are deposited on
the source in a layer with a finite thickness, and some sources are even covered by an extra layer of sealing.
When the residual losses have been determined, I can use the result to correct the external calibration of the
16N-data and hopefully produce an accurate energy spectrum.

The 20Na decay spectrum is seen in Figure 15 and I have used the two most prominent peaks for the
calibration. These peaks correspond to excitation energies in 20Ne of 7422 keV and 10 273 keV (2692 keV
and 5543 keV above the 16O + α threshold, respectively), and the obvious procedure would be to calibrate
to these energies. However, there are three effects involved that we must consider, if we want to use this
calibration for detection of α-particles: Firstly, the 20Na decay is a β-delayed α decay, so the α-breakup is
always preceded by the emission of a β-particle, which of course also deposits some of its energy in the
detector (an effect known as β-summing). Secondly, the emission of the β-particle results in a recoil of
the remaining 20Ne-nucleus and this energy is deposited in the detector. Lastly, in the breakup into 16O
and an α-particle, due to energy and momentum conservation, one fifth of the breakup energy goes to the
16O-nucleus and four fifths to the α-particle. When the 16O-ion deposits its energy in the detector, the
energy is not converted as efficiently to electron-hole pairs as it happens for an α-particle, so if the data
is calibrated with a standard α-source, the observed breakup energy of 20Ne is 66(4) keV smaller than the
released energy. Numbers obtained by Geant4 simulations are given in Table 3 and a detailed discussion
can be found in [31].

Table 3: Below E is the excitation energy of the relevant level in 20Ne, ER is the energy above threshold
(taken to be 4729.84 keV), Eβ is the energy shift of the peaks caused by β-summing, Erec is the β-emission
recoil energy, Edep is the total energy deposited in the detector for each decay and Eobs is the observed
energy if the data are calibrated with data from an α-source. The values are from [32, 31] and are given in
keV

E ER Eβ Erec Edep Eobs

7421.9(12) 2692.1(12) 26(2) 0.5 2719(2) 2653(5)
10 273.2(19) 5543.4(19) 31(2) 0.2 5575(3) 5509(5)

I have focused my attention on the peak at 5509 keV peak beacause it sits in the middle of the range
of energies covered by the external source and therefore in the range where the external calibration is most
reliable. By applying the external calibration with tabulated values to the 20Na-data I find the peak position
to be 5560(1) keV, which is 51 keV higher than it should be. This means that the energy loss of the α-
particles from the external source must have experienced an energy loss of 51(5) keV before entering the
active volume of the detector, and this is a loss 6 keV higher than the loss of 45 keV that we calculated for
a 5.5 MeV α-particle travelling through the detector dead layer only. This extra loss can be explained if the
α-source is covered by a layer of 45(35) nm of Si-equivalent, with the main contribution to the uncertainty
coming from the values in Table 3.

5.4 Measuring the branching ratio

Now, it is time to look at the 16N-implantation data. To extract a value for the branching ratio of decay to
the 1−-state at 9.6 MeV in 16O we need to identify and count (1) all 16N-implantations in the DSSSD and
(2) the number of breakups of the 9.6 MeV-state into 12C + α. When the implantations and decays have
been counted there are some corrections that must be applied, for instance due to dead time of the data
acquisition or the fact that we are only looking for decays during the periods where the beam is off. In other
words we need to normalise the data.

Particle identification

The original plan for the experiment was to run with a continuous beam and distinguish between beam-
triggered events and decay-triggered events by looking for a signal in the ∆E-detector. It was not, however,
possible for us to extract a clean decay spectrum from the continuous beam data, and one probable expla-
nation could be presence of light particles, like protons or deuterons, in the beam. These particles could
pass the ∆E-detector without depositing very much energy, in fact the deposited energy could be below the
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ADC-threshold, and the particle would go on and be implanted in the DSSSD or punch through it, either
way resulting in a signal in the DSSSD which could mimic a decay-event. Whatever the real explanation is
we switched to pulsed mode, or beam on/beam off, after approximately one and a half day of beam time.

Figure 16: A plot showing the signals in the ∆E- and the DSSSD-detectors during beam on. This kind of
plot is a common way of distinguishing different beam components, and our local expert in energy losses,
Oliver Kirsebom, has supplied me with the following identification of the particles in the different loci in
the plot: (1) 16N7+, (2) 14N6+, (3) 13C, (4) protons, (5) 12C5+, (6) 14C6+, (7) 13C6+, (8) 15N7+ and (9) 11B5+.
Assuming this is correct we find that 16N makes up around 60 % of the particles in the beam.

To identify 16N-implantations during beam on I have used the ∆E − E-plot shown in Figure 16. From
the figure it is clear that there are many components in the beam, but it is also seen that 16N is the dominant
component and that it is implanted with an energy of 30 MeV to 36 MeV. One can use the srim software
tool to show that with this energy most of the ions are stopped half-way through the detector. Anyway,
I have defined a polygon encircling the 16N “blob” in the plot and defined each event inside this polygon
to be an 16N-implantation. From the (hopefully) normalisable part of the data I find 1.20 × 108 implanted
16N-ions.

Identifying decays are a bit easier, since all events during beam off must be triggered by a decay. The
decay spectrum is shown in Figure 17 and to produce the spectrum I have used the DSSSD-signal that came
through the high-gain amplifier chain where the dynamic range is an order of magnitude smaller. On the
other hand we get a much better resolution, limited to the intrinsic detector resolution of approximately
28 keV FWHM. The spectrum is essentially free of background, and the broad peak at 2.32(2) MeV is
the 12C + α breakup of the 9.6 MeV-state in 16O that we looking for. The data that went into Figure 17
represents the part of our total data that I believe is normalisable, and there is a total of 1580 observed
breakups. The only other feature of the decay spectrum that I would like to point out is the signal that
rises from around 600 keV and downwards in energy. This is the β-signal and because I placed a software
cut at 500 keV we only see the very few events with large energy deposition. If I had not imposed any
restrictions on the energy, we would see the β-signal as a towering peak extending down to the thresholds
of the data acquisition because, due to the smallness of the branching ratio to the 9.6 MeV-state, we see 105

β-particles for each α breakup. This also explains why a DSSSD with such a small thickness (78 µm) and
with such a high degree of segmentation was chosen for the experiment; if the detection volume had been
much larger the β-particles would have had a change to deposit more energy, and the α-peak would have
been completely buried in the β-signal.

One way to check if my identification of implantations and decays could be to compare the spatial
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Figure 17: A decay spectrum showing 1580 observed breakups of the 9.6 MeV-state. The spectrum is
produced from the DSSSD-signal that went through the high-gain amplifier chain.

distribution of the events across the DSSSD. The implantation distribution is shown in Figure 18a and the

(a) (b)

Figure 18: In (a) we see the implantation pattern on the DSSSD, and in (b) we see the decay pattern. From
the figures it is possible to see that back strips number 33 and 34 had broken connections, but since DSSSDs
are quite delicate devices it is not uncommon to see a broken strip.

decay distribution iis shown in Figure 18b. Although I have not done any fancy statistical analysis to show
that the two figures represent the same distribution, it doesn’t seem very unlikely.

Naïvely one could find the branching ratio by dividing the two numbers we just found, but this would
not be correct because of the several effects that must be considered if we want to normalise the data

19



Correction for pulsed beam

Let us start with the fact that we are only looking for decays during the beam off periods, i.e. only half of
the time. Therefore we need to determine the number of decays during beam on time indirectly. Fortunately
this number can be obtained by multiplying the number of observed decays by a simple factor, the derivation
of which I will briefly sketch in the following: Consider a beam on/off scenario where t0 is the duration
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Figure 19: This plot shows how the decay rate would behave in a beam on/off scenario. The dashed,
vertical lines separate the beam on (implantation) periods from the beam off (decay) periods starting from
the left with beam on. The solid line shows the total decay rate and the dashed line shows the decay rate
of only those ions that were implanted during the first implantation period. The area of the cross-hatched
region is the maximum number of those ions that we are able to observe.

of the beam on period and a is the duration of the entire on/off-cycle in units of t0. Also, let R denote the
implantation rate and λ the decay constant of the implanted ions. In one cycle the number of implanted ions
is then NI = Rt0 and since these must all decay sooner or later, this is also the total number of decays that
must result from the implantation. The decay rate at the end of the implantation period is now R(1 − e−λt0 )
and the ions that remain in the detector decay exponentially with a rate

Rdecay(t) = R(1 − e−λt0 )e−λ(t−t0) = R(eλt0 − 1)e−λt.

The number of observed decays, NO, is the above expression integrated during the following beam off

periods, and we can write

NO = R
(
eλt0 − 1

) {∫ at0

t0
e−λt dt +

∫ 2at0

(a+1)t0
e−λt dt +

∫ 3at0

(2a+1)t0
e−λt dt + · · ·

}
= R

(
eλt0 − 1

) 
[
−

1
λ

e−λt
]at0

t0

+

[
−

1
λ

e−λt
]2at0

(a+1)t0

+

[
−

1
λ

e−λt
]3at0

(2a+1)t0

+ · · ·


=

R
λ

(
eλt0 − 1

){(
e−λt0 + e−(a+1)λt0 + e−(2a+1)λt0 + · · ·

)
−

(
e−aλt0 + e−2aλt0 + e−3aλt0 + · · ·

)}
=

R
λ

(
eλt0 − 1

){
e−λt0

(
1 + e−aλt0 + e−2aλt0 + · · ·

)
− e−aλt0

(
1 + e−aλt0 + e−2aλt0 + · · ·

)}
=

R
λ

(eλt0 − 1)
(
e−λt0 − e−aλt0)(1 + e−aλt0 + e−2aλt0 + · · ·

)
.

We recognise the last paranthesis as a geometric series, and with a, λ and t0 all being positive the series
converges2 and we get

NO =
R
λ

(eλt0 − 1)
e−λt0 − e−aλt0

1 − e−aλt0
. (8)

2Convergence of geometric series:
∑∞

n=0 rn = 1
1−r ; r < 1
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With this result it is possible to calculate the ratio between the observed number of decays and the actual
number of decays:

NO

NI
=

1
λt0

(eλt0 − 1)
e−λt0 − e−aλt0

1 − e−aλt0
. (9)

If we take the parameters that are relevant for our experiment, i.e. implantation of 16N for 15 s and a decay
period of 15 s, we get a detection “efficiency” of 0.427.

Dead time

When the data acquisition (DAQ) is triggered by a signal, it needs some time to let the ADCs convert the
signal and transfer the values from the ADCs to the storage device (a hard drive). During this process the
DAQ will not allow itself to be triggered by another signal, and it appears to be “dead”, which explains
the term dead time. Any physical event happening durign the dead time will not be recorded, so we need
to know which fraction of the time is dead time to be able to calculate the number of physical events
from the number of observed events. One way to get this number is to look at the ratio of the accepted
number of triggers to the total number of triggers in some time interval, and in that way you extract the
mean detection efficiency during the time interval. When working with this type of analysis I tried to
count the number of triggers occuring between the accepted events, and a strange pattern occured, see
Figure 20. Normally, for a situation where events are occuring at a certain rate, you would expect this

(a) (b)

Figure 20: In these plots we see histograms of how many triggers happened between accepted events in (a)
a typical pre-Pentecost run and (b) in a typical post-Pentecost run. For events in the bin labelled 1 there
were no lost triggers between the preceding event and the current event.

number to follow a Poisson distribution, like the histogram seen in Figure 20a. For all post-Pentecost runs
the histograms look more like Figure 20b, which is certainly not Poissonian. The explanation could be
double triggering, a phenomenon that can for instance be caused by signal reflections in the cables, due to
poor impedance matching, or by ringing of the trigger pulse. A Monte Carlo simulation of a generic trigger
looking at a Poisson process and having a certain probability of double triggering reproduces the histogram
in Figure 20b nicely, and I am convinced that double triggering has occured during the entire second week
of the experiment3. Consequently we can not normalise that data by just counting the accepted vs. total
triggers, so we need some other method.

Another approach to dead time correction is to try and characterise the dead time of the DAQ in detail
by measuring how long it is, i.e. for how many µs the DAQ is dead, and also to figure out if the dead time is
extending or non-extending, and then calculate the actual trigger rate from the rate of accepted triggers[33].
This led me to try and produce histograms of the time interval between events, at first only one-dimensional
histograms, but since they didn’t really follow any of the expected time interval distributions, so this path
was unfruitful. The next idea to test was whether the time interval between any two events showed a

3A logbook entry also shows that some of the scaler inputs were changed at the exact time when the double triggering appears.
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systematic relation to one of the other observables in our data stream, for instance the “size” of the first
of the two events, i.e. how many channels show a signal. The result is shown for the beam on time in

(a) (b)

Figure 21: The histogram in (a) shows the relation between the number of channels that need to be read,
converted and stored in a given event, and the time we have to wait before the next event is accepted. The
histogram in (b) show the clear periodicity of the strange events in (a) with waiting time larger than 300 µs.

Figure 21a and there are two things about this histogram that should be noted: Firstly, there is clearly a
linear relation between the number of read channels and the time we must wait for the next event, and
secondly, there is a collection of some “strange” events where the waiting time is > 300 µs, which is
significantly longer than for the majority of the events. It was suggested to me that this behaviour could be
caused by readout of the ADC buffer, where data from multiple events are stored temporarily before being
read out all at once. Even though I knew that our DAQ does not exploit the ADC buffers this suggestion
made me look for some periodicity of the strange events with respect to the accumulated amount of data.
I didn’t see any clear evidence of periodicity until I tried to look for periodicity in time, see Figure 21b,
which shows that the strange events occur with a very well defined period of 1 ms. Together with some
other evidence this led me to suspect that there had been an intensity modulation of the beam with the beam
almost disappearing for ∼ 400 µs every 1 ms.

At first I communicated with our contact person at KVI, Hans Wilschut, about the issue. Being a pro-
fessor in experimental physics at the facility for twenty years he had never heard of such beam modulations,
so naturally my perplexity was profuse. However, after direct communication with the cyclotron operators
I learned that the beam hed indeed been pulsed with a frequency of 1 kHz, the so-called duty cycle, and that
adjusting how large a fraction of each ms the beam was one way of manipulating the mean beam current.
When the data for Figure 21a was taken the duty cycle had been 72 %, meaning that the beam disappeared
for 280 µs every 1 ms, which fits quite well with my initial guess. In fact this is a problem for the dead time
correction because we now have different kinds of events occurring in the beam on period with different
detection efficiencies. Implantation events of course only happen when the beam is actually on and the
trigger rate is very high, but in between the duty-cycle pulses we have only decay- and background-events,
triggered by the DSSSD or the scintillators, see Figure 22. The consequence is that we can no longer find
the detection efficiency for implantations by simply counting the total triggers and accepted triggers for
each 15 s pulse.

Let us estimate the effect of the duty-cycle modulation on the normalisation of implantation events. In
the following I use the quantities defined in the caption of Figure 22, and I assume that the background can
be described by a constant rate. Since the background also includes decay-events from 16N, which has a
half-life of 7.12 s, this assumption is of course not quite true, but for a first order estimate we should be fine.
Instead of using n/N as our estimate for the detection efficiency for implantations we must get rid of the
events that occurs between the short pulses, i.e. we can calculate the detection efficiency for implantations
with the expression (n − nb)/(N − Nb). Based on the assumption of a constant background and the fact
that the beam on and beam off periods are of equal length we get nb = noff(1 − D) and Nb = Noff(1 − D).
For a specific, but representative, beam on/off cycle from 15th of May we have n = 31925, N = 43924,
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Figure 22: I have sketched how the trigger rate behaves in a scenario where the beam is pulsed on both
very long (15 s) and very short (1 ms) timescales. N and n are the number of total triggers and accepted
triggers, respectively, occuring in the 15 s beam on period, while Noff and noff denote the same quantities
for the following 15 s beam off period. Nb and nb are the total and accepted triggers occurring between the
short pulses, respresented by the cross-hatched areas in the figure, and D is the duty-cycle.

noff = 5923, Noff = 5996 and D = 0.25, and we can calculate

n
N

= 0.727 and
n − noff(1 − D)
N − Noff(1 − D)

= 0.697.

From these results we can conclude that the naïve estimate of the detection efficiency is off by approximately
3 %, and since the goal of the experiment was to determine a branching ratio with 2 % accuracy it is
necessary to take the beam modulation into account.

Charge sharing

As shown on Figure 12 there are insulating layers of SiO2 between the strips on the surface of the DSSSD.
If a charged particle enters the DSSSD through this interstrip region the generated charge signal is shared
between the two adjacent strips, but not necessarily with full charge recovery or sometimes even with a
negative polarity signal induced in one of the strips[34]. Our detector has strips that are 300 µm wide with
an interstrip region of 35 µm, so from pure geometric considerations around 20 % of the implantations must
hit the DSSSD in the interstrip regions, and this is supported by the data. My preliminary analysis shows
that full charge recovery is possible for the vast majority of the implantations, but there are also events
where some charge is lost, and this will disturb the paricle idenfication. Also, it is not clear how the charge
sharing behaves when we are looking at decays of the implanted ions, since in a decay none of the electron-
hole pairs are generated near the surface. If the probability of charge recovery is equal for implantations
and decays it would not disturb analysis, bot if there is a difference we would get a biased result for the
branching ratio.

To get a profound understanding of the charge sharing in our DSSSD would require either a very good
theoretical model or, even better, sending it to a raster scan facility where a µm-beam can be scanned with
high precision across the surface of the DSSSD while the signals are monitored. In conclusion, I think
some attention still needs to be directed towards this issue.

5.5 Summary and preliminary results

The fact that we started running with continuous beam for one and a half day before changing to beam on/off

combined with the appearance of double triggering means that it will probably only be possible to normalise
the data produced between the 15th and the 18th of May, i.e. a little less than three days out of a total of
six days of 16N beam time. I have produced the decay spectrum in Figure 17 with the normalisable data,
and in total I have found 1580 α-breakups in my analysis. Since the statistical uncertainty is 1/

√
N we get

2.5 % uncertainty from our limited statistics, which is already larger than the 2 % accuracy promised in the
proposal. On top of this comes systematic effects, of which I have already mentioned dead time and charge
sharing. The rather high beam currents means that during beam on our trigger rate was correspondingly
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high, resulting in the DAQ only recording approximately two thirds of the events, which in turn means that
the dead time correction must be done very carefully. This statement is supported by the fact that even a
seemingly unimportant intensity modulation of the beam can result in an error on the branching ratio of a
few percent. Using the ∆E − E-method I have identified 120 × 106 16N-implantations for the same data set,
and performing all the various corrections I end up with a value for the branching ratio of 1.66 × 10−5.

In principle I would not ascribe an uncertainty much larger then 5 % to this number, since the corrections
described in the report have been done with considerable care. However, the value is clearly incompatible
with the tabulated value of 1.13(8) × 10−5, so I suspect that there must still be some major effect which
have not been taken into account, or simply a trivial mistake in my analysis. It should be noted, though,
that an independent preliminary analysis, performed during the experiment by Oliver Kirsebom, identified
numbers of implantations and decays leading to a very similar, high, value for the branching ratio.

6 The JYFL-experiment

The JYFL-experiment (officially I161) was basically a repetition of an earlier experiment, reported in [35,
36], but with a planned improvement in statistics by at least an order of magnitude. This improvement was
provided by an upgrade of the facility and also by the use of a setup with many DSSSDs in close geometry,
thus increasing the solid angle coverage of the target. The experiment was done in collaboration with people
from the University of York and CSIC in Madrid, with Christian Diget from York being the spokesperson.

JYFL is an acronym for the accelerator laboratory of the University of Jyväskylä, which houses two
cyclotrons and the IGISOL facility (another acronym meaning Ion-Guide Isotope Separator On-Line), and
the latest upgrade, IGISOL-4, is described in [37]. The IGISOL technique is reviewed in [38], and I have
only sketched the basic principles in Figure 23. A 12C-target was bombarded with a beam of 30 MeV
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Figure 23: The principle behind IGISOL. The beam from the cyclotron hits the target and produces the
radioactive isotopes. In the reaction some ions recoil out of the target and into a flow of He that sweeps
the ions into the sextupole RF ion-guide. The guide separates the isotope of interest and transmits it to the
extraction electrode, and after the extraction the isotope-beam is moderately accelerated and directed to
the experiment.

protons from the cyclotron, producing 12N through the 12C(p, n)12N-reaction. The 12N-ions were extracted
as a low-energy radioactive beam via the IGISOL and directed to our experiment, where the ions were
implanted in a thin (20 µg cm−2) carbon foil. The idea was then to detect the products from the decay,
namely the β-particle from the β-decay to 12C and the three α-particles from the following breakup of the
populated excited states in 12C, with full kinematic information.

The experimental setup is shown and described in Figure 24. It consisted of nine charged particle
detectors in a compact configuration, bringing the solid angle coverage of the target up to around 50 %.
The setup allows us to detect all four particles from the β-delayed α-breakup for a significant fraction of the
decays, and the use of position-sensitive detectors gives us full information on both energy and momentum
of the detected particles. With all the kinematical information it is possible to characterise the excited states
in 12C that are breaking up, for instance using the Dalitz plot-technique to determine, or at least restrict, the
spin-parity of the states that are breaking up.

The experiment was scheduled with three and a half weeks of beam time from June 9th to July 2nd
2014, where the first two weeks would be with 12N-beam, then a few days of 20Na-beam for calibration and
the last week we would have a 12B-beam (which also produces excited 12C-nuclei through β-decay, only
from the other side of the valley of stability). For all but the 20Na-calibration we would run with beam from
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Figure 24: The detector setup used for the JYFL-experiment. The beam enters the chamber through the
small hole seen in the top of the image and the carbon foil was mounted in the middle of the detector “cube”
such that the foil was orthogonal to the direction of the beam. The innermost detectors were thin (∼ 80 µm)
DSSSDs for detection of α-particles and the outer detectors were thicker (∼ 1000 µm) Si-detectors, all
but one unsegmented, meant for β-particle detection. Outside the chamber, approximately 15 cm from the
target, we had a Ge-detector for detection of the characteristic γ-rays from 12C.

a new cyclotron, the MMC-30 cyclotron, and in the early hours of June 10th the beam tuning was finished
and we had identified 12N-decays in our experiment. Alas, four hours later the cyclotron broke down,
and the damage was irreparable four the entire duration of the experiment. Eventually some free beam
time appeared on the older cyclotron, the K130, and we had 12N-beam from Wednesday 18th till Thursday
26th of June. From preliminary data analysis it seems that the 12N-yield was a little higher than expected,
so in the end we have around a factor of 20 more observed 3α-breakups than in the previous experiment
from 2004. In Figure 25 I have shown a small part of the data with 3α-events, where the clear diagonal
in the upper plot shows that many of the decays proceed through the 8Be ground state, where energy and
momentum conservation gives 2/3 of the available energy to one α-particle and the remaining 1/3 is shared
between the two other α-particles. The three “blobs” at 5.34 MeV total energy comes from the breakup of
the 12.7 MeV-state, which has unnatural spin-parity 1+, and it is clear that the breakup pattern is different
from the surrounding natural spin-parity strength. The bottom part of Figure 25 is simply a spectrum of the
total energy of the three α-particles.

For all breakups that go through the 8Be ground state we have essentially two two-body decays, also
called a sequential decay, and the energy and momentum of the α-particles are determined by conservation
laws and thus does not tell us anything about the excited states in 12C. Since we are mainly interested in
distinguishing the different contributions to the spectrum we want to use the spin-parity as a handle on the
states, and therefore we need a way of determining the spin-parity of the decaying state. As can be seen
on Figure 25 there is also some decays that are not on the diagonal, and these decays can not have gone
through the 8Be ground state, but must instead be direct breakups or, if one insists on calling it a sequential
decay, have gone through the first excited 2+-state in 8Be. For these breakups there is still information on
the spin-parity of the decaying state hidden in the kinematics of the three α-particles and the β-particle,
and it is the plan that I should try to extract this information and hopefully help shedding more light on the
broad states at low excitation energy in 12C.

7 AUSAlib

In a research group that takes part in many experiments with very different setups it is not possible to have
one single analysis software tool to analyse all experiments. This has traditionally meant that each student
has spent a lot of time writing his/her own analysis programs or, alternatively, tried learning how to use the
programs written by former students, sometimes written in ancient and obscure languages. Even though
each analysis is unique, there are many tasks that always need to be done, like conversion of data between
different formats, detector calibration, energy loss calculations and simulations, front-back matching of
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Figure 25: A plot with approximately two days of beam time worth of data from the JYFL-experiment,
containing 25000 events with observed 3α-breakup. In the top is shown the energy of the single α-particles
plotted against the total energy of the three detected α-particles, and in the bottom is shown the total energy
spectrum.

DSSSDs and so on. In other words, it should be possible to at least have a kind of software “toolbox” to use
for solving these small and trivial tasks, and instead get more time for the more interesting physics analysis.
I have spent some effort figuring out ways of creating such a software toolbox, and in the following I
describe the basic ideas and principles behind AUSAlib4.

The ROOT analysis framework[29] would be a natural starting point for any modern analysis of data
from nuclear or particle physics experiments and, being an object-oriented framework, ROOT is already
based on the idea of small classes that are able to solve isolated and general tasks. The first requirement
of our toolbox is therefore that it should be easy to integrate with ROOT, and one way of achieving this is
to define and implement a collection of classes which are then added to ROOT’s dictionary. In that way it
should be possible to use the AUSAlib classes in interpreted ROOT scripts, in compiled codes employing
the standard ROOT classes and in the interactive ROOT shell. Also I decided to implement my classes as
child classes of one of the most generic ROOT classes, the TNamed-class, and in this way inheriting a lot of
functionality, for instance regarding the capability to store the objects in ROOT-files.

The next decision to make is how to organise the toolbox, and how far it is possible to make the analysis
generic and experiment-independent. I thought it natural to strictly tie some of the AUSAlib classes to real,
physical objects and try to let the capabilities of each class reflect the properties of the physical objects
they represent. This has resulted in a collection of “simple” classes, by which I mean classes with very few
advanced methods but instead the capability of holding information on the physical objects, an approach
which is actually more in line with the old C struct. Separate from the struct-like classes are the more
active “worker”-classes, which do not contain information that needs to be persistent, but instead have the
capability to perform advanced tasks. An overview of the entire family is shown in Table 4.

My view of the data flow is sketched in Figure 26, and I believe that all the shown steps can be done
by programs that are not specific for the experiment. To do this it is necessary to identify which things are
common for all experiments and which are specific. We shall only focus on the things that are common, for
instance

4AUSA is, if I remember correctly, an acronym for Aarhus University SubAtomic.
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Table 4: An overview of the current members of the AUSAlib

struct-like classes Worker-classes

AUSADetector AUSACalibrator
AUSADsssd AUSAMatcher
AUSASetup AUSABuilder
AUSASource
AUSABeam
AUSAEvent
AUSAParticle

AUSASetup

AUSADsssd1

AUSADsssd2

b
b
b

Calibration Data

AUSASource

AUSACalibrator

Calibrated AUSASetup

AUSABuilder

Experimental Data

TTree

AUSAEvent1

AUSAParticle1

AUSAParticle2

AUSAEvent2

AUSAParticle1

AUSAParticle2

b
b
b

Figure 26: The data flow of the generic processing. When the setup and source are specified and fed to
the calibrator together with the calibration data, the calibrator sorts the data, calculates the calibration
parameters and returns the setup with all calibration parameters now stored in the setup object. When the
builder is supplied with the calibrated setup and the raw experimental data it performs the event-building,
identifying particles and calculating their energy and momentum.

1. We always have an experimental setup. The setup usually consists of different detectors, DSSSDs,
scintillators and so on, placed in a fixed geometry.

2. The detectors are often calibrated with a radioactive source, so we need a class that can search a
spectrum for peaks and calculate the calibration parameters.

3. Many times we are interested in the type of detected particle, its energy, its momentum and so on,
and not so much in which ADC-channel gave the signal from the particle.

The first point on the list means that we can define a setup-class as a container for detectors, and that we
can define a generic detector-class containing information on the position, direction and size of the detector.
Sometimes we use more specialised detectors, like DSSSDs, but we can easily implement a DSSSD-class as
a child class to the detector-class, and in this way we only need to implement functionality that is specific
for the DSSSD. The fact that a DSSSD is just a special kind of detector is thus directly reflected in the
class-hierarchy. The second point suggests that there should be a worker-class, a calibrator, that can take
a setup-object, a source-object containing information on the peak energies of the used calibration source,
and the actual calibration data and return the setup-object in a fully calibrated state. The last point made me
think that it would perhaps be convenient to organise the data itself in a more physically motivated structure,
and I introduced the event- and particle-classes. The raw data is then interpreted by the event-builder class
which converts the ADC-signals to energy and identifies the different particles that were detected in each
event. For every physical particle it creates a particle-object and stores it in the event-object, and in the end
the result is a ROOT-tree holding all the processed data in these structures.

Storing the data in this way means that the experiment-specific work should be reduced, and that it is not
necessary for the physicist to waste a lot of time on “trivial” work like calibration, calculating angles and
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momenta and so on. Since the classes are added to ROOT’s dictionary it is also possible to use the event-
and particle-methods in the TTree::Draw()-function in the interactive ROOT-shell, and AUSAlib already
showed during the JYFL-experiment that it is possible to quickly extract pretty complex information from
the data, which is very important during an experiment where you have limited beam time and need to
make sure that it is the right beam component that is transmitted to the target chamber, and that it is hitting
the target. An interesting future project could be to make Monte Carlo simulation programs that uses
the AUSAlib-classes, and in that way be able to simulate the behaviour of a setup in a given experiment,
including energy losses, coverage etc.

8 Summary

This report describes the work I have done during the first part of my Ph.D. studies. The scrupulous analysis
of the KVI-experiment has allowed me to prune the data such that the final value for the branching ratio will
be more accurate. Apart from gaining experience from the experimental work I have learned about the most
common analysis methods used in nuclear physics and on this basis I have tried to put the analysis work
on a general formula, reflected by the class-structure of AUSAlib. This object-oriented project has been a
good exercise in producing clear and logical software that will hopefully also turn out to be user-friendly
enough for other people to use, and I am looking forward to directing more attention to AUSAlib. Last but
not least the data from the JYFL-experiment looks very promising, and a major part of my remaining Ph.D.
studies will be based on this experiment.

Bibliography

[1] C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988).

[2] F. Ajzenberg-Selove, Nuclear Physics A 506, 1 (1990), ISSN 0375-9474, URL http://www.
sciencedirect.com/science/article/pii/037594749090271M.

[3] F. Hoyle, D. Dunbar, W. Wenzel, and W. Whaling, Phys. Rev. 92, 1095c (1953).

[4] D. N. F. Dunbar, R. E. Pixley, W. A. Wenzel, and W. Whaling, Phys. Rev. 92, 649 (1953), URL
http://link.aps.org/doi/10.1103/PhysRev.92.649.

[5] F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24, 321 (1952), URL http://link.aps.org/doi/
10.1103/RevModPhys.24.321.

[6] H. Kragh, Archive for History of Exact Sciences 64, 721 (2010), ISSN 0003-9519, URL http:
//dx.doi.org/10.1007/s00407-010-0068-8.

[7] D. Tilley, H. Weller, and C. Cheves, Nuclear Physics A 564, 1 (1993), ISSN 0375-9474, URL http:
//www.sciencedirect.com/science/article/pii/0375947493900737.

[8] H. Morinaga, Phys. Rev. 101, 254 (1956), URL http://link.aps.org/doi/10.1103/PhysRev.
101.254.

[9] C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 107, 508 (1957), URL
http://link.aps.org/doi/10.1103/PhysRev.107.508.

[10] C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 111, 567 (1958), URL
http://link.aps.org/doi/10.1103/PhysRev.111.567.

[11] H. Morinaga, Physics Letters 21, 78 (1966), ISSN 0031-9163, URL http://www.sciencedirect.
com/science/article/pii/0031916366913497.

[12] F. Barker and P. Treacy, Nuclear Physics 38, 33 (1962), ISSN 0029-5582, URL http://www.
sciencedirect.com/science/article/pii/0029558262910143.

[13] D. H. Wilkinson, D. E. Alburger, A. Gallmann, and P. F. Donovan, Phys. Rev. 130, 1953 (1963), URL
http://link.aps.org/doi/10.1103/PhysRev.130.1953.

28

http://www.sciencedirect.com/science/article/pii/037594749090271M
http://www.sciencedirect.com/science/article/pii/037594749090271M
http://link.aps.org/doi/10.1103/PhysRev.92.649
http://link.aps.org/doi/10.1103/RevModPhys.24.321
http://link.aps.org/doi/10.1103/RevModPhys.24.321
http://dx.doi.org/10.1007/s00407-010-0068-8
http://dx.doi.org/10.1007/s00407-010-0068-8
http://www.sciencedirect.com/science/article/pii/0375947493900737
http://www.sciencedirect.com/science/article/pii/0375947493900737
http://link.aps.org/doi/10.1103/PhysRev.101.254
http://link.aps.org/doi/10.1103/PhysRev.101.254
http://link.aps.org/doi/10.1103/PhysRev.107.508
http://link.aps.org/doi/10.1103/PhysRev.111.567
http://www.sciencedirect.com/science/article/pii/0031916366913497
http://www.sciencedirect.com/science/article/pii/0031916366913497
http://www.sciencedirect.com/science/article/pii/0029558262910143
http://www.sciencedirect.com/science/article/pii/0029558262910143
http://link.aps.org/doi/10.1103/PhysRev.130.1953


[14] R. Bijker and F. Iachello, Phys. Rev. C 61, 067305 (2000), URL http://link.aps.org/doi/10.
1103/PhysRevC.61.067305.

[15] D. J. Marín-Lámbarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D. J. Parker, and C. Wheldon, Phys.
Rev. Lett. 113, 012502 (2014), URL http://link.aps.org/doi/10.1103/PhysRevLett.113.
012502.

[16] S. Hyldegaard, M. Alcorta, B. Bastin, M. J. G. Borge, R. Boutami, S. Brandenburg, J. Büscher,
P. Dendooven, C. A. Diget, P. Van Duppen, et al., Phys. Rev. C 81, 024303 (2010), URL http:
//link.aps.org/doi/10.1103/PhysRevC.81.024303.

[17] M. Freer, M. Itoh, T. Kawabata, H. Fujita, H. Akimune, Z. Buthelezi, J. Carter, R. W. Fearick, S. V.
Förtsch, M. Fujiwara, et al., Phys. Rev. C 86, 034320 (2012), URL http://link.aps.org/doi/
10.1103/PhysRevC.86.034320.

[18] W. R. Zimmerman, M. W. Ahmed, B. Bromberger, S. C. Stave, A. Breskin, V. Dangendorf, T. Delbar,
M. Gai, S. S. Henshaw, J. M. Mueller, et al., Phys. Rev. Lett. 110, 152502 (2013), URL http:
//link.aps.org/doi/10.1103/PhysRevLett.110.152502.

[19] W. Zimmerman, Ph.D. thesis (2014).

[20] L. Buchmann and C. Barnes, Nuclear Physics A 777, 254 (2006), ISSN 0375-9474, special Is-
sue on Nuclear Astrophysics, URL http://www.sciencedirect.com/science/article/pii/
S0375947405000084.

[21] R. E. Azuma, L. Buchmann, F. C. Barker, C. A. Barnes, J. M. D’Auria, M. Dombsky, U. Giesen, K. P.
Jackson, J. D. King, R. G. Korteling, et al., Phys. Rev. C 50, 1194 (1994), URL http://link.aps.
org/doi/10.1103/PhysRevC.50.1194.

[22] L. Buchmann, G. Ruprecht, and C. Ruiz, Phys. Rev. C 80, 045803 (2009), URL http://link.aps.
org/doi/10.1103/PhysRevC.80.045803.

[23] M. Gai, Phys. Rev. C 88, 062801 (2013), URL http://link.aps.org/doi/10.1103/PhysRevC.
88.062801.

[24] K. Neubeck, H. Schober, and H. Wäffler, Phys. Rev. C 10, 320 (1974), URL http://link.aps.
org/doi/10.1103/PhysRevC.10.320.

[25] G. Berg, O. Dermois, U. Dammalapati, P. Dendooven, M. Harakeh, K. Jungmann, C. Onder-
water, A. Rogachevskiy, M. Sohani, E. Traykov, et al., Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 560,
169 (2006), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/
S0168900205026276.

[26] P. Sellin, P. Woods, D. Branford, T. Davinson, N. Davis, D. Ireland, K. Livingston, R. Page, A. Shotter,
S. Hofmann, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 311, 217 (1992), ISSN 0168-9002, URL http:
//www.sciencedirect.com/science/article/pii/0168900292908674.

[27] L. Hubbeling, M. Turala, P. Weilhammer, R. Brenner, I. Hietanen, J. Lindgren, T. Tuuva, W. Dulinski,
D. Husson, A. Lounis, et al., Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 310, 197 (1991), ISSN 0168-9002,
URL http://www.sciencedirect.com/science/article/pii/016890029191025Q.

[28] A. Rytz, Atomic Data and Nuclear Data Tables 47, 205 (1991), ISSN 0092-640X, URL http:
//www.sciencedirect.com/science/article/pii/0092640X9190002L.

[29] Root data analysis framework, CERN webpage, URL http://root.cern.ch/drupal/.

[30] Astar: Stopping power and range tables for alpha particles, NIST webpage, URL http://physics.
nist.gov/PhysRefData/Star/Text/ASTAR.html.

29

http://link.aps.org/doi/10.1103/PhysRevC.61.067305
http://link.aps.org/doi/10.1103/PhysRevC.61.067305
http://link.aps.org/doi/10.1103/PhysRevLett.113.012502
http://link.aps.org/doi/10.1103/PhysRevLett.113.012502
http://link.aps.org/doi/10.1103/PhysRevC.81.024303
http://link.aps.org/doi/10.1103/PhysRevC.81.024303
http://link.aps.org/doi/10.1103/PhysRevC.86.034320
http://link.aps.org/doi/10.1103/PhysRevC.86.034320
http://link.aps.org/doi/10.1103/PhysRevLett.110.152502
http://link.aps.org/doi/10.1103/PhysRevLett.110.152502
http://www.sciencedirect.com/science/article/pii/S0375947405000084
http://www.sciencedirect.com/science/article/pii/S0375947405000084
http://link.aps.org/doi/10.1103/PhysRevC.50.1194
http://link.aps.org/doi/10.1103/PhysRevC.50.1194
http://link.aps.org/doi/10.1103/PhysRevC.80.045803
http://link.aps.org/doi/10.1103/PhysRevC.80.045803
http://link.aps.org/doi/10.1103/PhysRevC.88.062801
http://link.aps.org/doi/10.1103/PhysRevC.88.062801
http://link.aps.org/doi/10.1103/PhysRevC.10.320
http://link.aps.org/doi/10.1103/PhysRevC.10.320
http://www.sciencedirect.com/science/article/pii/S0168900205026276
http://www.sciencedirect.com/science/article/pii/S0168900205026276
http://www.sciencedirect.com/science/article/pii/0168900292908674
http://www.sciencedirect.com/science/article/pii/0168900292908674
http://www.sciencedirect.com/science/article/pii/016890029191025Q
http://www.sciencedirect.com/science/article/pii/0092640X9190002L
http://www.sciencedirect.com/science/article/pii/0092640X9190002L
http://root.cern.ch/drupal/
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html


[31] O. Kirsebom, H. Fynbo, K. Riisager, R. Raabe, and T. Roger, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 758,
57 (2014), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/
S016890021400504X.

[32] D. Tilley, C. Cheves, J. Kelley, S. Raman, and H. Weller, Nuclear Physics A 636, 249
(1998), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/
S0375947498001298.

[33] J. W. Müller, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 301, 543 (1991), ISSN 0168-9002, URL http:
//www.sciencedirect.com/science/article/pii/016890029190021H.

[34] J. Yorkston, A. Shotter, D. Syme, and G. Huxtable, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262,
353 (1987), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/
0168900287908734.

[35] H. O. U. Fynbo, Y. Prezado, U. C. Bergmann, M. J. G. Borge, P. Dendooven, W. X. Huang, J. Huikari,
H. Jeppesen, P. Jones, B. Jonson, et al., Phys. Rev. Lett. 91, 082502 (2003), URL http://link.
aps.org/doi/10.1103/PhysRevLett.91.082502.

[36] H. O. U. Fynbo, C. A. Diget, U. C. Bergmann, M. J. G. Borge, J. Cederkall, P. Dendooven, L. M.
Fraile, S. Franchoo, V. N. Fedosseev, B. R. Fulton, et al., Nature 433, 136 (2005), URL http://dx.
doi.org/10.1038/nature03219.

[37] I. Moore, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, V. Kolhinen, J. Koponen,
H. Penttilä, I. Pohjalainen, et al., Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms 317, Part B, 208 (2013), ISSN 0168-583X, {XVIth} In-
ternational Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Appli-
cations, December 2–7, 2012 at Matsue, Japan, URL http://www.sciencedirect.com/science/
article/pii/S0168583X13007143.

[38] P. Dendooven, Nuclear Instruments and Methods in Physics Research Section B: Beam Interac-
tions with Materials and Atoms 126, 182 (1997), ISSN 0168-583X, international Conference on
Electromagnetic Isotope Separators and Techniques Related to Their Applications, URL http:
//www.sciencedirect.com/science/article/pii/S0168583X96010105.

30

http://www.sciencedirect.com/science/article/pii/S016890021400504X
http://www.sciencedirect.com/science/article/pii/S016890021400504X
http://www.sciencedirect.com/science/article/pii/S0375947498001298
http://www.sciencedirect.com/science/article/pii/S0375947498001298
http://www.sciencedirect.com/science/article/pii/016890029190021H
http://www.sciencedirect.com/science/article/pii/016890029190021H
http://www.sciencedirect.com/science/article/pii/0168900287908734
http://www.sciencedirect.com/science/article/pii/0168900287908734
http://link.aps.org/doi/10.1103/PhysRevLett.91.082502
http://link.aps.org/doi/10.1103/PhysRevLett.91.082502
http://dx.doi.org/10.1038/nature03219
http://dx.doi.org/10.1038/nature03219
http://www.sciencedirect.com/science/article/pii/S0168583X13007143
http://www.sciencedirect.com/science/article/pii/S0168583X13007143
http://www.sciencedirect.com/science/article/pii/S0168583X96010105
http://www.sciencedirect.com/science/article/pii/S0168583X96010105

	Introduction
	Thermonuclear reactions
	He-burning in stars
	The nuclear physics cases
	The KVI-experiment
	The JYFL-experiment
	AUSAlib
	Summary
	Bibliography

