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Résumé (English)

The experimental study of exotic nuclei plays an important part in the under-
standing of nuclear structure. This thesis describes an experimental study of
10,11,12Be, three beryllium isotopes situated on the neutron rich side of the nu-
clear chart. The three isotopes were studied in direct reactions (scattering and
transfer) using a low energy 11Be beam incident on a deuteron target. The
aim of the experiment was to study the breaking of the N=8 magic number
occurring in 12Be. The breaking is caused by the mixing of the 0p1/2 and the
1s1/20d5/2 shells. The mixing is also known to occur in 11Be, but the strength of
the mixing in 12Be is still to be determined. The mixing can be determined by
deriving the spectroscopic factors from direct reactions. The thesis will start
with a description of the beryllium isotopes and an introduction to direct re-
actions including the definition of the spectroscopic factors.

The experimental data analysed in this thesis stem from an experiment
performed in September 2010 at the radioactive ion beam facility, ISOLDE,
situated at CERN, Switzerland. The experiment was the third and last exper-
iment in a series of 11Be+d experiments performed at ISOLDE. The first two
experiments were performed in 2005 and 2009. The statistics in the first two
experiments are significant lower than the statistic of the 2010 experiment and
the first two experiments acted as preparation for the final experiment. The
analysis of the two first experiments were performed from august 2008 to au-
gust 2010 and corresponds to the work done in the first two years of my PhD.
The analysis formed the basis of my Part-A exam and will not be described in
this thesis (the results can be found in 3 and 4 in the list of publications).

The analysis, described in this thesis, can be divided into three parts the
initial part, the main part, and a more detailed analysis of the data. Informa-
tion regarding the experimental setup is determined in the initial part. This
part contains calibration of the detectors and determining their individual po-
sitions, but also a calculation of the beam structure. The differential cross sec-
tions and spectroscopic factors are determined in the main part of the analysis.
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The last part of the analysis shows the strength of the setup by providing extra
information about the three isotopes through a more detailed analysis.
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Resumé (Dansk)

Eksperimentelle undersøgelser af eksotiske kerner er af stor betydning for
forståelsen af kernestrukturerne. Denne afhandling beskriver en eksperimentel
undersøgelse af de tre kerner 10,11,12Be på den neutronrige side af kernekortet.
De tre kerner er undersøgt ved hjælp af to slags direkte reaktioner - spred-
ning og transfer. Reaktionerne er udført med et lavenergi-11Be-beam på et
deuteron-target. Målet med eksperimentet var at studere nedbrydningen af
det magiske tal N=8 i 12Be. Nedbrydningen opstår, fordi skallerne s1/20d5/2

og 0p1/2 begynder at overlappe hinanden i 12Be. Dette overlap er også set i
11Be. Hvor meget, de to skaller overlapper, er dog endnu ikke blevet bestemt.

Denne afhandling begynder med en introduktion af beryllium isotoperne
og en beskrivelse af direkte reaktioner, inklusiv definitionen af spektroskopiske
faktorer. De spektroskopiske faktorer, som bestemmes fra direkte reaktioner,
giver et indirekte mål for, hvor stor overlappet mellem de to skaller er..

De eksperimentelle data, der er analyseret og beskrevet i denne afhan-
dling, stammer fra et eksperiment udført i september måned i 2010. Forsøget
blev udført på den radioaktive-ionbeam-facillitet ISOLDE, som er en del af
CERN, Schweiz. Dette eksperiment var det tredie og sidste af en række eksper-
imenter med 11Be+d udført på ISOLDE. De to første eksperimenter blev ud-
ført i 2005 og 2009. Statistikken fra disse eksperimenter er væsentlig min-
dre end statistikken opnået i eksperimentet fra 2010. Man kan sige, at de to
første eksperimentet er blevet brugt som forberedelse til sidste eksperiment.
De to første forsøgs data er blevet analyseret i de første år af min PhD fra 2008
til 2010. Analysen er blevet beskrevet i min Del A-rapport og vil ikke blive
beskrevet her (resultaterne fra eksperimenterne kan findes i 3 og 4 i listen
over mine publikationer).

Analysen af det tredje forsøgs data er i denne afhandling delt op i tre dele;
en indledende del, en hoveddel og en del, der indeholder mere detaljerede
analyser. Den første del indeholder bestemmelsen af den eksperimentelle op-
stilling. Heri indgår både kalibrering af detektorerne, bestemmelse af deres
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placering i forhold til target samt en bestemmelse af strukturen af beamet. De
differentielle tværsnit og de spektroskopiske faktorer bliver bestemt og kom-
menteret i hoveddelen. Den sidste del af analysen viser, hvordan man kan
udvinde ekstra information af kernerne ved hjælp af en mere detaljeret anal-
yse.
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CHAPTER 1

Introduction

This chapter will give a short introduction to the field of fundamental nuclear physics,

starting with the discovery of the nucleus a hundred years ago. The most important

parts of the field, for this thesis, will be described.

1.1 Hundred years of nuclear physics

2011 marked the hundredth year for the discovery of the nucleus by E. Ruther-
ford. During these hundred years a lot has happened in the field of physics

Figure 1.1: A picture of sir Ernest Ruther-
ford in his laboratory.

including quantum mechanics and
Bohr’s atom model that leads to
a description of the electron orbits
around the nucleus. The build-
ing blocks of the nucleus (nucleons)
have also been identified as the pro-
ton (Z) and the neutron (N), with
the discovery of the latter in 1932
by J. Chadwick. Later the discov-
ery of quarks opened up for an un-
derstanding of the deeper structures
of the nucleons. Today we have the
standard model, for which indica-
tions of the final piece (the Higgs
boson) have been seen at the LHC
within the last year [Aad12, Cha12].

The building blocks of the nucleus have been known for 80 years now, but
the structure of nuclei is too complex to be calculated with QCD, even today.
One of the major challenges arise from the large variation in the number of

1



2 Chapter 1. Introduction

nucleons from one to more than two hundred. Thus neither ab initio nor many
body calculations can be used to describe all nuclei. Ab initio calculations are
limited by todays computer power, hence only the lightest and simplest nuclei
and reactions can be described using ab initio calculations. The limit today is
around A = 16. Simplifications and generalisations have been used to go
higher in mass, and various theories have been developed.

The theories are challenged by the constant discovery and production of
more and more exotic nuclei. Hundred new isotopes were produced alone in
2010 [Tho11] For years, only the natural isotopes were known, and most of the
theories have been developed from natural occurring isotopes. It was not un-
til the development of the first ISOL facilities in the mid 60’s that radioactive
nuclei were studied systematically. Later the development of RIB facilities has
lead to an increase in the number of known isotopes and today more than 3000
different isotopes have been studied [Tho11]. Fig. 1.2 shows the development
of the nuclear chart from the early days with only natural occurring isotopes
to today, where the drip line is reached for many elements, and heavy nuclei,
beyond Z = 110, have been produced and studied in laboratories. Recent
mean field calculations have shown, that the total number of p- and n-bound
nuclei is approximately 7000 [Erl12]. Hence, experimental knowledge is only
gained for half of all bound isotopes. The study of the more exotic nuclei have
shown strong effects caused by the imbalance between neutrons and protons.
The binding energies, masses, states and shapes of the nuclei are all affected
by the number of the neutrons and protons and the ratio between the two.
Theories, that are developed for stable nuclei, break down when going into
the more exotic regions of the nuclear chart. The theories, therefore have to be
modified to describe the more and more exotic nuclei discovered.

How the shape of the nuclei and the ordering of the states behave in the
neutron rich low mass region of the nuclear chart will be studied in this thesis.

1.2 The disappearance of magic numbers

An important part of fundamental nuclear physics is to understand the prop-
erties of the bound states and resonances in nuclei (e.g. excitation energy, spin
and parity). The theoretic models for calculating the properties are similar to
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Figure 1.2: The nuclear chart. The isotopes are color-coded according to the time of
discovery.

the theory used in atomic physics, where electrons are orbiting a core (the
nucleus) in different shells, corresponding to different energies and quantum
numbers. The problem in nuclear physics is the lack of a central potential.
In atomic physics the main force acting on the electrons is from the nucleus,
which is much heavier than the electrons, and can be assumed stationary. The
electrons movement can then be described from a central potential caused by
the nucleus, and other forces enter as perturbations. In a nucleus the forces
acting on nucleons are from other nucleons, with similar masses and nuclear
charges, hence a central potential description is not as useful as for the atom.
Instead the potential used in the calculation has to be a combination of the
potentials between the individual nucleons (ab initio calculations). Such cal-
culations are too complicated for most isotopes and isotopes beyond A=16
have only recently been described by no-core shell models [Nav09]. Simplifi-
cations have to be made in order to go higher in number of nucleons.

In the shell model a nucleus is divided into core and valence nucleons. A
potential formed by the core nucleons is used to determine the energies of the
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shells. The valence nucleons are then filled into the shells (like electrons in an
atom). The spin and parity of the states in the nucleus are thus given by the
shells occupied by the valence nucleons.

In atomic physics some number of electrons are more stable than others,
corresponding to closed shells. The same effect is seen in the shell model,
known as the magic numbers: N = 8, 20, 28, 50, 82 and 126. The magic num-
bers arise from large energy gaps between certain shells. The energies of the
different shells are determined by the structure of the core potential. The nor-
mal core potential is given by a wood-saxon potential with a spin-orbit term:

V(r) =
−V0

1 + er−R/a
+ Vso(r)L · S. (1.1)

This form will lead to large energy gaps above the magic numbers. This the-
ory was already developed in 1949 by Mayer and Jensen. The study of more
exotic nuclei has shown that the magic numbers break down when going
away from stability and approaching the drip lines. This is caused by the
core potentials dependency of the nucleons. The potential given in eq. (1.1)
is derived from stable nuclei, but the potential is altered when going away
from stability, leading to a movement of the levels. This movement leads to a
closing and opening of energy gaps, which again can lead to a breaking of the
magic numbers, like N=20 in the island of inversion around 32Mg and N=8
in 12Be, or the appearance of new magic numbers like N=16 in 24O [Sor08].
The determination and understanding of the breaking and emerging of magic
numbers is an important part of modern nuclear physics, as it can be used to
describe the movement of energy levels across the nuclear chart. The experi-
ment described in this thesis was mainly motivated by the N=8 magic number
breaking in 12Be.

The shell model calculations are heavily improved compared to the earli-
est calculations of Mayer and Jensen and provides a much better description
of exotic nuclei today. The detailed description of the various shell model
methods are beyond the scope of this thesis and for more details see E. Cau-
rier et al. [Cau05]
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1.3 Deformed nuclei

One of the effects, that contributes to the movement of the shells, is the de-
formation of the nuclei. The potential in eqn. 1.1 is derived for a spherical
nucleus, but many nuclei have been shown to have a deformed shapes even
in the ground state. Two types of deformations can occur, the prolate and the
oblate deformation, fig. 1.3. The deformation of isotopes when going away
from stability has been studied for many elements. The deformation is espe-
cially prominent in the Hg isotopes with an alternation between spherical and
deformed ground states, see Heyde and Wood [Hey11] for more details.

Figure 1.3: The three shapes, prolate, spherical and oblate, of nuclei.

The effect from the deformation on the shells was derived by S. G. Nilsson
in 1955 [Nil55]. Fig. 1.4 shows the energy levels as a function of the deforma-
tion. The changes in energy gaps are clearly seen, leading to changes in the
magic numbers.
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Figure 1.4: A plot of the energy levels dependency on the deformation of the nuclei.
The plot is derived using the model by S. G. Nilsson
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1.4 Clustering in nuclei

Another important aspect in fundamental nuclear physics is the clustering
of nucleons inside a nucleus. Theoretical calculations are currently trying to
establish, when clustering occurs in nuclei [Ebr12].

Some nuclei are more energetically favorable and stable than others. The
best known is the α-particle (4He), which is much stronger bound than the
neighboring nuclei. The α-clustering is quite prominent in the Nα-nuclei (4He,
8Be, 12C etc.). All these nuclei show clear indications of being clusters of α-
particles. 8Be is an unbound nucleus and is the lightest nucleus that α-decays.
The triple α-process leading to the production of 12C shows the great impor-
tance of clustering in nuclear astrophysics. 12C is also an example of clus-
ters forming a stable nucleus. Nuclei containing clusters of different particles
are known as well, like 7Li (4He+3H) or the neutron rich beryllium isotopes
(4He+4He+N·n). The effect of the clustering in the latter ones will be described
in the next chapter.

The clustering within a nucleus will lead to a deformation of the nucleus,
as the clusters will be separated. Taking 8Be as an example, the two α-particles
will be moving around each other making a deformed shape, rather than
forming a spherical nucleus with 4N and 4Z. Furthermore the clustering can
lead to new types of excited states due to the excitation of a cluster rather than
a single valence nucleon or collective motions.

1.5 Halo nuclei

A special type of cluster nuclei are the halo nuclei. Halo nuclei appear close to
the drip lines and are characterised by low binding energies and large matter
radii [Jen04]. Furthermore the nucleus left after the removal of one (or two)
nucleon(s) is strongly bound. Three types of halo nuclei have been seen, one-
proton halos (2H and 8B), one-neutron halos (2H, 11Be, 19C and 31Ne) and two-
neutron halos (6He, 11Li, 14Be and 22C) [Rii12]. The low binding energy and
the large radius in halo nuclei are interpreted as a clustering containing a core
(the strongly bound nucleus) and one or two nucleons orbiting the core at a
large distance. The orbiting nucleons are called halo nucleons and the large
distance between the core and the halo(s) leads to the large matter radius. The
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large distance also makes it easy to separate the halo nucleon from the core,
hence the low binding energy.

Interestingly all known two-neutron halo nuclei are Borromean nuclei.
The total system is bound, but two of the three together are unbound, like
11Li, which is bound, but n+n and 9Li+n (10Li) are both unbound [Jen04].

Halo structures can also occur in excited states of nuclei, even if the ground
state is not a halo state. An example is the excited states in 10Be described in
section 2.4. The excited 1−1 -state in 12Be has been suggested as a two-neutron
halo in a three-body calculation by C. Romero-Redondo et al. [RR08a]. If this
is indeed true, the 1−1 -state would be one of the first known non-Borromean
two-neutron halo state. The 10Be+n is bound (though very weakly) making
the 1−1 -state a tango state rather than a Borromean [Jen04].

The effect of a halo nucleon in reactions have been studied both experi-
mentally and theoretically, examples can be found in [Sum07, CG97, Joh97].
The experiment described in this thesis represents one of the more complex
studies. The reaction is a halo nucleus (11Be) on another halo nucleus (2H),
and the final states can be both one- and two-neutron halo states.



CHAPTER 2

Neutron rich beryllium isotopes

The neutron rich beryllium isotopes, 11,12,10Be, will be described in this thesis. The

focus will be on the nuclear structure and the characteristics of the individual bound

states in the three nuclei. The chapter will serve as a motivation for studying 11,12,10Be.

2.1 Beryllium isotopes

This thesis describes an experimental study of the three neutron rich beryl-
lium isotopes 10Be, 11Be and 12Be. Beryllium (Z=4) is in the low mass region
(14Be being the heaviest bound beryllium isotope) of the nuclear chart. The
low mass makes ab initio calculations possible for most beryllium isotopes.
Furthermore beryllium isotopes plays important roles in both the breaking
of magic numbers, clustering and halo structures, described in the previous
chapter.

One of the most studied beryllium isotopes is the unstable 8Be, which is of
great importance in astrophysics. 8Be is known as a two-α cluster and plays an
important role as an intermediate state in the triple-alpha process. The ground
state is a resonance with a width of Γ = 5.57 eV [Wus92]. The two-α cluster
structure of 8Be recurs in the more neutron rich nuclei like the stable 9Be and
10Be. They have been treated as three and four particle clusters in AMD (An-
tisymmetrised Molecular Dynamics) calculations [Oer97, Ita00]. Going fur-
ther into the neutron rich side of the beryllium isotopes, the separation of the
two-α particles starts to disappear. Nonetheless, the possible α+neutrons clus-
terings in 11Be and 12Be are investigated [KE02, Fre10]. The clustering in the
beryllium isotopes makes the nuclei deformed. The deformations of 10Be and
11Be are believed to play an important role in direct reactions [For99,Aum00].
The effect of the deformation in the experiment discussed here is examined in
chapter 8.

9
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The neutron rich beryllium isotopes also shows interesting behavior from
a shell model point of view. 11Be is known for the inversion of the 1/2+ and
1/2− states indicating a mixing of the 1s0d and the 0p shell. A mixing that
leads to the breaking of the N=8 magic number in 12Be.

11,12,10Be will be described in more detail in the next sections.

2.2 11Be

11Be is one of the few known one-neutron halo nuclei, section 1.5. The neutron
separation energy is only 501 keV and the matter radius is much larger than
for the neighboring nuclei (e.g. rm = 2.91 fm in 11Be compared to rm = 2.09 fm
for 11B). The charge radius on the other hand is comparable (rc = 2.47 fm in
11Be compared to rc = 2.48 fm for 11B). This is all the characteristics of a neu-
tron halo nucleus. 11Be is interpreted as a core of 10Be and a neutron orbiting
the core at a relative long distance, fig. 2.1. 11Be is considered a two body

Figure 2.1: A drawing of a 11Be
nucleus indicating the halo struc-
ture, which leads to a deformed
nucleus with a large matter ra-
dius.

system (10Be+n) in this thesis. The halo
structure and the deformation of 11Be is
strongly affecting reactions involving 11Be.
Elastic scattering of 11Be on heavier nuclei
close to the coulomb barrier have been stud-
ied [DP10] and potentials that work for nu-
clei close to 11Be fail to reproduce the exper-
imental scattering cross sections of 11Be. Re-
sent DWBA calculations on a 10Be(d,p)11Be
experiment also showed a discrepancy be-
tween theory and experiment [Sch12]. An
attempt to determine the reaction potentials
for halo nuclei is made by A. Bonnacorso et
al. [Bon02]. They conclude, that a neutron
halo leads to a large diffusiness of the imag-
inary part of the potential.

The mixing of the 1s0d and the 0p shell
is another interesting effect seen in 11Be. Despite the low neutron separation
energy, 11Be have two bound states a 1/2+ ground state and a 1/2−-state with
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an excitation energy of E∗ = 0.320 MeV. Furthermore a low lying resonance at
E∗ = 1.78 MeV is known, fig. 2.2. The particle structure in the two-body model
of the three states/resonance are:

|11Be; 1/2+〉 = α+ |
10Be; 0+1 〉 |n; s1/2〉 + β+ |

10Be; 2+1 〉 |n; d5/2〉 . (2.1)

|11Be; 1/2−〉 = α− |
10Be; 0+1 〉 |n; p1/2〉 + β− |

10Be; 2+1 〉 |n; p3/2〉 . (2.2)

|11Be; 5/2+〉 = |10Be; 0+1 〉 |n; d5/2〉 . (2.3)

Only the simplest configuration is taken for the resonance, but small amounts
of other terms are expected as well. The small energy required to excite the

Figure 2.2: The bound states and the
lowest resonances of 11Be. The picture
is taken from the TUNL datagroup
[TUN].

neutron from the s-shell to the p-shell
and the fact that the p-shell configura-
tion is placed between the s- and the
d-shell configurations indicates a strong
mixing of the two shells [Tal60]. The
0p and the 1s0d shells are strongly sep-
arated close to stability (E∗1/2+ − E∗1/2− =

3.09 MeV for 13C and 5.18 MeV for 15O).
The mixing is an example of the move-
ment of the shells when going away
from stability [Han01]. The strong mix-
ing and the low separation energy affect
the scattering and transfer reaction as
well. 11Be is easily excited and a strong
coupling between the two bound states
is expected, as well as a coupling to the

low lying resonance [Mor06]. This has to be taken into account when inter-
preting the data, section 8.4

2.3 12Be

The mixing of the 1s0d and the 0p shell is proven to appear in 12Be as well,
breaking the N=8 magic number. The mixing was already suggested by F.
Barker et al. in 1976 [Bar76], who studied the beta decay of 12Be. The β-
decay strength was too weak for the ground state to be purely described
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by a p2 configuration for the two valence neutrons. The theory was sup-
ported by the low lying 2+1 excited state [Alb78], and spectroscopic factors
determined in a neutron knockout exeperiment [Nav00]. The breaking of
the N=8 magic number was finally confirmed in 2003 with the discovery of
the low lying 0+2 -state (E∗ = 2.2 MeV) by Shimoura et al. [Shi03], fig. 2.3.

2.10

2.24

1

2

0

+

+

-

Figure 2.3: The bound states and the low-
est resonances of 12Be. The picture is
taken from the TUNL datagroup [TUN]
and modified to contain all accepted states
and spin-parity values.

The mixing of the shells have
been studied in several break-up re-
actions [Nav00, Shi07, Pai06] as well
as a few transfer reactions [For94,
Kan10]. The first transfer experi-
ment populating 12Be (10Be(t,p)12Be)
by Fortune et al. [For94] was able
to populate the ground state, the
2+1 - and the 1−1 -state. No spec-
troscopic factors were determined
and the spin assignment for the
2.70 MeV-state was suggested to be
0+. This value has later been dis-
proved and the spin and parity of
the 2.70 MeVstate is accepted to be
1− [Iwa00]. The second transfer re-
action, a low energy 11Be(d,p)12Be
transfer like the one described in this
thesis, was also unable to clearly
identify the 0+2 -state, but spectro-
scopic factors were determined for
all four bound states [Kan10]. The
experimental spectroscopic factors were not consistent with theoretical ones,
and new calculations have put doubt on the results from the transfer reaction
experiment [For11]. Hence the amount of shell mixing in 12Be is still to be de-
termined, and the aim of the experiment discussed in this thesis is to provide
new spectroscopic factors for all bound states including the 0+2 -state from a
(d,p) reaction.
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Furthermore, three body calculations have been performed by C. Romero-
Redondo et al. in 2008 [RR08b] successfully describing the bound states of
12Be. The 1−1 -state shows indications of being a two-neutron halo state in
the calculations. The model, furthermore, predicts a bound 0−-state [RR08a],
which has never been seen. New improved calculations of the three body
model have recently been performed, in order to predict the spin and parity
of the low lying resonances [Gar12]. The 0−-state is moved up in excitation
energy in the calculation, and a 0−-resonance just above the 1n-treshold is
suggested rather than a bound 0−-state.

2.4 10Be

The very long lifetime of 10Be (1 × 106 y) and the possibility of using stable
beams to study 10Be have made the study of 10Be accessible for many years,
and the structure of 10Be is well known. The 11Be(d,t)10Be channel of the ex-
periment has proven very interesting though. Both from an experimental and
technical point of view and for an understanding of the structures of 11Be and
10Be. The ground state of 11Be has two components, eqn. 2.1, and removing

Figure 2.4: The bound states and the low-
est resonances of 10Be. The picture is taken
from the TUNL datagroup [TUN].

the halo neutron in a transfer would
leave 10Be in either the ground or the
first excited state, seen in fig. 2.4. The
high lying 1−1 - and 2−1 -states can be
populated by knocking out one of
the core neutrons, leaving the halo
neutron orbiting the new 9Be core.
This is consistent with the interpre-
tation of the two states being one-
neutron halo states [AK06]. The
last two states require multistep re-
actions to populate, and the reac-
tion cross sections are expected to
be small compared to the other reac-
tion channels. Especially the 0+2 -state
is expected to be weakly populated.
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The population requires both a knockout of a core neutron and an excitation
of another core neutron from the 0p3/2-shell to the 1s1/2 shell. The 2+2 -state
requires a core neutron knockout but only an excitation of the halo neutron
from the 1s1/2 shell to the 0p1/2 shell, which is much more likely, due to the
mixing of the two shells in 11Be.

2.5 The study of the isotopes

11Be is the starting point of the experiment and is studied through scattering
experiments. 10,12Be are studied through one neutron transfers from or to 11Be
using a deuteron target.

The four highly excited states in 10Be are very close in excitation energy,
fig. 2.4, making them hard to distinguish in a transfer experiment if only
charged particles are detected. Two of the four states are successfully identi-
fied and a third tentatively seen in this experiment, shown in chapter 7, prov-
ing how strong a setup is with both charged particle and gamma detection.
The high resolution (10 keV) for germanium detectors used for gamma detec-
tion is a necessity to separate events from the four states,

The gamma energy from the decay of all excited states in 10,11,12Be are
shown in table 2.1 along with the branching ratios. The values are taken from
C. M. Mattoon et al. [Mat09] for 10,11Be and S. Shimoura et al. [Shi07] and H.
Iwasaki et al. [Iwa00] for 12Be. The only states that might produce gammas
within 100 keV of each other is the four excited states in 10Be, the rest should
be easily identified in a gamma spectrum, chapter 7. All four highly excited
states in 10Be decay to the 2+1 -state generating four gamma lines, which is pair-
wise separated with less than 100 keV. Only the 2+2 - and the 2−1 -states decays
completely (or almost) to the 2+1 -state. The 0+2 and the 1−1 have two other strong
decays, a 219.2 keV (0+2 → 1−1 ) and a 5959 keV (1−1 → 0+1 ), which can be used to
determine the population of the 0+2 and the 1−1 states respectively, section 7.2.3.
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Nucleus Decay Eγ [keV] BR [%]
2+1 → 0+1 3367 100
2+2 → 2+1 2590 91
1−1 → 0+1 5959 66

10Be 1−1 → 2+1 2593 34
0+2 → 2+1 2812 65.7
0+2 → 1−1 219.2 34.3
2−1 → 2+1 2896 100

11Be 1/2− → 1/2+ 320.0 100
2+1 → 0+1 2107 100

12Be 0+2 → 0+1 511* 83
0+2 → 2+1 144 17
1−1 → 0+1 2680 100

Table 2.1: Known gamma decays in 10,11,12Be. The decays are taken from [Mat09,
Shi07, Iwa00]. * The 511 keV stems from pair production.





CHAPTER 3

Transfer reaction theory

This chapter will give a short motivation for using transfer reactions to study the

neutron rich beryllium isotopes. Furthermore the procedure for calculating both ex-

perimental and theoretical differential cross sections will be described.

3.1 Transfer reactions

Transfer reactions are a powerful tool to probe single particle excitations in a
nucleus, making transfer reactions very useful when studying single particle
behaviours of states. A particle, or cluster of particles, is transfered from one
nucleus to another in transfer reactions, generally described like:

A + a → B + b. (3.1)

B = A ± v. (3.2)

b = a ∓ v. (3.3)

v is the transfered particle and B is the particle to be studied. The sign in
eqn. 3.2 and 3.3 depends on the type of transfer (adding or removal) The pop-
ulated states of the final nuclei (B, b) can be described by taking the ground
states of the initial nuclei (A, a) and add or remove one particle (cluster). In
the simplest picture, the two cores (the part of the two nuclei, that is not trans-
fered, A and b) are assumed not to be affected by the transfer, hence the final
states are completely determined by, which state the transfered particle (v)
was in, and which state it ends up in. Any core excitations or multistep trans-
fers are considered to be higher order contributions. b will be referred to as
particles in this thesis, even though all four elements in eqn 3.1 are nuclei .

One neutron transfers (v = n in eqn 3.1) will be studied in this thesis, both
adding a neutron to the 11Be (A) nucleus ((d,p)) and removal of one ((d,t)),
leading to single neutron excitations of 12Be and 10Be (B) respectively. It has

17
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already been stated in chapter 2 that both 11Be and 12Be to a large extent can be
described as a 10Be core and one or two neutrons respectively. This description
works especially very well for 11Be with its halo structure.

The one neutron removal experiment ((d,t)) could be used to investigate
the ground state structure of 11Be, which is known to be a linear combina-
tion of a s-neutron and a ground state 10Be and a d-neutron and an excited
10Be, eqn. 2.1 The loosely bound halo neutron should be easily transfered
leaving the 10Be core in either the ground state or the excited 2+1 -state. This
structure has been studied in various (d,p) and (p,d) reactions, for instance
[Aut70, Zwi79, Win01]. Also the higher lying states of 10Be will be populated
in the (d,t) transfer, as it will be shown in chapter 7. This is done by knocking
out one of the core neutrons from 11Be leaving 10Be in an excited state, sec-
tion 2.4. The halo neutron will still be lightly bound (< 900 keV), for the four
high lying states, making it possible to study the suggested halo structures of
the 1−1 - and 2−1 -states [AK06].

A one neutron transfer reaction is also a very good tool for studying the
mixing of the sd and the p shell, which occurs in 12Be as described in sec-
tion 2.3. All bound states in 12Be contain some amount of a 11Begs and one
neutron in an s-, p- or d-shell. Especially the |10Be; 0+1 〉 |n; s1/2〉 |n; s1/2〉 compo-
nent in the two 0+-states is interesting in the study of the mixing of the states.
This component should be strongly populated in a 11Be(d,p)12Be reaction. The
main aim of the experiment is to determine the amount of this component in
the two 0+-states. This will be done by determining the spectroscopic fac-
tors, which will be described in section 3.4. Differential cross sections will be
described first, starting with experimental ones.

3.2 Experimental differential cross sections

The differential cross section from an experimental point of view is a mea-
sure of the probability for a particle being emitted in a given solid angle. The
differential cross section is given by:

dσ
dΩ

(θ, φ) =
Ṅb(θ, φ)

IA · nt

1
dΩ
. (3.4)
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Ṅb is the number of reactions per unit time, IA is the beam intensity, nt is the
particle density in the target and dΩ is the solid angle. This can be rewritten
as:

dσ
dΩ

(θ, φ) =
1

NA · nt

Nb(θ, φ)
dΩ

. (3.5)

Here Nb

dΩ is the number of outgoing particles for a solid angle and NA is the
total number of beam particles in the experiment.

The detection effiency of the setup has to be taken into account in order
to convert the number of detected particles to the total number of outgoing
particles in a solid angle. Simulations of the experiment are used to take the
detection efficiency into account, rather than calculating the detection effiency
for all solid angles,. The simulation will be described in detail in section 4.6,
but the basic idea is to generate Nsim

A
events uniformly distributed over 4π in

center of mass. Only events hitting the detectors in the setup will be regis-
tered. The cross section can be rewritten using the simulated data:

dσ
dΩ

(θ, φ) =
1
nt

N
exp
det (θ, φ)

Nsim
det (θ, φ)

Nsim
A

N
exp
A

. (3.6)

Here sim stands for simulated data while exp stands for experimental data.
In order to calculate the cross section the five values in eqn. 3.6 need to be

determined. nt given by:

nt =
ρdtNa

M
Nd =

1.00(5) · 10−3g/cm2
· 6.02 · 1023/mol

16.1g/mol
· 2 = 7.5(3) · 1019/cm2. (3.7)

Here ρ is the density of the target and dt is the thickness of the target, these two are
combined and are given in table 4.1. M is the molar mass of the target and Nd is the
number of reaction particles per molecule (two deuterons per ethylene molecule).

The number of beam particles for the experimental data (Nexp
A

) is determined by
rutherford scattering on 107Ag, and is determined in section 6.4. The number of beam
particles for the simulation is simply the number of simulated particles, and is given
in section 4.6.

It has proven easier to determine the ratio
N

exp
det

Nsim
det

(θ, φ) rather than the two numbers
individually. This is done by fitting excitation energy spectra from simulated data to
the experimental ones:

N
exp
det = aNsim

det (3.8)

a =
N

exp
det

Nsim
det

.
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This way the statistical uncertainties are taken into account by the fit. An example of
such a fit is given in section 8.2

3.3 Theoretical differential cross sections

The theoretical differential cross sections are calculated using the program
FRESCO [Tho06]. A short describtion of the theory behind the calculations will be
given in this section. The theory has been taken from [Tho09], which contains a more
detailed description. The theory will be described for a general reaction (eqn. 3.1).
The section starts with scattering theory (v = 0, a = b and A = B) before treating
DWBA calculations for one-neutron transfer reactions (v = n). Real potentials will in
the following sections be noted with a V, while complex potential will be noted with
a U.

3.3.1 Optical model

The first step is to calculate the elastic scattering cross section. This is done using
an optical model (OM). The optical model is the simplest of the calculations. Only
the differential cross section from the elastic scattering channel is calculated, all other
reaction channels are treated as loss of flux. The two particles are treated as inert
particles. The only force considered is the force between them, given by the potential
U(R) (R is the relative distance). The potential is assumed to have a finite range
(U(r) = 0 for r > Rn), and the differential cross section is determined by the distortion
on the wavefunction of the incoming particle caused by the potential. The center of
mass frame is chosen in a way, such that the incoming particle is described by a plane
wave traveling in the z-direction:

Ψinc(~k, ~R) = eikz. (3.9)

The wavefunction will be distorted by the potential, and the asymptotic form of the
outgoing wavefunction, outside the range of the potential, is of the form:

Ψout(~k, ~R) = eikz
+ f (θ, φ)

eikR

R
. (3.10)

The probability of finding the particle in a given angle, and hence the cross section is
then given by the square of f :

dσ
dΩ

(θ, φ) = | f (θ, φ)|2. (3.11)

Normally there will not be any φ-dependence of f , and only a θ-dependency is as-
sumed in the calculations. If the reaction involves charged particles, the potential will
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consists of a coulomb part and a nuclear part, and f can be seperated into two:

f (θ) = fC(θ) + f ′(θ), (3.12)

where | fC(θ)|2 is the Rutherford amplitude and f ′(θ) is the nuclear f -value.
The f -value can be determined by solving the Schrödinger equation with the po-

tential (U(R)) and the center of mass energy (E):

[T̂ +U(R) − E]Ψ(~k, ~R) = 0. (3.13)

It is assumed that the potential is spherical symmetric making it possible to seper-
ate the angular and radial part of the wavefunction. Thus the wavefunction can be
written as an expansion in polynomials of cos(θ):

Ψ(~k, ~R) =
1

kR
Σ
∞
L=0(2L + 1)iLχL(k,R)PL(cos(θ)) (3.14)

The radial functions χL(K,R) is given by the equation:
[

−~2

2µ

(

d2

dR2 −
L(L + 1)

R2

)

+U(R) − E

]

χL(k,R) = 0. (3.15)

µ is the reduced mass. The solutions to the equation for a finite range potential can
be written in terms of Hankel functions and the S-matrix (SL):

χext
L (k,R) = AL

[

H−L (0, kR) − SLH+L (0, kr)
]

. (3.16)

The nuclear f -value can be found by combining eqn. 3.14, 3.16 and eqn. 3.10:

f ′(θ) =
1

2ik
ΣL(2L + 1)(SL − 1)PL(cos(θ)). (3.17)

The S-matrix clearly plays an important part, and the calculation of the cross sec-
tion is reduced to finding the SL-values. All SL-values are determined by matching
the asymptotic form, and the derivatives, of eqn. 3.16 with eqn. 3.10. The values are
uniquely defined by the interaction potential (U(R)). An important part of OM calcu-
lations is determining the right potential for the specific reaction. Calculations with
different optical potentials will be attempted in this thesis. The shape and depths of
the potentials will be described when used in section 8.3.1.

Two important features regarding the S-matrix should be noted. First of all, terms
with SL = 1 will not contribute to the f -value (eqn. 3.17). This happens if the nuclear
potential does not affect the radial wavefunction (χin

L = χ
ext
L

). For each potential there
exits an L1-value for which SL≥L1 = 1, hence it is not necessary to go to L = ∞ when
calculating the cross section. Secondly, for a real potential the norm of SL is unitary:
|SL| = 1, but if the potential is complex the norm will be less than one. This leads
to a loss of flux. The real part of the potential describes the elastic scattering, while
the imaginary part removes the flux going to other reaction channels. The deeper an
imaginary part, the greater a loss.
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3.3.2 Coupled channel calculation

Inelastic scattering is also seen in this experiment, populating the 1/2−-state (and the
5/2+-resonance) in 11Be, chapter 7.

The scattering theory, described in the previous section, is still applicable in de-
termining the inelastic scattering cross section. However, a few generalisations are
needed. The final wavefunction might contain more than one state:

Ψout(ξ, ~R) = φ1(ξ)χ1(~R) + φ2(ξ)χ2(~R). (3.18)

The indices 1 and 2 refer to the two different states (1 being the ground state). Only
two states are considered here, but the theory works for even more states. ~R is the
relative coordinates between the two nuclei (A and a) and ξ is the internal coordinates
of the states. The extra state will also lead to a modification of eqn. 3.10 and 3.11:

Ψout(~k, ~R) = ei~kinitial·~rφ1(ξ) + f1(θ, φ)
eik1R

R
φ1(ξ) + f2(θ, φ)

eik2R

R
φ2(ξ). (3.19)

dσi

dΩ
(θ, φ) =

ki

kinitial
| fi(θ, φ)|2, (3.20)

with i = 1, 2 in the last equation. The f -values are once again found by determining
the outgoing wavefunction (eqn. 3.18) and matching it with eqn. 3.19. The outgoing
wavefunction is given by the Schrödinger equation:

(E − Ĥ)Ψout = 0. (3.21)

The total hamiltonian for the reaction is given by:

Ĥ = ĤA + T̂ +U(ξ, ~R). (3.22)

T̂ is the kinetic energy of the particle, U(ξ, ~R) is the interaction potential and ĤA is the
hamiltonian for the internal system. The two states are eigenfunctions for the internal
hamiltonian:

ĤAφ1(ξ) = ε1φ1(ξ) (3.23)

ĤAφ2(ξ) = ε2φ2(ξ). (3.24)

The potential of ĤA is normally fitted to obey the two equations above. This leaves
only the radial parts to be determined. The radial parts are determined by making
projections onto the two internal states. Here it is done for the ground state (1):

0 = φ∗1(ξ)(E − (ĤA + T̂ +U(ξ, ~R)))Ψ(ξ, ~R) (3.25)

= (E − ε1 − T̂ −U11(~R))χ1(~R) −U12(~R)χ2(~R),

with:
Unm(~R) =

∫

φ∗n(ξ)U(ξ, ~R)φm(ξ)dξ. (3.26)
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The two projections lead to two coupled equations:

(E − ε1 − K −U11(~R))χ1(~R) = U12(~R)χ2(~R). (3.27)

(E − ε2 − K −U22(~R))χ2(~R) = U21(~R)χ1(~R). (3.28)

The coupled equations have to be solved to determine the radial wave function before
matching eqn. 3.18 with eqn. 3.19, hence determining the differential cross sections.
The coupling matrix elements (Unm) plays an important part in the calculation. The
two equations are decoupled if the two off-diagonal terms are zero, leaving to inde-
pendent equation to be solved like in section 3.3.1. A potential, that can couple the
two internal states, are needed. A spherical potential cannot couple states with dif-
ferent spin and parities, but a deformed potential can. A deformed potential has an
angular dependency on the radius:

U(R, θ′, φ′) = U(R − R̃(θ′, φ′)). (3.29)

This potential can be expanded on spherical harmonics for small deformations:

U(R, θ′, φ′) = U(R) −U′(R)
∑

λ

δλYλ0(θ′, 0). (3.30)

U(R) is the spherical part of the potential. δλ is called the deformation length and is
a measure of the deformation of the potential. λ is the multipole of the deformation.
λ = 2 is the quadrupole deformation of the potential. U′(R)δλ is the projection of the
potential onto a given spherical harmonics:

U′(R)δλ =
∫

U(R, θ′, φ′)Yλ0(θ′, φ′)dΩ. (3.31)

The coupling matrix elements can be calculated by inserting eqn. 3.30 into eqn. 3.26.
The diagonal terms are determined by the spherical part of the potential (U(R)), while
the off diagonal terms, coupling the two states, are given by the expansions. It is clear,
that only certain states can be coupled with a given deformation. The selection rules
are:

|Ji − J f | ≤ λ ≤ Ji + J f (3.32)

and

π f = (−1)λπi. (3.33)

The selection shows, that a dipole deformation is needed to couple the 1/2+ and the
1/2−-states in 11Be, and a quadrupole deformation to couple to the 5/2+-resonance. A
quadrupole is also needed to couple the first two states in 10Be. Both a dipole and a
quadrupole deformation is used in the calculations, section 8.3.2.
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Figure 3.1: Drawing of the three body model for a one-neutron stripping reaction.
Left is the initial situation were the valence particle is connected to the blue core, and
the right is the final situation were the valence particle is transfered to the red core.

3.3.3 Distorted Wave Born Approximation

The theory for calculating transfer reaction cross sections is slightly more complicated
than the scattering theory The basis is a three-body model with two cores (a,B) and
a valence particle (v), fig. 3.1. Fig. 3.1 shows the initial (α) and final (β) situation of
a transfer reaction, where the valence particle is removed from the initial nucleus
(e.g. (d,t)). The three bodies all interact with each other, requiring three different
potentials (Vva, VvB and UaB). A fourth potential is needed between the two particles
in the initial (or final) situation (UaA/UbB). The differential cross section is given by
the square of the transition amplitude.

dσ
dΩ
=
µαµβ

2π~2

kβ

kα
|T(~kα,~kβ)|2. (3.34)

The transition amplitude is the probability of going from the initial situation (α) to
the final (β), and is given by the potentials involved. The transition amplitude can be
calculated in two ways called post and prior. The result is the same to first order in
the Distorted Wave Born Approximation (DWBA). Details on the approximation will
not be given here. The difference between the two ways, are the use of the potentials
related to the initial or final state:

Tprior
=< χβφbφB|Vva +UaB −UAa|χαφAφa >, (3.35)

or:
Tpost

=< χβφbφB|VvB +UaB −UBb|χαφAφa >, (3.36)

The φ’s are the internal wavefunctions of the particles. These are determined from
the internal hamiltonians, like eqn. 3.23 and 3.24 (section 3.3.2). Here the potentials
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are also scaled to produce the right eigenvalues. The χ’s are the wave functions of
the initial and the final state. These can also be found in coupled equations like the
ones in eqn. 3.27 and 3.28:

(Eα − T̂α −Uαα(~Rα))χα(~Rα) =

∫

Uαβ(~Rα, ~Rβ)χβ(~Rβ)d~Rβ. (3.37)

(Eβ − T̂β −Uββ(~Rβ))χβ(~Rβ) =

∫

Uβα(~Rα, ~Rβ)χα(~Rα)d~Rα. (3.38)

The equations are found in a similar way as the ones in section 3.3.2, by taking the to-
tal Schrödinger equation and making a projection onto the two states. The transition
amplitude can be written in integral form:

T =

∫

d~Rαd~Rβχ
(−)∗
β (~Rβ)Iβα(~Rα, ~Rβ)χ

(+)
α (~Rα), (3.39)

with:

Iβα(~Rα, ~Rβ) =< φbφB|Vva +UaB −UAa|φAφa > . (3.40)

These integrals can be calculated once the coupled equations are solved. All the cal-
culations are done by FRESCO, and no further details will be given here.

3.4 Spectroscopic factors

An important parameter in transfer reaction experiments and the study of single par-
ticle structures of nuclei is the spectroscopic factor as mentioned earlier. The aim of
the 11Be(d,p)12Be experiment described in this thesis is to determine the spectroscopic
factor for each state populated in the reactions.

For many years spectroscopic factors have been interpreted as a measure of the
amount of a given particle configuration of a state. As an example take the ground
state of 12Be, which is known as a linear combination of three different particle con-
figurations:

|12Be; 0+1 〉 = α |
10Be; 0+1 〉 |2n; s2

1/2〉 + β |
10Be; 0+1 〉 |2n; p2

1/2〉 + γ |
10Be; 0+1 〉 |2n; d2

5/2〉 . (3.41)

The factors (α, β, γ) can be determined by probing the different particle configura-
tions individually, like the α |10Be; 0+1 〉 |2n; s2

1/2〉 in a 11Be(d,p) reaction. The spectro-
scopic factor determined in the experiment is interpreted as the value α2. The va-
lidity of this interpretation has been questioned in recent years. The spectroscopic
factor is a quantity describing effects on the total volume of a nucleus, while direct
reactions happen at the surface. Hence, modifications can occur especially when
going away from stability [Pan97]. The large dependency on the potentials used
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in the calculations has also been used to question the concept of spectroscopic fac-
tors [Jen11]. It has been proposed to use the absolute normalization constant (ANC)
instead, which is a surface quantity and may describe reactions better, especially for
exotic nuclei, [Tim10] and references therein. The validity of spectroscopic factors for
exotic nuclei have been tested experimentally for various types of experiments, and
while a strong effect is seen in nucleon knock-out reactions, no changes have been
seen in one nucleon transfer reactions, [Lee11]. The debate is still ongoing, but it will
not be covered in this thesis, and only spectroscopic factors will be determined.

The spectroscopic factor is defined as a scaling factor between an experimental
determined differential cross section and a theoretical one:

S :=
dσ
dΩ experiment

dσ
dΩ theory

. (3.42)

From this definition and the description of the differential cross sections given in the
two previous sections it is clear why the spectroscopic factor is equal to the norm
squared for a given particle configuration. Both the theoretical and the experimental
determined differential cross section is calculated for a given configuration of a state,
like the |10Be; 0+1 〉 |2n; s2

1/2〉- configuration of the 0+-states in 12Be. Only one particle
configuration for each state can be probed by a given transfer reaction. This is eas-
ily seen by adding a neutron to the ground state of 11Be, the only 0+-configuration
possible is the s2

1/2. The coupling between the initial and the final state is only non-
zero for the given configuration, hence the experimental differential cross section is
proportional to:

dσ
dΩ experiment

∝
∣

∣

∣α 〈2n; s2
1/2| 〈

10Be; 0+|U |initial〉
∣

∣

∣

2
= |α|2 (3.43)

Initial is the initial configuration with the deuteron and 11Be and U is the transition
potential.

For the theoretical calculation it is a choice made in the parameters. The theo-
retical cross section is calculated with the assumption, that the state is completely
described by a given particle configuration corresponding to

|12Be; 0+〉theory = |
10Be; 0+1 〉 |2n; s2

1/2〉 , (3.44)

and the differential cross section becomes proportional to:

dσ
dΩ experiment

∝
∣

∣

∣〈2n; s2
1/2| 〈

10Be; 0+|U |initial〉
∣

∣

∣

2
= 1 (3.45)

The proportionality constant is the same, hence from the definition of the spectro-
scopic factor:

S = |α|2 . (3.46)
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This is valid if the reaction is a single step process, if the transfer is done in a two
step process, for instance where the initial nucleus is excited, new configurations can
be populated. Taking again the 0+-states of 12Be. If 11Be is excited to the 1/2− state,
the single particle configuration populated is the:

|10Be; 0+1 〉 |2n; p2
1/2〉

configuration. These effects requires a deeper theoretical analysis and are not dis-
cussed further in this thesis.





CHAPTER 4

The experiment

A description of the experimental procedure will be given in this chapter. Including the exper-

imental setup, the detectors and the production of our radioactive beam. Furthermore a short

description of the simulation will be given.

4.1 Performing a transfer reaction experiment

The motivation for studying neutron rich beryllium isotopes, especially 12Be, in a
transfer reaction should be clear from the last two chapters. Performing a transfer
reaction involving a radioactive isotope is a complicated task though. The short life-
time of 11Be (τ = 19.9 s) makes it impossible to use as a target. Instead the reaction is
done in inverse kinematics using a radioactive ion beam (RIB) of 11Be and a deuteron
target. This requires both a RIB facility, to produce a 11Be beam and a foil containing
deuterons. Deuterons are stable and foils containing deuterons are easily accessible.
A plastic foil (CH2), where the protons are exchanged with deuterons, is used in this
experiment. Several RIB facilities, that can produce low energy 11Be beams, exists
today. The ISOLDE facility at CERN, Switzerland, is used in this experiment. The ex-
periment is performed by directing the 11Be beam onto the deuteron target and two
(or more) particles goes out of the target after the reaction. The light particles (p, d or
t) are detected and used to determine the differential cross section, while the heavy
fragments are sent to a beam dump. Silicon detectors are needed to detect the outgo-
ing charged particles. Gamma detectors are also used, in this experiment, to separate
the individual states in the heavy nuclei. All the components will be described indi-
vidually in this chapter.

The experiment is performed as a series of small runs. A run ranges from min-
utes to a few hours in time. A data file containing the signals from the detectors
are created for each run. The data from all the runs are analysed together, except
when determining the fluctuations in the beam, chapter 6. During the experiment
small runs with other targets are performed, section 4.4. These extra runs are used to
improve the analysis.

29
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4.2 ISOLDE

The radioactive 11Be beam was produced at ISOLDE, CERN. ISOLDE was one of the
first facilities at CERN, and one of the first low energy RIB facilities in the world. The
ISOLDE facility is shown in fig. 4.1. The beams are produced at one of the two pri-
mary target stations, one connected to the General Purpose Separator (GPS), which
was used in this experiment, and one connected to the High Resolution Separator
(HRS). The beam production is done through fragmentation of heavy ions. A Tanta-
lum (Ta) target was used for the 11Be production. High energy protons (∼ 1.4 GeV)
from the PS booster hit the primary Ta target creating unstable nuclei which decay
through emission of several light isotopes, including 11Be. The target is heated to
temperatures between 700◦C and 1400◦C making the fragments evaporate from the
target and diffusing onto an ion source. The created nuclei are laser ionised creating a
positive ion, which can be accelerated through high voltage. The ions are accelerated
up to 60 keV and sent to one of the two separators (GPS or HRS). The separators are a
series of bending magnets, one for the GPS and two for the HRS (fig. 4.1), which sep-
arate the accelerated beam particles according to their masses. Only the low-energy
11Be particles go through the separator and into the ISOLDE experimental hall. The
rest of the emission fragments are stopped in the separators.

Figure 4.1: A drawing of the ISOLDE facility. The facility is divided into two parts,
the target area (top part) and the experimental area (bottom part).
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4.3 REX-ISOLDE

The 11Be beam from the GPS has to be accelerated further, in order to get a beam
energy high enough to induce nuclear reactions. This is done at the REX-ISOLDE
postaccelerator [Kes03]. Fig. 4.2 shows a diagram of the postaccelerator. The idea
of the REX is to create highly charged nuclei, which can be accelerated through a
short linear accelerator. The ability to use a short LINAC, combined with the place-
ment outside of the highly radioactive target area of ISOLDE, is the strength of REX-
ISOLDE.

The acceleration is done in three steps. First the ions are trapped, bunched and
cooled in a penning trap (REXTRAP). The cooled ions are afterwards sent to an elec-
tron beam ion source (REXEBIS). The EBIS creates highly charged ions using a mag-
netically compressed electron beam [Cur05]. 11Be is totally stripped creating 11Be4+.
The REXTRAP uses a noble gas to cool the beam. Thus the bunched beam needs to be
separated once again before being accelerated, which is done through two bending
magnets. The noble gas used is neon, and the bending magnets are only able to sep-
arate particles with different q/A, hence the separator cannot distinguish 11Be4+ and
for instance 22Ne8+. A neon gas without 22Ne had to be used in the REXTRAP. A pu-
rified 20Ne gas was used as a cooler gas reducing the 22Ne contamination in the final
beam to less than 1 %. Last step is the acceleration of the beam. The acceleration is
done in a LINAC, that is able to accelerate the beam up to 3 MeV/u. A beam energy of
2.8 MeV/u was used in the experiment. After the reacceleration the beam is directed,
through a bending magnet, onto the reaction target placed at the MINIBALL station.

Figure 4.2: Diagram of the REX post accelerator. The low-energy beam from ISOLDE
enters the penning trap, where it is bunched and sent to the EBIS. The EBIS strips the
beam particles and send them through a q/A separator to the LINAC. The LINAC
consists of four different types of cavities, that can accelerate the beam up to 3 MeV/u.
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4.4 Targets

Five different targets were used in the experiment. Table 4.1 shows the five targets
along with a short description of the purpose of the target. A foil of deuterated
polyethylene (CD2) was used as the primary target in the experiment. The deuter-
ated polyethylene was used to produce the 11Be+d reactions investigated in this the-
sis. Unfortunately the target contained a significant amount of carbon and a small
fraction of protons. It is not possible to create a pure CD2 target and a few percent
contamination of CH2 is expected. 11Be can react with both the carbon and the pro-
tons in the target producing protons, deuterons and fusion products, which will act as
a background on the real 11Be+d events. To determine and remove the background
a few runs on a pure carbon target as well as on a regular polyethylene (CH2) tar-
get were performed throughout the experiment. The effect of the background is de-
scribed in chapter 7. The reactions from the two background targets could be used to
investigate the reactions of 11Be on both carbon and protons as well, and indeed the
(p,p) and (p,d) reactions are studied in chapter 9.

The total number of 11Be particles in the experiment is needed in order to deter-
mine the differential cross section, eqn. 3.6. The beam intensity is determined through
reactions with known cross sections, like Coulomb scattering. The low Z-value of the
two nuclei (Z= 4 and 1) makes the (d,d) scattering mainly nuclear and the channel
cannot be used to determine the beam intensity. Instead a silver target was used.
Short, beam intensity, measurements were performed regularly during the experi-
ment. This provides the beam intensity at a given time in the experiment. The beam
intensity will fluctuate during the days of an experiment, and this has to be taken into
account to get the right scaling of the angular distributions, hence regular intensity
measurements are needed. The beam measurement and the calculation of the total
number of 11Be in the experiment will be described in section 6.4.

The last target was a stopper foil made of a thick aluminum foil. The target was
used to create a 11Be gamma source. The 11Be particles will be stopped in the target
and afterwards β-decay to excited states in 11B. The excited 11B will then gamma
decay producing gammas with energies up to 8 MeV. This 11Be source is used to
both calibrate and determine the high energy detection efficiency of the MINIBALL,
described in section 5.7.

4.5 The detector setup

Two types of detectors were used in the experiment, silicon detectors for charged par-
ticles and germanium detectors for gammas. A standard setup for transfer reaction
experiments at ISOLDE has been developed combining the MINIBALL array [Ebe01]



4.5. The detector setup 33

Target Thickness Purpose
CD2 1.00(5) mg/cm2 Primary target. 11Be + d reactions.

107Ag 1.9(1) mg/cm2 Beam intensity measurement
through Coulomb scattering.

CH2 1.1(1) mg/cm2 Used to determine the background
from reactions on protons.

C 1.50(5) mg/cm2 Used to determine background from
fusion products of 12C+11Be.

Al ∼ 200 µm Energy and efficiency calibration of MINIBALL.

Table 4.1: The five different targets used in the experiment.

and the T-REX setup [Bil12]. A picture of the setup is seen in fig. 4.3.

Figure 4.3: A picture of the MINIBALL setup.
The eight germanium cluster is placed on an
adjustable frame making it a versatile setup.

The MINIBALL is an array of
24 germanium detectors placed in
eight clusters. A Ge-cluster is seen
in fig. 4.5. The clusters are placed
on a movable frame, making it pos-
sible to adjust the position of the in-
dividual clusters to optimize the an-
gular coverage for each experiment.
The MINIBALL has an energy res-
olution down to 10 keV, which is a
factor of 20 better than the resolu-
tion of the charged particle detec-
tors used in this experiment.

The T-REX setup used for charged
particle detection consists of 16 sili-
con detectors placed in a barrel like
configuration, fig. 4.4. The barrel
has four sides and two end-caps.
The four sides are made from eight
square detectors two on each side.
The barrel is designed to have two
end-caps made from four annular
detectors (AD) each. Each AD cov-
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ers almost a quarter of the end-cap.
Both end-caps have a hole in the
centre to let the beam and heavy
fragments slip through. The end-cap covering the very backward angles was missing
in the experiment. The T-REX covers nearly all angles from 8◦ to 152◦ in the labora-
tory system, even without the backward end-cap [Bil12]. The target is placed in the
middle of the setup (red dot in fig. 4.4) using a target ladder. The four detectors mak-
ing up the forward side of the barrel are shielded with a 11.57 µm thick mylar foil in
order to protect the detectors from heavy fragments. Light particles pass through the
foil while heavy particles like beryllium isotopes are stopped. The mylar foil lowers
the resolution of the charged particle data due to straggling in the foil. Furthermore
it increases the low energy limit for charged particles to be detected.

Z

Y

X

Figure 4.4: A drawing of the T-REX setup including the laboratory frame described
in section 5.2. The target is represented by a red dot. Half of the detectors on the top
and left right side is omitted to give a view inside the detector. The beam is assumed
to follow the z-direction.

4.5.1 Silicon detectors

The silicon detectors in the T-REX are telescope detectors with a thin detector (∆E-
detector) in front of a thick one (E-detector). The advantage of two detectors in tele-
scope is the ability to make particle identification, described in section 7.2.1. Ideally
the particles go through the front detector and stop in the back one, hence the thinner
a front detector the better. The combined energy deposited in the two detectors cor-
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responds to the total energy of the incoming particle. The thickness of the ∆E- and
E-detectors can be seen in table 4.2.

The momentum vectors of the particles are required to calculate excitation energy
spectra, chapter 7. Hence the position within the detectors of the particles have to be
determined as well. This is done by using segmented detectors as ∆E-detectors. The
thick E-detectors are only used for measuring the energy and each one consists of
only one large pad (the E-detectors are sometimes called pad-detectors).

The T-REX setup consists of two types of ∆E-detectors with different segmenta-
tions. The eight detectors making up the side of T-REX are square detectors with an
active area of 50x50 mm2. The detectors are position sensitive detectors (PSD). The
front side of a PSD is divided into 16 strips while the backside is one big pad (not to
be confused with the E-detector). The PSD has one readout for each strip on the front-
side and one for the backside. The backside readout gives the total energy deposited
in the detector (∆E) while the front-side readouts give a signal indicating the position
in the corresponding strip. The front sides of the detectors have a resistant layer and
a readout in one end of each strip. If a particle hits a strip close to the readout the
current lost in the resistive layer is small and the front and back side readout are the
same. If a particle hits a strip in the end away from the readout all current is lost in
the resistive layer. Hence the signal from the front side ranges from 0 in one end to
∆E in the other, providing the position, section 5.4.

The annullar ∆E-detectors are divided into 24 strips (front side) and 16 rings
(backside). The position is determined by the strip and ring number, section 5.2.
The energy is determined from either the energy signal in the ring or the strip. An
energy difference between the two signals of less than 500 keV is required for signals
to be accepted as a true event.

Place in T-REX Detector Thickness [µm]
Barrel side PSD 140

Pad 1000
End-cap AD 500

Pad 500

Table 4.2: Detector types and thickness for the silicon detectors in T-REX

Details on the electronics will not be given in this thesis, for more information
see V. Bildstein et al. [Bil12]. In short terms the signals from the detectors are sent
through a preamplifier, an amplifier and an analog to digital converter (ADC). The
ADC number, the ADC channel number and the value of the signal (channel number
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in spectrum) are afterwards stored in data files. The ADC number and the ADC chan-
nel number provide information on the detector number and signal type (position or
energy), while the channel number of the signals provide the value of either the po-
sition or the energy. The channel numbers have to be converted to either position or
energy, which requires a calibration, chapter 5.

4.5.2 Germanium detectors

The MINIBALL setup consists of 8 clusters, each cluster contains three germanium
detectors (fig. 4.5), and each detector is divided into six segments giving the MINI-
BALL a high angular resolution. The high angular resolution is needed in order to
make doppler correction of the gammas, section 7.2.3.

Figure 4.5: A picture of a MINIBALL
cluster with the three segmented germa-
nium detectors. The detectors are the three
hexagons to the right. Each detector has
six triangular segments. The part to the
left is electronics and a container for liquid
nitrogen.

Each germanium detector has seven
readouts, one for each of the six seg-
ments and one for a common core. The
core gives the total energy deposited
in the detector while the segment read-
outs give the energy deposited in each
segment. As the gamma ray are scat-
tered in the detector, the energy of the
gamma can be divided between several
segments, hence the core signal is used
as the energy signal and the segment
signals are used to determine which seg-
ment the gamma hits, hence determin-
ing the position within the detector. If
the energy is divided between several
segments, the segment with the largest
energy signal is used as position. A
measurement of the position within a segment is not needed in this experiment.

4.6 Simulation

The lack of 4π-coverage and the non spherical structure of the T-REX makes the de-
tection efficiency for a given solid angle dependent on the angle. Rather than calcu-
lating the detection efficiency for all angles a simulation of the experiment is made.
The simulation code is written by V. Bildstein [Bil10] using Geant4 [Ago03] and the
g4miniball package [Boi09]. The simulation can simulate both transfer and scattering
reactions. N (106 is used in this experiment) reactions are produced with a flat dis-
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tribution in center of mass. The direction and energy in the laboratory frame of the
outgoing particles are determined from kinematics. The number of the detector and
strip, the particle hits (if any), is afterwards determined, and a root-file, containing all
information regarding each detected particle, is generated. The simulated data can
afterwards be analysed using the same program as the experimental data.

The flat distribution ensures, the number of recorded simulated particles, in a
given angle, is only dependent on the detection efficiency of the setup and not the
angular distribution. The number of detected particles in a given angle in the exper-
iment is, on the other hand, dependent on the angular distribution of the reaction
and the detection efficiency. The angular distribution of a reaction can be determined
by comparing the number of experimental detected particles with the number of de-
tected particles in the simulation, section 3.2.

The detailed structure of the beam can be set in the simulation, including the
spread in energy, the reaction depth in the target, the shape and offset of the beam,
and the angle and divergence of the beam. This is used to test and determine the de-
tailed structure of the experimental beam in chapter 6 and to improve the simulations
used to determine the angular distributions.

The simulations are also used in an attempt to determine the width of the lowest
lying resonance known in 12Be, section 10.3.





CHAPTER 5

Calibration

In this chapter, the calibration of the silicon and germanium detectors will be described. Cali-

bration of both the energy and the position signals are performed.

5.1 Signals from the detectors

The momentum vector for one of the outgoing particles is required to determine the
reaction type of each event. Four parameters ([x, y, z,E]) can be measured as de-
scribed in the last chapter, but the signals require calibration.

The energy and position calibration for the silicon detectors are done using an
α-source, described in section 5.3 and 5.4. The α-particles are stopped in the ∆E-
detectors and the light particles from the reactions of 11Be on deuterons are used to
calibrate the pad-detectors (E-detectors), section 5.5. An 152Eu source and the 11Be
beam are used for the energy calibration of the germanium detectors. The positions
of the germanium detectors are determined using a stable beam of 22Ne on a deuteron
target, all this is described in section 5.6.

Furthermore the detection efficiency of the MINIBALL has to be determined. The
efficiency has to be taken into account when producing gamma gated spectra, sec-
tion 7.2.3. The MINIBALL efficiency is determined by K. Wimmer [Wim10a] and will
only briefly be described at the end of this chapter.

5.2 The laboratory frame

The position ([x, y, z]) of an event should be given relative to the reaction point. The
laboratory frame is defined as shown in fig. 4.4. Origin is placed in the center of
the target, which is also the center of the T-REX. The z-axis is placed parallel to the
PSD’s and perpendicular to the AD’s. The y-axis is the vertical axis and the x-axis the
horizontal one perpendicular to the z-axis.

The beam is assumed to be moving along the z-axis and all reactions are assumed
to happen in origin. This assumption will be investigated in chapter 6 where the
structure of the beam will be determined. With this assumption the direction (angle

39
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and azimuthal angle) of the outgoing particle can be determined using the coordi-
nates of the event.

The position of an event in the lab frame is determined in two steps. First the
position in the detector (pos) is calculated, using the formulas described in the next
sections. Afterwards the position is transformed from the detector frame to the labo-
ratory frame. The transformation requires knowledge of the individual detectors po-
sition in the laboratory frame. The positions of the silicon detectors are determined
from the construction of the T-REX and the transformations are given by:

xPSD = 50 mm(pos − 0.5) cos(
π

2
Ndetector) + 29 mm sin(

π

2
Ndetector) (5.1)

yPSD = 50 mm(pos − 0.5) sin(
π

2
Ndetector) + 29 mm cos(

π

2
Ndetector) (5.2)

zPSD = ±(8 mm + 3.125 mmNstrip) (5.3)

θAD = arctan
(

9 mm + 2 mmNring

63 mm

)

(5.4)

φAD = −59.3411 mradNstrip + 712.09 mrad +
π

2
(1 −Ndetector). (5.5)

The detector numbers (Ndetector) are counted clockwise looking towards the beam
starting with 0 for the top detector. The sign on the zpsd component is dependent
on wether it is a detector before or after the target. A transformation from (x, y, z) to
(θ, φ), or the other way, is easily done.

The positions of the germanium detectors have to be determined individually,
which will be done in section 5.6.2.

5.3 Annular Detectors (AD)

First the four segmented ∆E-detectors that make up the end cap of the T-REX barrel
are calibrated. The calibration is performed by placing an α-source at the target po-
sition. The α-source consists of four emitters (148Gd, 239Pu, 241Am and 244Cm) with
α-energies 3182.7 keV, 5156.6 keV, 5485.6 keV and 5804.8 keV.

The signals from the AD’s are merged together two and two in the ADC’s to
reduce the number of ADC channels. The top and left AD, and the bottom and right
share the same ADC numbers and the same ADC channel numbers. Each pair has
a total of four ADC channels rather than 40 (one for each strip (24) and ring (16)).
Instead the strip and ring number are stored in an address signal (2 ADC channels:
a strip and a ring number). The energy signals of all strips and rings are stored in
two other ADC channels, one for the front (strips) and for the back side (rings). The
energy signal for a strip can be determined by making a gate in the address signal.

The address signal contains 32 peaks divided into two groups, fig 5.1. Each peak
represents a strip or ring, and each group corresponds to a detector. Channels from
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400 to 700 represents hits in either the top or bottom detector (dependent on the ADC
number) and channels 1000 to 1300 represents hits in the left or right detector. The
mean value of each peak (CN) is determined and a gate is made to determine the
strip/ring number:

N ∈ [CN − 6,CN + 6]. (5.6)

N is the strip/ring number.

400 600 800 1000 1200 1400
0

100

200

300

CN

N

Figure 5.1: The histogram showing the address from an ADC. Each peak represents
a strip in the top (400-700) or left AD (1000-1400).

The energy calibration is done with a simple linear relation:

∆E = a∆E(C∆E − b∆E). (5.7)

C being the channel number in the spectrum. Fig. 5.2 shows a linear fit using the
four known energies from the α-source. The energy calibration is performed for each
strip and ring in each detector. A channel number spectrum is generated for each
strip/ring by using the address gates, eqn. 5.6. The channel numbers corresponding
to the four α-energies are determined using a gaussian fit to the four peaks in the
channel number spectra, not shown here.

5.4 Position Sensitive Detectors (PSD)

The position sensitive detectors, that make up the four sides of the T-REX barrel are
described in section 4.5.1. The PSD’s have 17 readout each, one for each of the 16
strips providing the position in the strip, and one from the rear side providing the
energy, section 4.5.1.
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Figure 5.2: A linear fit to the four α-energies for strip 0 in the top AD.

The resistive front layer provides a signal ranging from 0 to ∆E dependent on the
position in the strip. The position signal is divided by the total energy, making the
range 0 to 1 to generate a common scale of the position signal for each event. The
calibration of the position is then:

Pos =
apos(Cpos − bpos)

∆E
. (5.8)

Cpos is the channel number for the position and ∆E is the calibrated energy signal. It
is clear that the position signal is dependent on the energy signal. Unfortunately the
energy signal is also dependent on the position signal as shown in fig. 5.3. The figure
shows the backside signals as a function of the front-side signals for two PSD’s. The
total detected energy is reduced for the particles dependent on the position in the
strip, due to the resistivity in the detector. The relation between the channel number
and the energy is no longer linear but given by:

∆E = a∆E

(

C∆E − btilt

atilt(1 − Pos) + 1
− b∆E

)

. (5.9)

Here Pos is the calibrated position signal and C∆E is the energy channel number. All
a’s and b’s are numbers to be determined in the calibration (tilt refers to the tilting
of the lines in fig. 5.3). The strong dependency between the energy and the position
signal makes an iterative process necessary to calibrate the PSD detectors.

The calibration is further complicated in the four forward PSD’s due to the Mylar
foil in front of them, section 4.5.1. The energy loss of the α-particles in the Mylar is
dependent on the incoming angle giving a further dependency between the energy
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Figure 5.3: Two plots showing the strong dependency between the position signal
and the energy signal in the backward (A) and forward (B) PSD’s.

and the position, fig. 5.3B. The three peaks are bent, rather than straight like in the
backward PSD’s. Furthermore, only three peaks are detected. The α-particles with
the lowest energy are stopped in the Mylar foil.

5.5 Pad detectors (E-detectors)

The pad detectors only provide an energy, hence no position calibration is done.
The energy calibration is inspired by the ∆E−E plots used to distinguish protons

from deuterons etc. in section 7.2.1. A clear relation, between the energy deposited in
the ∆E- and the E-detector, exists. The relation is dependent on the particle type, the
energy of the particle and the angle between the particle and the detector (θdet). The
energies of the α’s from the α-source used to calibrate the energy of the ∆E-detectors
are not strong enough to enter the pad detectors. Instead particles from the reactions
of 11Be on deuterons are used. The reaction produces both protons, deuterons and
tritons. Spectra of the channel numbers are made gated on various intervals in θdet

(strip number) and ∆E. The spectra contain two or three peaks corresponding to pro-
tons, deuterons and tritons, or one or two of them. Fig. 5.4A shows two pad energy
spectra taken from the top detector strip 0 with the following gates:

1.95 MeV ≤ ∆E ≤ 2.05 MeV (5.10)

2.95 MeV ≤ ∆E ≤ 3.05 MeV (5.11)

A strong peak at 0.5 MeV (protons) and a weak one at 1 MeV (deuterons) are seen for
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the spectrum with a ∆E ≈ 2 MeV gate. Three peaks are seen in the spectrum with a
∆E ≈ 3 MeV gate representing the three particles. The shifts in energy of the proton
and deuteron peaks between the two spectra are clearly seen. A third gate around
∆E ≈ 4 MeV is made as well. Energy spectra are generated for the three gates in all
strips in each detector and as many peaks as possible are determined for each spectra.
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Figure 5.4: (A) Two histograms of channel numbers made with two gates on the ∆E-
signal; Red: ∆E ≈ 3 MeV, Blue: ∆E ≈ 2 MeV. All three particles are seen at 3 MeV,
only the two lightest are seen at 2 MeV. (B): A linear fit to all the identified peaks in
one of the four forward PSD’s.

The corresponding energies have been determined using SRIM [Zie83], and a
linear fit is made using peaks from all gates and strips in a detector, fig. 5.4B. The
large uncertainty in the channel number for each peak in, fig. 5.4A, is compensated
by the large amount of points in fig. 5.4B, and a linear relation is clear.

5.6 Germanium detectors (MB)

The 24 germanium detectors in the MINIBALL all have six segments and a core.
The core gives the total energy in the detector, and the segments provides a better
determination of the position of the detected gamma. Pulse shape analysis could
be used to determine the position of the gamma in the segments [Des05]. This is not
done in this analysis, the angular resolution given by using the centre of the segments
is sufficient to make a doppler correction of the gammas, chapter 7.
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5.6.1 Energy calibration

The gammas from the experiment ranges in energy from 300 keV to 6 MeV, requiring
a long energy range for the germanium detectors. Thus the energy calibration is made
with two sources. A low energy source (152Eu) providing gammas from 121 keV to
1400 keV. The 152Eu source was placed in the target ladder like the α-source in the
previous sections. The high energy source was 11Be produced by the REX-ISOLDE
and stopped in an aluminum target, section 4.4. 11Be provides gammas from 2100 keV
to 6800 keV [Mil82]. The gamma energies for the two sources are given in table 5.1.
The corresponding channel numbers are found by gaussian fits in channel number
spectra. An energy calibration is made for each segment and core using a linear
relation between the channel number and the energy.
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Figure 5.5: A linear fit to the 16 gamma energies for one of the germanium cores.

5.6.2 Position calibration

The position of each segment relative to the target has to be determined. This is done
using gammas from a d(22Ne,p)23Ne reaction. A proton gated gamma spectrum is
made for each segment and the gammas from the strongest line is identified, fig. 5.6.
The strongest line is known to be the 1/2+ → 5/2+ transition in 23Ne with a gamma
energy of E23Ne = 1016.85 keV. The angle of the segments can then be determined
from the doppler shift:

θ = arccos
(

1
β

(

1 −
E23Ne

γE′

))

. (5.12)

E′ is the doppler shifted gamma energy, corresponding to the mean value of the peak
(fig. 5.6) and β and γ are the relativistic factors determined from the energy and angle
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152Eu 11Be
121.781 2124.47
244.698 4154.90
344.279 4665.90
778.904 5340.47
964.079 5851.47
1085.87 6278.81
1408.01 6789.81

Table 5.1: Eγ for the gamma sources used to calibrate the germanium detectors. All
values are in keV.

of the proton:

γ =
TA +Q − Tb − TB +mBc2

mBc2 (5.13)

β =

√

1 −
1
γ2 . (5.14)

A, b and B refer to eqn. 3.1 and are here 22Ne, p and 23Ne respectively. TB is calculated
from momentum conservation (eqn. 7.5).

5.7 MINIBALL efficiency

The last component to be determined for the detectors is the MINIBALL detection
efficiency. The efficiency calibration of the MINIBALL is done with four different
gamma sources, 152Eu, 60Co, 207Bi and 11Be. The activity is known for the first two
sources and the MINIBALL efficiency can be determined from the number of detected
gammas and the run time, fig. 5.7. These two sources (152Eu and 60Co) only provide
gamma energies up to 1400 keV, and the efficiency is needed up to 6 MeV. 11Be is
used to determine the high energy efficiency, producing gammas up to 6.8 MeV, ta-
ble 5.1. The activity of 11Be is unknown, hence only the relative intensity between
individual gamma lines in 11Be can be determined. The relative intensities are then
scaled to overlap with the efficiency from the other sources. 207Bi provides gamma
energies between the ones from 11Be and the ones from the low energy sources. The
activity of 207Bi is also unknown, and is scaled to overlay with the low energy gamma
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Figure 5.6: Two gamma energy spectra made from the d(22Ne,p)23Ne reaction. A
peak close to 1016 keV, but slightly shifted, is seen in both spectra. The spectra are
made from a detector placed before (red) and after (blue) the target.

efficicencies. A fit to the following function taken from RadWare [Rad95] is made:

εMB = exp
(

[

(A + Bx + Cx2)−G
+ (D + Ey + Fy2)−G

]−1/G
)

(5.15)

with:

x = log(E/100keV)

y = log(E/1000keV).

The parameters will not be given here, but the determined efficiencies for the four
sources along with the fit is shown in fig. 5.7. The MINIBALL efficiency for each of
the detected gammas in the transfer experiment is determined. The efficiencies are
shown in table 5.2.



48 Chapter 5. Calibration

0 1000 2000 3000 4000 5000 6000 7000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
B

Eu

Co

Bi

Be
ε

[%
]

E    [keV]γ 

152

60

207

11

Figure 5.7: The detection efficiency of the MINIBALL as a function of the gamma
energy. The measured efficiencies are marked for the individual sources. The dotted
line represents the best fit.

Nuclei γ εMB

[keV] [%]
511 8.2

12Be 2100 3.5
2700 3.0

11Be 320 12
219.2 14
2600 3.2

10Be 2900 2.8
3300 2.5
6100 1.5

Table 5.2: The MINIBALL efficiency for each of the gamma lines in 10,11,12Be.



CHAPTER 6

Beam diagnostic

In this chapter it will be demonstrated how coincidence events from direct reactions can be

used to determine the structure of a radioactive beam. The technique will be used on the 11Be

beam in order to improve the transfer reaction analysis.

6.1 Coincidence events

The momentum vector of the detected particles can now be determined, with the
detectors calibrated. Next step is to fully understand the momentum vectors of the
beam particles. This can be done by using coincidence events. The setup is designed
to detect the light particles (p, d and t) and let the heavy fragments slip through to a
beam dump, but in some cases it is possible for the heavy nucleus to be detected in
the annular detectors, who covers angles down to 8 degrees. Fig. 6.1 shows the re-
lation between the angles of the two outgoing particles for the three main reactions.
Only the reactions populating the ground state of the final nucleus is shown, as they
provides the largest outgoing angles. The angles covered by the T-REX is marked as
grey areas in the plot. The plot shows that coincidence of both 11Be+d and 10Be+t is
very likely. Only the d(11Be,t)10Be events are used in this chapter to simplify the anal-
ysis as much as possible, especially when determining the beam energy, section 6.2.4.
The statistic is still plentiful.

The angular range of the light particles is limited in coincidence events compared
to single particle events due to the requirement of a minimum eight degree angle
for the nucleus. The statistic of these coincidence events is also much lower than
in single particle events (one third for the (d,t) reactions), which makes them less
suitable for determining angular distributions and differential cross sections. Instead
the coincidence events can be used to determine the shape and structure of the beam.
There is a complete knowledge about the total energy and momentum of the final
state in a coincidence event. The complete kinematic enables a study of the energy
and momentum vector of any of the in- or outgoing particles. In this chapter the
incoming particle (11Be) will be studied. The information about the beam gained from
coincidence events can then be used to improve the analysis of the single particle
events and the simulation of the reaction.

49
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Figure 6.1: The outgoing angle of the heavy fragment (θB) as a function of the outgo-
ing angle of the light particle (θb). The three lines in the plot represents: Blue: (d,t),
Red: (d,d) and Black: (d,p). The grey area represent the area covered by the T-REX,
the dotted line indicate the distinction between the AD’s and the PSD’s.

6.2 Beam characterisation

The characterisation of the beam is done in three steps. First the width and offset
of the beam are determined from the azimuthal angle of the two outgoing particles.
Secondly the incoming angle and divergence of the beam are determined. Finally the
beam energy is determined in two ways.

The order of these steps is determined by the inter-dependency of the quantities.
The displacement can be determined independently of the incoming angle and the
beam energy, while the two others are very dependent on the displacement and width
of the beam, as it will be shown in section 6.2.2 and 6.2.4.

The analysis is derived for a general reaction of the type seen in eqn. 3.1 and
tested on simulations before applied to the experimental data in section 6.3.

The outgoing angles of the particles are calculated using eqn. 5.1-5.5 and assum-
ing the reaction occurred in origin. If this is not true, the angles derived are wrong.
The beam is characterised by looking at the errors caused by this assumption.
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6.2.1 Beam width and offset

The beam width and offset can be determined by calculating the error in the x and y

coordinates of the two particles. The principle is to use the azimuthal angles (φ) of
the two outgoing particles. The azimuthal angles are given by:

φ = tan
y

x
. (6.1)

It is clear that φ is independent on energy, z and the incoming angle, making it ideal
to determine the offset of each event. The two outgoing particles will move back to
back in the center of mass frame (CM) due to momentum conservation. This leads to
the following relation for the azimuthal angles in CM:

|φb − φB| = π. (6.2)

This relation is unaffected by the transformation from CM to the laboratory frame,
as the transformation is done along the beam axis, changing only θ’s. The transfor-
mation is slightly dependent on the incoming angle. The effect is negligible though,
as it will be shown from the simulations. Combining the two equations we get the
following relation:

yb

xb
=

yB

xB
. (6.3)

If this relations does not hold for an event, the x- and y-values are wrong, implying
that the reaction did not occur in origin but at a point we will note as (xA, yA) to
indicate it is the x- and y-value of the incoming particle. The equation is made into a
function of xA and yA to determine the offset:

yb − yA

xb − xA
=

yB − yA

xB − xA
. (6.4)

This gives a linear relation between the offset in the x− and y−direction. The off-
set is assumed to be as minimal as possible, leading to the following minimization
problem:

min(x2
A + y2

A), (6.5)

which can be solved using a Lagrangian multiplier:

xA =
xbyB − xByb

(yb − yB)2 + (xb − xB)2 (yb − yB) (6.6)

yA =
xbyB − xByb

(yb − yB)2 + (xb − xB)2 (xB − xb). (6.7)

The offset for each coincidence event can now be determined using these two equa-
tions. The form of the beam can be illustrated by plotting xA vs. yA (xy-plots).
Fig. 6.2 shows xy-plots for four simulations with parameters shown in table 6.1. The
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Sim. wA sA(x, y) (θA,φA) ∆A E∗

(mm) (mm) (mrad) (mrad) (MeV)
A 0 (0,0) (0,0) 0 0
B 5 (0,0) (0,0) 0 0/3.31
C 5 (-1,0) (0,0) 0 0
D 5 (0.0) (87,0) 0 0

Table 6.1: The beam structure for the four Geant4 simulation used to check the tech-
nique. All simulations are made with a uniform distribution on a disc in the xy-plane.
w is the diameter, s is the offset, θ is the incoming angle and ∆ the divergence of the
beam. E∗ is the excitation of 10Be.

A-D corresponds to the ones in table 6.1. Fig. 6.2A shows the analysis of the simula-
tion with a thin beam. The width of the spot in fig. 6.2A arises from the uncertainty in
the x- and y-values of the AD. The same effect is seen in fig. 6.2B, where the spot size
of 6 mm diameter is again 1 mm to large. All this indicates an uncertainty of 1 mm
in the diameter coming from the uncertainty in the AD strip sizes. The effect of an
increased beam width is clear though. Two things should be noted.

First, the distribution in fig. 6.2B is peaked at (0,0) rather than uniformly dis-
tributed, indicating that the assumption of a minimal shift is too strong. This makes
it difficult to give a description of the distribution of the beam. Simulations with
different distributions have to be performed to see the effect of the distribution. A
gaussian distribution with a FWHM width of 5 mm is compared to simulation B in
fig. 6.3. The projections on the x-axis (xA) are shown as well. The clear difference in
the two plots indicates a possibility for a rough estimate of the distribution. It will be
shown in section 6.3, that the experimental data is closest to a uniform distribution,
hence the gaussian simulation will not be used more in this chapter.

Secondly, the shape of the peaks are determined partly by the shape of the beam
and partly by the setup. The T-REX setup lacks detectors close to φ = π/4 + Nπ/2,
which causes the missing events at x = ±y in fig. 6.2. A setup with 4π angular cover-
age would produce a perfect circle for a circular beam spot, as used in the simulation.
The circular shape is easily seen, even without the last part.

The total offset can also be determined, illustrated in fig. 6.2C. Comparing fig. 6.2B
and C the two spots are identical except the latter is shifted -1 mm in x correspond-
ing to the shift added to simulation C. This shows that a shift in the beam will be
detected with this technique. Once again the beam spot is peaked at (0,0) in fig. 6.2C,
confirming the insensitivity to the detailed distribution of the beam spot. The final
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Figure 6.2: A plot of xA vs. yA for the four simulations in table 6.1. A-D refers to the
simulation numbers. The shape of the peaks are caused by the setup, which does not
cover 4π.

simulation, fig. 6.2D, is made to illustrate the independency of the incoming angle.
Comparing fig. 6.2B and D no difference is seen despite the large incoming angle in
simulation D. This shows no or a negligible effect on the angle of the incoming beam.
Furthermore, fig. 6.2B shows the independency on the excitation energy of the final
nucleus. Half of the events in simulation B is performed assuming a population of
the first excited state in 10Be, and no effect is seen in fig. 6.2B.

In conclusion, the width, shape and offset of the beam can be determined using
only the x- and y-coordinates of the two outgoing particles. The uncertainty in the
width is ∆w = 1 mm and much lesser for the offset.
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Figure 6.3: xy-plots for a uniform distribution (A+C) and a gaussian (B+D). A+B
shows the 2D plot while C+D shows histograms of xA. The difference in distribution
is clearly seen.

6.2.2 Divergence and direction of the beam

The direction of the beam can be determined from momentum conservation. The
momentum vector of the beam is given by adding the momentum vectors of the two
outgoing particles:

~PA =
~Pb +

~PB (6.8)

with the momentum vectors of the outgoing particles given by:

~P =

√

2mE

x2 + y2 + z2 (x, y, z). (6.9)
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The incoming angle and azimuthal angle is then given by:

tanθA =

√

(Px
A

)2 + (Py

A
)2

Pz
A

(6.10)

tanφA =
P

y

A

Px
A

. (6.11)

The incoming angle (θ) and the azimuthal angle (φ) for each beam particle can be
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Figure 6.4: A plot of θA cosφ vs. θA sinφ for the four simulations in table 6.1. A-D
refers to the simulation numbers.

determined by combining the four equations. This way the x- and y-component of
the angle can be determined by θx = θ cosφ and θy = θ sinφ. The dependency on all
eight observables can lead to large uncertainties in the results.

The angle have been calculated for the four simulations from table 6.1. Fig. 6.4
shows a θx vs. θy plot for the four simulations. The large effect of the width of the
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beam on the calculated angle is clearly seen. The effects of the energy and z-position
can be ignored in the simulations and it will be shown in section 6.3 that the effect is
negligible when applying this technique to the experimental data. Fig. 6.4A shows
that the uncertainties in x and y lead to a 35 mrad uncertainty in θA for each event
individually. Combining all events and looking at the total spectrum reduces the
uncertainty to a few mrad. The depency on x and y is confirmed by simulation B.
The width of the beam leads to a significant spread in the calculated incoming angles
(∆θA = 70 mrad), fig. 6.4B. The comparison of fig. 6.4C and D shows the difference
between an offset in the beam and an incoming angle in the beam. The offset is
transformed into an offset in the calculated incoming angle, while an angle will lead
to a spread in the calculated angle. The large spread in fig. 6.4D indicates that the
framework for the incoming angle breaks down at large angles.

To reduce the influence of the beam width and offset on the calculated divergence
and direction of the beam the former should be determined before calculating the
angles.

6.2.3 Combining the offset and the angle measurements

The strong dependence of the beam width on the incoming angle shown in sec-
tion 6.2.2 can be investigated further and the resolution on the determined incoming
angle can be improved. This will be done in this section.

Fig. 6.5 shows a plot of the xA-value determined in section 6.2.1 vs. θx deter-
mined in section 6.2.2 for the four simulations. A similar plot can be made for the
y-components, which will not be shown, as the interpretations are similar to the ones
for the x-components. Ideally these plots would show the emittance of the beam, but
from fig. 6.5A it is clear that experimental resolution effects must be understood first.
The beam in fig. 6.5A has 0 mmmrad emittance. The extra width in the plot is caused
by the same uncertainties seen in fig. 6.2 and 6.4. Instead the plots can be used to
determine the offset, width, angle and divergence independently.

Each plot can be interpreted as having two stretched components, a vertical one
at xA = 0 mm and a diagonal one (θx ≈ 25xA). The two components are centered
around (0,0) for simulation A and B, as expected. The diagonal in fig. 6.5C is shifted
−1 mm in x compared to fig. 6.5B, indicating that an offset in the beam will lead
to a shift in the diagonal component corresponding to the offset of the beam, and
only a minor shift in the vertical one. An angle in the beam will on the other hand
affect the vertical component, as shown in fig. 6.5D, but not the diagonal one. The
vertical component in fig. 6.5D is centered at θx ≈ 80 mrad, compared to the 87 mrad
used in the simulation. Furthermore, a width in the beam will stretch the diagonal
component while a divergence in the beam will stretch the vertical component, hence
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Figure 6.5: A plot of xA vs. θA cosφ for the four simulations in table 6.1. A-D refers
to the simulation numbers.

all four parameters (offset, width, angle and divergence) can be determined from a
xA vs. θx plot.

The two components are an effect of the setup, and with a setup covering 2π
the two components will merge into one. The two components can be separated by
gating only on light particles hitting the left or right PSD, or the top and bottom. This
is done for simulation C, and can be seen in fig. 6.6. It is clear from fig. 6.5 and 6.6, that
the top and bottom PSD’s should be used to determine the offset in the x-direction
(xA) and the left and right PSD’s should be used to determine the x-component of the
incoming angle. The opposite is the case for the y-components. Ideally only particles
detected in the xz-plane should be used to determine θx and yA, due to the large
sensitivity to these two components and the insensitivity to θy and xA. Likewise,
only particles in the yz-plane should be used to determine θy and xA.

Thus an xA vs. θx and a yA vs. θy plot will be used to determine the angle and
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Figure 6.6: A plot of xA vs. θA cosφ for simulation C. (A) is from tritons hitting the
left or right PSD. (B) is tritons hitting the top or bottom PSD.

divergence of the experimental beam in section 6.3.

6.2.4 Beam energy

The beam energy is determined in two ways, using first energy and then momentum
conservation. In both cases the beam energy is determined at the reaction point,
assumed to be in the center of the target. The beam energy before the target can then
be calculated by adding the energy lost in the target before the reaction.

Energy conservation gives:

TA = Tb + TB + E∗ −Q. (6.12)

E∗ is the total excitation energy of the outgoing particles, but normally only B is ex-
cited. In this experiment only 10Be can be excited. The excitation energy cannot be
directly measured, hence the beam energy minus the excitation energy is calculated
instead, and then a correction for the excitation energy is made afterwards:

E = TA − E∗ = Tb + TB −Q. (6.13)

The advantage of this method is the independency on the position of the reaction,
the only uncertainties arises from the energy of the particles and the energy loss in
the target. The disadvantage is the required need of information about the excitation
energy.

The second method is calculating the beam energy from:

TA =
(Px

A
)2
+ (Py

A
)2
+ (Pz

A
)2

2mA
. (6.14)
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The momentum vector is calculated using eqn. 6.8. This method gives the beam en-
ergy, but it is dependent on the position of the reaction, making the uncertainty de-
pendent on the width of the beam.

Fig. 6.7 shows the calculated beam energy from simulation B in table 6.1. In the
simulation half of the events populate the ground state of 10Be and the other half pop-
ulate the first excited state (E∗ = 3.31 MeV). The beam energy is set to TA = 31.35 MeV
at the reaction point. Fig. 6.7A is the energy calculated using energy conservation.
Two peaks are shown at 31.24 and 27.90 MeV with widths 0.150 and 0.157 MeV re-
spectively. The lowest peak is from events populating the excited state in 10Be, and it
is lowered with 3.3 MeV corresponding to the excitation energy as expected. Fig. 6.7B
shows the energy determined from momentum conservation, only one peak emerges
as the method ignores the excitation energy, but the peak is broader than the two
in fig. 6.7A due to the uncertainty in the xy-plane. The energy calculated with the
second method is 31.45 MeV with a 0.5 MeV width. The beam energy set in the sim-
ulation is within the error of all three reconstructed energies proving the validity of
the two equations.
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Figure 6.7: Spectra of the incoming energy determined from energy conservation
(left) and momentum conservation (right). The spectra are made from simulation B.

Which method to use depend on the reaction, the setup and information known
about the final states. The first method requires a clear information about the excita-
tions of the final nuclei and has a stronger energy dependency. The second method is
limited due to the beam spot. The methods can also be used together for confirmation
as it will be done in section 6.3.

In conclusion the beam energy can be determined within 0.2 MeV with both meth-
ods. The spread in the energy determined using momentum conservation is affected
by the beam width. A beam width of 5 mm leads to a FWHM energy spread of
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∆E = 0.5 MeV.
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Figure 6.8: A xy-plot of the experimental data from the d(11Be,t)10Be reaction. The
plot should be compared to the plots in fig. 6.2 and fig. 6.3

6.3 Experimental data

The method will now be applied to the d(11Be,t)10Be data of the experiment.
The first step is determining the beam width, offset and shape. Fig. 6.8 shows a

plot of the calculated xA’s and yA’s, both 2D and projections. Only the outline of the
plot is useful, hence no z-color is used. Comparing the projections with fig. 6.3C+D
shows indications of a round beam spot with a uniform distribution and a small
gaussian tail. The uniform distribution, that makes up the main part of the beam, has
a diameter of 6 mm and is shifted −1.3 mm in the x-plane. The tail arises partly from
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particles in the beam halo and partly from beam particles scattered on the edge of an
8 mm collimator placed 176 mm before the target.

To determine the incoming angle and the divergence of the beam a plot similar to
the ones in fig. 6.5 has to be made, both for the x- and y-component, fig. 6.9A and B.
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Figure 6.9: A plot of xA vs. θA cosφ (A) and yA vs. θy (B) for the experimental data
and for simulation using a beam with wA = 6 mm, sA = −1.3 mm, θA = 20 mrad and
φA = π/2 rad (C) and (D). In order to avoid saturation in the scatter plot, only one
third of the data is plotted.

The incoming angle is determined first from the vertical components. θx is shifted
20 (5) mrad compared to simulation C, while θy is centered around zero. This indi-
cates an incoming angle of θA = 20 (5) mrad towards the left.

A simulation using the determined value of the beam width (wA = 6 mm), offset
(sA = −1.3 mm) and angle (θA = 20 mrad) is made to determine the divergence. The
x vs. θx and y vs. θy for the simulated data is plotted in fig. 6.9C and D respectively.
The difference between the simulated and the experimental data is caused by either
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the tail of the beam width (the diagonal component) or the divergence (the vertical
component). The majority of the events in the experimental and the simulated data
are placed within the same area, confirming a beam spot of 6 mm shifted −1.3 mm in
x and with an incoming angle of 20 mrad. This also indicates a very small divergence
of the beam, and an upper limit is set to ∆θ ≤ 30 mrad. Small tails in both width and
divergence are present, but they drop off very rapidly.

The determined values for the beam structure have been compared to emittance
measurements performed on the REX-ISOLDE using a stable beam [Vou09]. The
measurement was performed using an emittance meter and a beam of 20Ne accel-
erated to 2.85 MeV/u. The result was an rms emittance of . 2.8 mmmrad, this leads
to a prediction of just a few mrad of beam divergence at the target with a beam width
og 6 mm. This is much lesser than the limit set by the coincidence events, but still
consistent.

The beam energy has been determined using both methods described in section
6.2.4, the plots of the beam energies can be seen in fig. 6.10. Method one, using energy
conservation, produces three peaks as expected. 10Be has six bound states, but the
four highest are separated with only 300 keV, making them indistinguishable in the
analysis, see fig. 2.4. Method two, using momentum conservation, only produces
one peak. The mean values and widths of the peaks are determined by a gaussian
fit. The calculated energies along with the statistical uncertainties given by the fits
can be seen in table 6.2 and the energy spreads in table 6.3. A wide distribution at
low beam energies is seen in both methods, this is from reactions on the carbon in the
polyethylene target. This will be investigated in details in section 6.5.
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Figure 6.10: The beam energy from the experimental data, determined from energy
(left) and momentum (right) conservation.
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The width of the beam should lead to a larger width in method two, but the
four peaks have comparable widths and all four peaks are much wider than the ones
from the simulations (fig. 6.7). The average energy spread from the four peaks is
∆E
E = 5 %. This is higher than a previous determined beam spread measured using

silicon detectors at REX-ISOLDE [Zoc12]. The beam energy was measured there for
a 300 keV/u stable beam. The beam spread was determined to ∆E

E = 0.5% and an
additional spread of ∆E

E = 1.4 % was seen, caused by the silicon detectors. An increase
in energy to 2.85 MeV/u should not increase the total beam spread from 2 % to 5 %.
This indicates a new dominating effect.

The large energy spread is expected to stem from a large uncertainty in the reac-
tion depth. The beam energy is calculated assuming the reactions occurring halfway
through the target. If the reaction happens in the beginning (or end) of the target,
the energy loss corrections are wrong. The effect of the reaction depth has been in-
vestigated by calculating the beam energy using the experimental data assuming a
reaction at three depths in the target; in the beginning of the target, in the middle and
at the end of the target, fig. 6.11. The mean values are determined with gaussian fits
and the energy loss in the target before the reaction is added. The calculation showed,
that the uncertainty in the reaction depth leads to an uncertainty of ∆Ein = 0.8 MeV in
the reconstructed beam energy. Including this effect along with the uncertainty from
the silicon detectors may account for most of the observed energy spread.
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Figure 6.11: The beam energy calculated from momentum conservation using the
experimental data, and assuming a reaction in the beginning (green), in the middle
(red) and in the end (blue) of the target.

The expected beam energy of 31.35 MeV is within the uncertainty of the mea-
sured value, though slightly higher. The expected value of 31.35 MeV is calculated
by extrapolating a beam energy measurement at 300 keV/u to 2.85 MeV/u. The mea-
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surement at 300 keV/u is a precise measurement performed on a stable beam [Zoc12].
The extrapolation will lead to an uncertainty in the provided beam energy, which is
higher than the uncertainty from the coincidence events. Making the values deter-
mined from coincidence events more reliable.

The overall structure of the beam is now determined, next step is to look at the
fluctuations in the beam throughout the experiment and determining the beam in-
tensity.

Met. Mean E∗ Treac Tin

(MeV) (MeV) (MeV) (MeV)
29.685(6) 0.00 29.685(6) 30.800(6)

1 26.257(5) 3.31 29.567(5) 30.690(5)
23.486(3) 6.1 29.586(3) 30.707(2)

2 29.576(3) – 29.576(3) 30.698(3)

Table 6.2: Table of the mean values from a gaussian fit to the four peaks shown in
fig. 6.10 including the statistical uncertainty. The determined values are calculated
into beam energies at the reaction point (Treac) before the beam energy is determined
by correcting for the energy loss in the target (Tin). Only uncertainties from the gaus-
sian fit is given in the table.

Method σ ∆EFWHM

(MeV) (MEV)
0.656(6) 1.54(1)

1 0.625(4) 1.47(1)
0.546(3) 1.29(1)

2 0.756(3) 1.78(1)

Table 6.3: Table of the sigma of a gaussian fit to the four peaks shown in fig. 6.10. The
spread in the beam energies is determined from σ.

6.4 Beam intensity

The beam intensity is needed to calculate the differential cross section, section 3.2.
The elastic scattering cross section is mainly nuclear, section 8.2. Hence the elastic
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channel cannot be used to determine the beam intensity. Instead six runs with a silver
target have been performed throughout the experiment. These reactions are below
the coulomb barrier and the elastic scattering can be used to determine the beam
intensity. The beam intensities from the six measurements can be seen in table 6.4.

The beam intensity will fluctuate during the experiment. To see this fluctuation a
plot of detected particles (p, d and t) pr. minute for each run are plotted as a function
of the file number (timescale), fig. 6.12. The plot shows a very intense beam at the
beginning of the experiment, but the intensity slowly drops during the experiment.
The six measurements of the intensity is also indicated in the plot. The number of de-
tected deuterons pr. incoming 11Be is determined by taking the number of detected
deuterons pr. second from a run next to an intensity measurement, and divide by the
beam intensity. The values are given in table 6.4. There is a significant fluctuation in
the calculated ratios especially in the first (I) measurement. The first measurement
is taken with a very intense beam, fig. 6.12, and the low beam intensity value is ex-
pected to be caused by deadtime due to the high intensity, hence this measurement
is ignored. An average value for the last five is made:

Nd

N11Be
= 0.76(17) · 10−6. (6.15)

The total number of 11Be’s on the deuteron target can then be calculated by taking the
total number of detected deuterons (Ntotal

d = 842400) and dividing it with the ratio,
giving:

Ntotal
11Be = 1.11(25) · 1012. (6.16)

Run Ibeam
Nd

N11Be

[106 /s] [·10−6]
I 3.93 2.3
II 6.12 0.86
III 5.52 1.0
IV 6.06 0.72
V 5.23 0.69
VI 4.46 0.55

Table 6.4: The measured beam intensities from runs with 11Be on Ag, and the calcu-
lated ratio between number of incoming 11Be and number of detected deuterons.

The beam intensity clearly changes during the experiment, but does the beam
structure? The technique to determine the beam structure described in this chapter is
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Figure 6.12: The number of detected protons (black), deuterons (red) and tritons
(blue) pr. minute for each run on the deuteron target. The time of the beam intensity
measurements are marked with vertical lines.

applied to small parts of the data to investigate this. The x vs. y plots at three different
times during the experiment; in the begining (run 1-5), the middle (run 21-26) and at
the end (run 59-65), are showed in fig. 6.13. No changes are seen and it seems only
the beam intensity changes during the experiment.

6.5 Background from contaminants in the target

With the detectors calibrated and under control, and the structure and energy of the
beam determined, the only part left to understand, before calculating the differential
cross sections, is the target.

The primary target is deuterated polyethylene, which contains, beside deuterons,
carbon and protons. 11Be can react with the protons and the carbon nuclei and pro-
duce protons, deuterons and tritons, which will form as a background in the analysis.
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Figure 6.13: Plots of the beam width at different times during the experiment. A: The
begining of the experiment with the intense beam. B: In the middle of the experiment
at the time of large fluctuations in the intensity, C: In the end with a stable but low
intensity beam.

An example of the background has already been seen in fig. 6.10, but it will be even
more eminent when calculating excitation energy spectra, chapter 7. It is crucial to
understand the background, in order to get the right normalisation and angular dis-
tribution. The coincidence events have proven extremely effective in the understand-
ing of the background from contaminations in the target. While the background and
the real events are strongly entangled in the single particle events (fig. 7.3), in coinci-
dence events the two are clearly separated. Fig. 6.10 shows a clear separation between
the peaks from (d,t) events and the broad, low energy, distribution from reactions on
carbon in the target.

Runs have been performed in this experiment using a target of pure carbon and
a regular polyethylene target in order to determine the background, section 4.4. The
data from these runs are analysed separately, assuming the events are from 11Be+d
reactions. This will generate distributions similar to the background in the reactions
on deuterated polyethylene. The distributions have to be scaled, to take into account
the difference in run time and number of nuclei in the different targets. Normally
the background distributions are scaled to fit the single particle events, but the en-
tanglement can lead to a large uncertainty. The coincidence events are used in this
experiment instead. The beam energy is calculated for all coincidence events with
identified deuterons and tritons assuming d(11Be,d)11Be and d(11Be,t)10Be reactions.
The calculations are done for all three targets (CD2, C and CH2). The deuterons are
used to determine the background from protons in the target. The number of tritons
produced in the runs on the proton target ((p,t) reactions) are too few to give a re-
liable result. The statistic from the (p,d)-reactions are much higher. Fig. 6.14 shows
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the calculated beam energies for the three targets. Both energy (left) and momentum
(right) conservation are used for (d,t) (top) and (d,d) (bottom).
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Figure 6.14: TA calculated from energy (A+C) and momentum (B+D) conservation
using coincidence events with identified tritons (A+B) and deuterons (C+D). The
three spectra are made with data from three different targets; blue: CD2, red: C and
green CH2.

The broad distribution is clearly from reactions on carbon nuclei in the target, and
is used to determine the scaling factor for the carbon target data:

rund = 7.5runC (6.17)

A rough estimate of the ratio between carbon nuclei and deuterons in the target can
be given, by taking the scaling factor times the ratio between the total lengths of the
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runs. A scaling of 7.5 % corresponds to a ratio of:

N12C

Nd
= 0.53 (close to 1:2 as expected). (6.18)

Determining the scaling factor for the proton target data is more complicated.
Only the deuteron data can be used. A peak at 31 MeV is seen in the deuterated
polyethylene data, which is caused by reactions from either carbon or protons in the
target. The carbon data contributes to the peak but cannot reproduce the total peak
with the scaling factor determined from the broad distribution. The rest is either the
tail of the main peak at 29.56 MeV or reactions on protons. The peak from the proton
data (scaled with 0.4 in the figure) produces an energy slightly to high, but this might
be caused by an unknown effect. Only an upper limit for the scaling factor on the
data from runs on regular polyethylene can be set:

rund = 0.2runp (6.19)

This corresponds to approximately a 1 % proton contamination in the deuterated
polyethylene.

The strong separation between the real and background data shows, that full
kinematic events can be used to effectively select true reactions from backgrounds
reactions from contaminants in the target, or to determine the ratio between true and
background reactions.

6.6 Summary

A new technique to characterise the beam structure using coincidence events has
been developed. The technique has been tested on simulated data and successfully
reproduced the beam structures. The technique has been applied to the experimental
data and the beam structure of the 11Be is determined. The structure is consistent
with independent emittance measurements. The technique enabled a study of the
beam structure at different times during the experiment. No fluctuations were seen
in the beam width but a significant decrease in the beam intensity were detected us-
ing the number of detected particles pr. second. A decrease in the beam intensity
in an experiment over a few days involving a radioactive ion beam is expected. The
beam intensity measurements have also been compared to other measurements (us-
ing faraday cups) and again the measurements are in good agreement.

The technique provided the first ever measurements of a fully accelerated ra-
dioactive beam at ISOLDE. The analysis gave a description of the beam at the point
of the reaction. This information has never been obtained with this precision before
at a transfer experiment at ISOLDE, and will prove important in the further analysis.
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The clean determination of the contaminations in the target will also prove a valu-
able information in the next chapter. The strong separation between fusion products
and direct reactions is another strength of the coincidence events and can be used
to significantly improve the understanding of the background in the analysis. The
background will be investigated further in the next chapter.



CHAPTER 7

Excitation energy spectra

The reaction type for each event will be determined in this chapter. This includes determining

the type of the outgoing particle and the excitation of the outgoing Nucleus. The chapter

contains a high particle energy part and a low particle energy part. The difference between

the parts is the ability to distinguish protons from deuterons and tritons for the high energy

particles.

7.1 Identifying the reaction type for an event

The initial state of the reactions have been established in the previous chapter. Next
step is to understand the final state of the reactions. The important part is to de-
termine the types of the outgoing particles and the state populated in the nucleus
for each event. Ideally a differential cross section has to be determined for all bound
states in 10,11,12Be individually. This requires a catagorising of each event. The catagoris-
ing is done in two or three steps dependent on the energy of the particles. The ex-
citation energy of the nucleus can be calculated using the momentum vector of the
initial particles and the outgoing particle (p,d or t). Knowledge about the particle
type is required to determine the momentum vector, and the Q-value of the reaction.
The particle type can be determined by a ∆E − E plot if the energy of the outgoing
particle is high enough, section 7.2. If the energy is too low to make particle iden-
tification the analysis is complicated a bit, section 7.3. Excitation energy spectra are
created from the calculated excitation energy, and events populating different states
can be separated if the resolution is high enough. This is not the case for most of the
bound states investigated in this experiment and gamma gates are used to separate
the states with small difference in excitation energy. Gamma gated excitation energy
spectra is generated afterwards to confirm the gamma gates.

7.2 High energy particles

High energy particles are defined in this thesis as particles with energy enough to
go through the ∆E-detectors, enabling particle identification. The energy required to

71
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pass through the ∆E-detector is dependent on the particle type, the detector thick-
ness and the angle between the detector and the particle. Fig. 7.1 shows the energy
required for a particle to punch through the ∆E-detector (enabling ∆E − E indentifi-
cation) as function of the laboratory angle for each of the three particle types (solid
lines). The kinetic curves of protons, deuterons and tritons for reactions populat-
ing the ground states of 12,11,10Be are shown as well (dashed lines). The high energy
particles occurs in the very forward angles, hence particle identification will only be
attempted in the AD’s and the forward PSD’s.
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Figure 7.1: The energy required for protons (black), deuterons (red) and tritons (blue)
to punch through the ∆E-detector (solid lines). The kinetic curves for the reactions
populating the ground states of 12,11,10Be is shown as well.

7.2.1 Particle identification

Particle identification of the high energy particles can be done by comparing the en-
ergies deposited in the ∆E and E detectors. There is a strong relation between the en-
ergy deposited in the two detectors and the particle type as mentioned in section 5.5.
This is evident from a ∆E − E plot. Fig. 7.2 shows a ∆E − E plot for strip 5 in the for-
ward PSD’s. The plot shows four curves corresponding to protons, deuterons, tritons
and α-particles. The shapes of the curves are very dependent on the angle between
the detector and the particle, hence a ∆E − E plot has to be made for each strip in
the PSD’s to avoid overlap between the three Z=1 curves. To compensate for the dif-
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ferent angles within the strip, a small correction is made, assuming a linear relation
between the energy loss and the distance travelled in the ∆E-detector [Jep04].

∆Ecor = ∆E cosθ. (7.1)

Ecor = E + (1 − cosθ)∆E. (7.2)

Here θ is the angle between the norm of the detector and the incoming particle. This
is only valid for small angles, hence the requirement of individual plots for each strip.
Corrected values are used in fig. 7.2.
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Figure 7.2: A plot of the ∆E vs. E deposited in the strip 5 of the four forward PSD’s.
The gates made to identify p, d and t are shown as red lines. 4He particles are also
seen, but omitted in the analysis.

Gates have been made for each of the three Z=1 particles for each ∆E − E plot.
The gates can be seen in fig. 7.2. All gates are of the form:

Ecor =
N

a∆Ecor + b
, (7.3)

with N, a and b being parameters determined individually for each strip and particle.
If an event lies within two neighboring lines, the event will be classified as being that
given particle type, and analysed as such (e.g. particles between the two lowest lines
are protons).
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7.2.2 Excitation energy spectra

Once the light particle in an event is identified as either a proton, deuteron or triton
the excitation of the nucleus can be determined from energy and momentum conser-
vation:

E∗ = TA − Tb −
P2

B

2mB
+Q. (7.4)

~PB = ~PA − ~Pb. (7.5)

A, B and b refers to eqn. 3.1. The excitation energy spectra for 10,11,12Be can be seen in
fig. 7.3. The ground states are clearly seen in all three spectra. Furthermore, peaks at
2100 keV and 2700 keV in 12Be, and at 3300 keV and 6000 keV in 10Be, corresponding
to the excited bound states in the two nuclei, are seen.

The pure excitation energy spectrum of 12Be (top-left in fig. 7.3) contains a sig-
nificant background. The background arrises from contaminants in the target. The
background is also evident in the spectra for 11Be and 10Be, though less significant.
Background from reactions on carbon and protons in the target have already been
investigated in section 6.5. The events from runs on carbon and regular polyethylene
are analysed as if they came from a 11Be+d experiment, and excitation spectra are cal-
culated using eqn. 7.4 and 7.5. The background spectra are scaled with 8.43 (carbon)
and 0.2 (proton), and compared to the total spectra, right side of fig. 7.3. The scal-
ing factor of the carbon data is slightly higher than the 7.5 found in section 6.5. The
value 8.43 is used to get a better agreement between the background and the total ex-
citation spectra at negative excitation energies, which is definitely background. The
cause for the higher scaling factor is still to be determined. Two explanations are in
principle possible. Either the scaling factor determined in section 6.5 is too low due
to the requirement of coincidence events, or the 7.5 value is correct and another effect
contributes to the background. The best candidate so far is 22Ne contamination in the
beam. 22Ne+d reactions will produce light particles seen in single particle events, but
not any coincidence events and can not be determined from the method described in
section 6.5.

Especially reactions on Carbons contribute to the background. This is expected
due to the large ratio between deuterons and Carbons (≈ 2 : 1) in the target compared
to the ratio between the deuterons and protons (≈ 100 : 1). The uncertainty in the pro-
ton background, described in section 6.5, will not affect the angular distributions for
the excited states, as gamma gates are used for those (see next section) but the elastic
scattering cross section will be affected. The effect is very small, almost negligible,
due to the much larger cross section for (d,d) than for (p,d). With a 0.2 scaling of
the data from the proton target, the ratio between scattered deuterons and deuterons
from (p,d) in fig. 7.3 (middle-right) is less than 0.1
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Figure 7.3: Excitation energy spectra made from high energy particles. Left: The pure
spectra. Right: Spectra from runs on proton (green) and carbon (red) targets, and the
sum of the two (grey) are plotted as well

The energy resolution from the light particles is 500 keV, which is too low to dis-
tinguish the excited states in 12Be and 10Be and to distinguish elastic from inelastic
scattering. Gamma gates are used to improve the resolution and separate the close
lying states in the next sections.
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7.2.3 Gamma gated spectra

The gammas detected by the MINIBALL can be used to cleanly separate the events
populating closely lying states. Gamma gated excitation energy spectra are gener-
ated for gammas in coincidence with deuterons, protons and tritons respectively in
the following sections. First step is to generate a gamma energy spectrum for each
reaction. All gammas except one produced from the three reactions are emitted from
a moving nucleus, which doppler shifts the emitted gammas. The doppler shift can
be corrected for, by isolating the gamma energy in eqn. 5.12:

E = γE′(1 − β cosθ). (7.6)

The only decay not doppler shifted is the decay of the long lived 0+2 -state in 12Be.
This will be discussed in detail in section 7.2.3.2. The relevant peaks for each nucleus
are identified in the gamma energy spectra and energy gates containing the peaks
are determined. The gates can be seen in table 7.1. Gamma gated excitation energy
spectra are afterwards determined by only using charged particles in coincidence
with gammas within the gates. All the gamma peaks of interest are situated on top of
a significant background of random coincidences. A background gate is made for all
the states to remove the background from the gamma gated excitation energy spectra.
The background gates are also shown in table 7.1. comparing with the total excitation
energy spectrum, fig. 7.10.

7.2.3.1 11Be

11Be is the easiest case of the three nuclei with only two bound states. The elastic and
the inelastic channels can be separated by gating on the 320 keV gamma peak, clearly
seen in fig. 7.4. The peak is placed on top of a large background, and a background
gate is made in order to remove events from random coincidences with background
gammas. The two gates can be seen table 7.1.

The gamma gated spectrum, with the background subtracted, is plotted along
with the total excitation energy spectrum in fig. 7.5. The gamma gated spectra is
scaled to take the MINIBALL efficiency, given in table 5.2, into account. The elastic
scattering channel is dominating as expected. Still the 320 keV gamma gate provides
sufficient data to calculate a differential cross section for the inelastic scattering data
as well, chapter 8.
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Nucleus Decay Eγ E-gate ∆t-gate
[keV] [keV] [ns]

11Be 1/2−1 → 1/2+1 320 [300,340] –
Background [340,380] –

12Be 2+1 → 0+1 2100 [2060,2160] –
Background [2160,2260] –

0+2 → 0+1 511 [490,520] > −200
Background [475,490] or [520,535] > −200

1−1 → 0+1 2700 [2650,2800] –
Background [2800,3000] –

10Be 2+2 → 2+1 2600 [2500,2750] –
Background [2800,2650] –

2−1 → 2+1 2900 [2800,3000] –
Background [3300,3500] –

2+1 → 0+1 3300 [3300,3500] –
Background (LE) [3500,3600] –

1−1 → 0+1 5900 [4600,6200] –
Background (LE) [6200,6600] –

Table 7.1: The gamma energy and time gates used to separate the individual reactions
from each other in the three nuclei. (LE) means the gate only has been used for low
energy particles
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Figure 7.4: The gamma energy spectrum made from gammas in coincidence with a
deuteron. The gammas are Doppler corrected. A strong sharp peak is eminent at
320 keV.



78 Chapter 7. Excitation energy spectra

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

2000

4000

N
/1

0
ke

V

E∗ [MeV]

Figure 7.5: The total excitation energy spectra for 11Be (blue) along with the excitation
energy spectrum for the excited state in 11Be made from gamma gated deuterons
(red).

7.2.3.2 12Be

12Be has three known bound excited states, which all primarily decays to the ground
state, section 2.3. The life times of the 2+1 and the 1−1 states are very short, and they
decay with a 2107 keV and a 2700 keV gamma respectively, table 2.1. The two gamma
lines can easily be seen in fig. 7.6. The two peaks lies on top of a small but significant
background. A peak and a background gate are made for the two states similar to the
1/2−-state in 11Be. The gates are shown in table 7.1.

The 0+2 mainly decays (BR = 83 %) to the ground state with an e+e− pair creation
corresponding to 511 keV signals in the germanium detectors, table 2.1. This leads
to a long lifetime for the 0+2 state. The lifetime is measured to be 3 31( 12)ns [Shi07].
Gammas from states with lifetime in the order of nanoseconds are normally hard to
detect with this setup [Wim10b]. The majority of the produced nuclei will have left
the reaction chamber before decaying, making the MINIBALL unable to detect them.
The gamma decay can be detected if the excited 12Be nucleus is stopped somewhere
within the reaction chamber. The maximum angle of the outgoing 12Be in the ground
state is shown in fig. 6.1. The angle is slightly smaller for the excited 12Be nuclei, mak-
ing the maximum angle 10 o, which is still large enough to hit the AD’s. If the nucleus
is stopped in the AD’s, the decay can be detected by the germanium detectors, en-
abling the generation of a gamma gated excitation energy spectrum for the 0+2 -state,
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Figure 7.6: The gamma energy spectrum made from gammas in coincidence with a
proton. The gammas are Doppler corrected. A sharp peak at 2100 keV is seen, along
with a small peak at 2700 keV.

fig. 7.8. The gamma gated spectrum for the 0+2 -state is scaled to take the MINIBALL
efficiency into account. The efficiency of the MINIBALL is determined from decays at
the target and not at the AD’s, section 5.7, hence a lower efficiency should be expected
and the scaling could be too conservative. Furthermore the angular distribution of
the detected outgoing particles could be altered due to the requirement on the angle
of the 12Be nucleus.

The long lifetime of the 0+2 state enables a second gate. Fig. 7.7 shows the time
between the detected proton and the detected gamma (∆t = tγ − tp) vs. the gamma
energy. The gamma energy, in the plot, is not doppler corrected, as the plot is used to
identify decays from a stopped nucleus. The majority of the events are placed close to
∆t = −250 ns corresponding to the difference in the readout times of the germanium
and silicon detectors, but events with a larger time difference occur for a few gamma
energies. Most of these are random coincidences from gamma background, but three
clear lines are visible. The 2100 keV line is mainly random coincidence with gammas
from the sequential decay of 11Be to the ground state of 11B via an exited state in 11B.
This gamma line is the same as used for calibration of the MINIBALL detectors in
section 5.6.1. The 690 keV line is an E0 transition in 72Ge emerging from an excitation
of 72Ge in the MINIBALL through an inelastic scattering with neutrons [Jen09]. This
line will be investigated in section 10.3.2. The 511 keV is partly from background
electrons, but mainly from the E0 transisition in 12Be. The time difference signal can
be used to determine the lifetime of the 0+2 state, which will be done in section 10.1,
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Figure 7.7: The gamma energy vs. the time between the detection of the proton and
the detection of the gamma.

but it can also be used to lower the background for the 0+2 spectrum by requiring a
∆t > −200 ns, table 7.1.

Note the 2100 keV is present in times before the main peak (∆t < −300 ns), while
the other two only emerges after the reaction. This is a strong evidence for the in-
terpretation of the 2100 keV being random coincidences and the other two stemming
from reactions between a target and a beam particle. Projections onto the y-axis in
fig. 7.7 at times before and after the main peak has shown the emergence of a low
energy tail in the 2100 keV peak after the reaction. The main, present at all times,
is centred at 2125 keV consistent with the gamma from the β-decay. The tail could
be a peak situated at 2107 keV, corresponding to the gamma decay of the 2+1 -state in
12Be to the ground state. The tail is interpreted as gammas from the sequential de-
cay of the 0+2 -state to the 2+1 -state. A rough estimate of the branching ratios based on
the numbers in the tail and the 511 keV line is consistent with the values in table 2.1
determined by S. Shimoura et al. [Shi03].

The gamma gated excitation energy spectra are shown in fig. 7.8 with the back-
grounds subtracted. The three peaks are centered at 2100 keV, 2200 keV and 2700 keV,
which indicate true events and reliable gamma gates. The three gamma gated spec-
tra are added together with the background spectra in fig. 7.3, and compared to the
total excitation energy spectrum. The overlay of the two spectra is almost perfect, but
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Figure 7.8: Top: Excitation energy spectra from gamma gated protons. Black: 2+1
(2107 keV), blue: 0+2 (511 keV) and red: 1−1 (2700 keV). Bottom: The total excitation
energy spectrum (blue) and the excitation energy spectrum made from background
runs and gamma gated spectra (red).

some events populating the excited states are still to be accounted for. An attempt to
explain these events will be done in section 10.2.

7.2.3.3 10Be

10Be is the most complicated of the three nuclei due to the four close lying states
around E∗ = 6 MeV, fig. 2.4. It has been possible to identify five out of the six bound
states in 10Be. The gamma decays of excited states in 10Be are shown in table 2.1. Four
of these gamma lines are clearly seen in fig. 7.9. The figure shows a 2D-plot of the
gamma energies versus the excitation energy calculated from the tritons. The projec-
tions onto the two axis are shown along with the 2D-plot, the gamma spectrum for
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Figure 7.9: A plot of the excitation energy calculated from tritons versus gamma
energies. The projection onto the two axis is plotted as well.

the vertical axis and the excitation energy spectra for the horizontal axis. The plot
shows the sequential decays in 10Be. Horizontal lines situated around the diagonal
(Eγ = E∗) is the direct decay to the ground state. Both the 3367 keV decay of the first
excited state and the 5959 keV decay of the 1−1 -state are seen. It is evident from the
figure, that not all detected gammas around 3367 keV are from the (d,t)-population of
the first excited state. A large part of the gammas stem from an indirect population
of the 2+1 -state via a gamma decay from one of the higher lying states. Gating on the
3367 keV gamma line produces two peaks in an excitation energy spectrum, fig. 7.10.
The peak at 3300 keV is the 2+1 -state. The other peak might contain components from
all the higher lying states, making it harder to use. Instead the two gamma peaks, ris-
ing from the gamma decay to the 2+1 -state, are used to study the higher lying states.
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The two sharp peaks at 2600 keV and 2900 keV can easily be separated and the statis-
tics from the two decays are sufficient to calculate differential cross sections, hence
the 3367 keV gammas can be ignored for the high lying states, and is only used to
calculate the differential cross section for the 2+1 -state.
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Figure 7.10: Top: The excitation energy spectra for 10Be made using the gamma gates
shown in table 7.1. Black: Eγ = 3300 keV, red: 2900 keV, blue: 2600 keV and green:
6000 keV. Bottom: The total excitation energy spectrum (blue) and the excitation
energy spectrum made from background runs and gamma gated spectra (red).

The excitation energy spectra, made from gates on the 2600 keV and the 2900 keV
gamma peaks, each have one peak, fig. 7.10. The mean value of the peaks are 5839 keV
and 6151 keV corresponding to either the 2+2 or the 1−1 -state for the former and the
0+2 or the 2−1 -state for the latter. The quantity of each state within one of the two
peaks have to be determined to calculate differential cross section for each state. The
2+2 and the 2−1 -states only have one gamma decay channel (2590 keV and 2895 keV
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respectively) and all information regarding these states lies within the two gamma
gated spectra. The 0+2 and 1−1 -states, on the other hand, have two decay channels, ta-
ble 2.1. The second decay channel can be used to study the two states. The knowledge
gained for the two states from the second decay channels can be used to determine
the amount of 1−1 and 0+2 in the two gamma gated spectra at 2600 keV and 2900 keV.

The 1−1 -state decays to the ground state and the 2+1 -state with a ratio close to 2:1
(table 2.1) producing a 5959 keV and a 2590 keV respectively. The 1−1 -state is the only
one of the four highly excited states, that decays to the ground state, and all the
6 MeV gammas seen in fig. 7.9 stem from the 1−1 -state. An excitation energy spectrum
is made by gating on the 6 MeV peak, including the Compton edge to gain enough
statistics, table 7.1. The excitation energy spectrum is seen in fig. 7.10 as the green
line. The spectrum is scaled to take the MINIBALL detection efficiency into account.
The MINIBALL detection efficiencies, calculated in section 5.7, are only for the peak
energies, and not for the peak+Compton edge. The efficiency will be larger if the
Compton edge is used as well, as in the 1−1 -case. The new efficiency for the 1−1 -state is
estimated from a simple formula:

εpeak+compt =
Npeak+compt

Npeak
εpeak = 9.5%. (7.7)

This is the scaling factor used in fig. 7.10. The overlap between the 6 MeV spectrum
and the 2600 keV is almost perfect. The mean values are the same, as expected (the
two states producing the 2600 keV gamma are only separated by 5 keV), and the inte-
grals, after scaling, are similar (N2600 = 2006 and N6000 = 1951). Using the integral of
the 6 MeV peak and taking the branching ratios of the 1−1 -decays into account gives
an estimate of the quantity of 1−1 in the 2600 keV peak. The estimate is 45 % of the
events stem from the 1−1 -state.

The 0+2 -state decays to the 2+2 -state 34 % percent of the time, producing a 219.2 keV
gamma, table 2.1. The 1:2 ratio between the 219.2 keV and the 2811 keV is fully com-
pensated by the 14:2.8 ratio in detection efficiency of the MINIBALL (table 5.2) and
the 219.2 keV should be the strongest peak for the 0+2 -state in the gamma spectrum,
fig. 7.9. No indications of a gamma peak at that energy are seen in fig. 7.9, and
the population of the 0+2 , in this experiment, is assumed to be negligible. Hence the
2900 keV peak is expected to be fully 2−1 .

All four gamma gated spectra for 10Be are now well understood, and the strong
populations of the 1−1 and the 2−1 -states compared to the 2+2 and the 0−2 -state are in
excellent agreement with the requirement of two step process’ for the latter two, sec-
tion 2.4. A perfect overlay is evident, when adding the four gamma gated spectra
together, along with the background and
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7.3 Low energy particles

A large fraction of the detected particles can not be identified through a ∆E−E identi-
fication, due to too low energy. Fig. 7.1 clearly shows, that at large laboratory angles
the energies are too low to make particle identification. Large laboratory angles in
inverse kinematics correspond to small CM angles in direct kinematics, which holds
great information in the differential cross sections. Thus low energy particles are of a
great importance, and the separation of the individual reactions are a significant part
of the analysis.

Note that a lower limit of 2 MeV is set due to noise in the setup, and no particles
are detected with energy lower than 2 MeV.

The analysis is done in two steps, one for the backward angles and one for the
forward angles.

7.3.1 Backward laboratory angles

The only reaction producing particles, with high enough energy to be detected, in the
backward angles is the d(11Be,p)12Be reaction. All particles, in the backward PSD’s,
are therefore analysed as protons from a d(11Be,p)12Be reaction, and the excitation
energy spectrum for 12Be is calculated, fig. 7.11. Fig. 7.11A shows the total excitation
spectrum along with the spectrum calculated from background runs (grey). The spec-
trum is clearly dominated by background. By subtracting the background caused by
contaminants in the target a much cleaner spectrum can be made, fig. 7.11B. The
ground state population is clearly seen, and can be used to calculate the differential
cross section in the very forward CM angles. A significant background is still present,
which can lead to an overestimate of the differential cross section. No excited states
are seen, due to too low particle energies.

7.3.2 Forward laboratory angles

The analysis in the forward direction is more complicated due to the larger amount
of reactions and populated states. Background from heavy fragments like scattered
11Be on carbon or 10Be as described in Chapter 6 will complicate the analysis further.
Also 8Li and 6He, which have large outgoing angles, are detected.

The analysis can be divided into two steps identifying the reactions populating
the excited states through gamma gates, and finally determining the reactions pop-
ulating the ground states of 10,11,12Be. The last part requires a removal of the back-
ground.
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Figure 7.11: The excitation energy spectrum for low energy particles in the backward
angles. The ground state of 12Be is clearly seen when the large background is sub-
tracted.

7.3.2.1 Excited states

The gamma gates shown in table 7.1 should also be valid for the low energy parti-
cles, but it has to be checked. Fig. 7.12 shows the gamma energies after correction
for doppler shift. The spectrum is divided into three energy ranges to clarify the pic-
ture. The low statistic at high energy would not be visible if plotted together with
the low energy part. The gamma energies versus the time difference between the
gammas and the particles are shown in fig. 7.13. Fig. 7.13 clearly shows time delayed
511 keV gammas, but background from other positrons is more significant here, than
for the identified proton data. Contrary to fig. 7.7, 511 keV gammas are seen at times
before the reaction. The gamma gated spectrum for the 0+2 → 0+1 reaction shown in
fig. 7.14top has a larger background even after subtraction of the background deter-
mined from the background gate. The peak at 2200 keV is clearly seen in the spectra,
but the background could lead to an uncertainty in the final results.

The 320 keV gamma line from the inelastic scattering is clearly seen in fig. 7.12,
but the picture is much more complicated between Eγ = 2 MeV and Eγ = 3.5 MeV,
where five gamma lines are placed within 1.5 MeV. The 2700 keV gamma line from
the 1−1 → 0+1 decay in 12Be is placed between the 2600 keV and the 2900 keV from de-
cays in 10Be. This leads to further uncertainty in the 2600 keV line due to the Compton
edge of the 2700 keV line. Yet the resolution of the MINIBALL is high enough to dis-
tinguish all five states. The gating on the 2100 keV line from the 2+1 → 0+1 decay in 12Be
is complicated by a large background peak at 2100 keV stemming from the β-decay
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Figure 7.12: Gamma energy spectrum for gammas in coincidence with low energy
particles. The spectrum is divided into three, due to the large difference (2000/keV
to 20/keV) in number of detected gammas from low energy to high energy.

of 11Be. The line is already discussed in section 7.2.3.2. The gammas from the β-decay
of 11Be are not doppler corrected, as they come from stopped 11Be somewhere in the
setup, and the peak is clearly seen in fig. 7.13. This peak will be divided into two
peaks when correcting for the doppler shift, and can be seen in fig. 7.12 as the two
outer peaks of the three at 2100 keV. The one in the middle is the gammas from the
decay in 12Be. An extra gate is placed on gammas for the 2+1 → 0+1 decay to remove
background from random coincidences with gamma from the β-decay:

E′γ < 2100 or 2140 < E′γ. (7.8)

Here E′γ is the raw gamma energy without any correction for doppler shift.
The large gamma background becomes a problem for the 5959 keV gamma line.

No sharp peak is identified in the bottom plot in fig. 7.12, only a broad distribution
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Figure 7.13: The gamma energy vs. the time between the detection of a low energy
particle and the detection of the gamma. To avoid saturation in the scatter plot only
0.4 of the events are plotted.

starting at Eγ = 4.6 MeV. A background has to be subtracted when making the exci-
tation spectrum for the 1−1 -state in 10Be. The background is made at the high energy
end (table 7.1) and has to be scaled with a factor given by:

N5959

Nbg
=
ε4600 + ε6200

2ε6200

L5959

Lbg
= 4.5. (7.9)

With ε being the MINIBALL efficiency at the given energy, and L is the length in
energy interval for the two cuts. Normally the scaling factor is given only by the
ratio in the length, but due to the change in efficiency from 4600 keV to 6200 keV an
extra factor has to be added.

Excitation energy spectra of 10,11,12Be are shown for the gamma gated events in
fig. 7.14. The background is subtracted in all the spectra, and clear peaks with only
limited background left are shown. The energy of the peaks correspond perfectly
with the excitation energy of the states. The spectrum in the middle, corresponding
to inelastic scattering, has a broad distribution ranging from 2 − 3.5 MeV. This back-
ground is clearly separated from the inelastic scattered deuterons and can be ignored
when calculating differential cross sections. The distribution will be investigated in
chapter 10.
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Once again the amount of the 1−1 -state in the 2600 keV gamma gated spectrum
has to be determined. This is done similar to the high energy tritons and the result
is 41 % of the 2600 keV-gamma peak are from the 1−1 -state, consistent with the high
energy result.

-2 -1 0 1 2 3 4 50

1000

2000

3000

4000 NPT_Eex_Gamma_2100
Entries  2239
Mean    2.672
RMS    0.9076

-2 -1 0 1 2 3 40

500

1000

-2 -1 0 1 2 3 4 5 6 7 80

1000

2000

3000

4000

5000

6000

N
/2

0
ke

V
N

/2
0

ke
V

N
/2

0
ke

V

E∗ [MeV]

E∗ [MeV]

E∗ [MeV]

Figure 7.14: The excitation energy spectra from gamma gated low energy particles.
The Particles are analysed as protons (top), deuterons (middle) and tritons (bottom).
The colors correspond to the same as in the excitation energy spectra from high en-
ergy particles.
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7.3.2.2 Ground states

Gamma gates cannot be used to identify reactions populating ground states, hence
another method has to be used. Like for the high energy particles, the ground states
can be found by subtracting background and excited states from the total excitation
spectrum. Generally that would mean calculating three excitation energy spectra
assuming all particles being protons, deuterons and tritons respectively, but of the
three reactions populating the ground states of 12,11,10Be, only the elastic scattering
produces low energy particles in the forward direction, fig. 7.1. Hence only one exci-
tation spectrum has to be made, assuming all particles are scattered deuterons. The
total excitation spectrum (top) and the total spectrum with excited states and back-
ground subtracted (bottom) are shown in fig. 7.15. A peak is clearly seen at 0 MeV
and no indication of further background around 0 MeV is present in the bottom spec-
trum. The extra components at higher energies are a combination of inelastic scat-
tered deuterons into the continuum of 11Be (peak at 1.8 MeV) and other heavy frag-
ments like 8Li and 6He, not investigated in this thesis.

7.4 Summary

In summary, all but one bound states in 12Be, 11Be and 10Be have been successfully
determined using gammas detected by the MINIBALL. The identification has been
done in a large angular range both with and without particle identification. The high
beam intensity has compensated for the low detection efficiency of the MINIBALL
above 2 MeV. Even at 6 MeV with a detection efficiency of ε = 1.5 % we were able to
get sufficient statistic to identify the 1−1 -state in 10Be. Comparisons of gamma gated
and total excitation energy spectra have shown an almost complete identification of
all high energy particles and 75 % of the low energy particles.

The calculation of the differential cross sections and the comparison with theoret-
ical models will be described in the next chapter.
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Figure 7.15: Top: An excitation energy spectrum for 11Be assuming all low energy
particles are scattered deuterons. Bottom: The same as the top one, but with back-
ground and reactions to excited states subtracted using gamma gates.





CHAPTER 8

Differential cross sections and

spectroscopic factors

The experimental differential cross sections for all the individual reactions will be determined

in this chapter. The experimental cross sections will be compared to preliminary theoreti-

cal calculations. Preliminary spectroscopic factors will be determined and the effects of the

deformation and the halo structure of 11Be will be investigated.

8.1 Differential cross sections

The aim of the experiment was to determine differential cross sections for the scat-
tering and transfer reactions, and compare them to theoretical calculations. The com-
parisons are done separately for the three reactions ((d,d), (d,p) and (d,t)), and the
theoretic calculations are done with different models. The difference between the
models is the potential from 11Be felt by the deuteron. The complicated structure of
11Be described in chapter 2 has a large impact on the differential cross sections. This
is well known and have been seen in different experiments [DP10, Sch12]. The focus
in this thesis will be on the effect of the deformation of 11Be and the large coupling to
the first excited state of 11Be in these reactions.

8.2 Calculating cross sections from the experimental data

The events were separated according to their reaction types in the previous chap-
ter. With the reactions successfully identified the differential cross sections can be
calculated using eqn. 3.6. Three of the parameters are already determined, nt =

7.5(3)× 10−8 mb (section 3.2), N
exp
A
= 1.11( 25)× 1012 (section 6.4) and Nsim

A
= 1 × 106 ,

leaving only the angular distribution (a) to be determined.
The angular distributions are determined by splitting the excitation energy spec-

tra, calculated in chapter 7, into small intervals of center of mass angles, fig. 8.1. Each
spectrum covers an angular range of 3 o in center of mass. The same spectra are

93
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Figure 8.1: Excitation energy spectra made for small angular ranges, each one cover-
ing 3 o in center of mass. The simulated data (red) is scaled to best fit the experimental
data (black). The scaling factor for each spectra provides the angular distribution.
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generated for the simulated data, and the scaling factor (a) in a given center of mass
angle is determined by fitting the simulated data to the experimental data using
eqn. 3.8. Fig. 8.1 shows ten of these excitation energy spectra for the 2+1 -state in 12Be
along with the scaled spectra from the simulated data. The angular distributions of
the excited states are detemined from the gamma gated spectra. The fit is performed
by adding the simulated spectra to the spectra from the background gates instead of
subtracting the background gated spectra from the peak gated. This provides a more
reliable uncertainty from the fit. The angular distributions for the ground states are
calculated from the total excitation energy spectra. Again background spectra are
made using background runs and gamma gated spectra, and the scaled simulation is
added to these spectra in the fit.

The angular distributions calculated using gamma gates could be altered, if the
gamma rays are emitted anisotropic. An anisotropic gamma ray emission would lead
to a dependency in the MINIBALL detection efficiency (determined in section 5.7) of
the angle of the outgoing particle. The effect was explored in an experiment using
only limited angular coverage in the gamma detection [Bro12]. The effect should
only be limited in this experiment due to the large angular coverage of the MINI-
BALL [Cat12], and the efficiencies determined will be used with no regards to the
angle of the particles. The validity of this simplification is supported by a simple test
performed on the data. The gamma gated spectra in the small angular intervals are
compared to a non-gamma gated spectra in the same interval and perfect overlays
are seen (like the comparisons in chapter 7)

Differential cross sections are calculated for all the bound states in 10,11,12Be ex-
cept for the 0+2 -state in 10Be, which was not seen in the analysis. A differential cross
section is determined from the total number of events in the 2600 keV gamma peak
in 10Be. This cross section should be a combination of the differential cross sections
from the 1−1 and the 2+2 -states and the differential cross section of the 2+2 -state in 10Be
is determined by subtracting the 1−1 differential cross section from the 2600 keV one.
The total (2+2 + 1−1 ) and the 2+2 differential cross sections are shown as the last two
plots in fig. 8.4. The differential cross sections will be shown along with the theoretic
calculations in the next sections.

8.3 Scattering data

An important part of DWBA calculations are the potential between the initial nucleus
and particle (V11Be,d), section 8.4. This potential is normally determined from the elas-
tic scattering data. The simplest approach is an optical model approach, which will
be attempted first. The known deformation of 11Be along with the small separation
of the two bound states indicate a strong coupling of the two states. A deformed po-
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tential is tested as well. The deformed potential creates differential cross sections for
both the ground and the first excited state.

Parameter Satchler Perey Kanungo Kanungo
[Sat66] [Per74] [Kan10] [Kan10]

(H. Yan [Han06]) (D. Auton [Aut70])
V0 124.7 83.36 80.53 118.0
r0 0.9 1.15 1.17 0.87
a0 0.9 0.81 0.8 0.91
Wv 0 0 5.19 0
Wd 4.38 15.744 4.71 5.80
rI 2.452 1.34 1.56 1.57
aI 0.264 0.68 0.8 0.78
Vso 6.0 0 3.54 5.80
rso 0.9 0 1.23 0.87
aso 0.9 0 0.81 0.91

Table 8.1: Optical model parameters used to calculate the elastic scattering shown in
fig. 8.2. All depths are in MeV and all distances in fm. The two reference in parenthe-
ses is the original references.

8.3.1 Optical model calculation

The optical model calculation is described in section 3.3.1 and the calculations are
performed with four different potentials shown in table 8.1. The potentials are taken
from three papers, Satchler et al. [Sat66], Perey et al. [Per74] and Kanungo et al.
[Kan10]. The former two are based on generalised parameters for optical potentials
derived from reactions of deuterons on stable nuclei. The latter provides two opti-
cal potentials used in a previous low energy 11Be(d,p)12Be experiment performed at
TRIUMF in 2005. The total optical potential is given by:

U(r) = −V0 f (x0) − i

(

Wv f (xI) −Wd

d f ((xI))
dxI

)

+ Vso
~

mπc

2 1
r

d f ((xso))
dxso

(~L · ~s) (8.1)
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where f (x) is the Wood-Saxon:

f (xi) =
1

1 + exp(xi)
(8.2)

xi =
r − riA

1/3

ai
. (8.3)

Fig. 8.2 shows the experimental elastic scattering cross section (red dots) along
with the four optical model calculations. None of the potentials can reproduce the
experimental data and an attempt to adjust the potential depth of the real and the
imaginary part to improve the the overlap has been unsuccessfull. The same was an
attempt to use a large diffusiones for the imaginary part suggested by A. Bonaccorso
et al. [Bon02]. The potential that reproduces the experimental data best is the Satchler
potential and it will be used to make some first attempts of DWBA calculations of the
transfer reactions.

0 30 60 90 120 150 180

10

100

dσ dΩ
[m

b/
sr

]

θcm [o]

Figure 8.2: The differential cross section for 11Be(d,d)11Be. The experimental cross
section (red dots) is plotted along with four different optical model calculations. The
parameters are shown in table 8.1. Full line: Satchler et al. Dotted line: Perey-Perey
et al. Dashed line: R. Kanungo et al. (set I). Dashed+dotted line: R. Kanungo et al.
(set II).

The disagreement between theory and experiment could be caused by higher or-
der reactions, which should be considered to improve the calculations. The first and
only attempt made for these data is using a deformed potential, and will be described
next. More complex reactions could also add to the differential cross section. Two
contributions, that ought to be investigated, are the compound and the exchange re-
actions. Compound reactions are known to be present in almost all direct reactions to



98 Chapter 8. Differential cross sections and spectroscopic factors

some extent, and a significant contribution cannot be excluded for 11Be(d,d)11Be. The
exchange reaction is suggested because of the two loosely bound neutrons, the one in
11Be and the one in the deuteron. Both nuclei can easily deliver a neutron to the other
(as seen in the two other reactions investigated here), and if they exchange a neutron
it would look like a scattering reaction. No attempts to determine the contribution of
these two reactions have been made.
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Figure 8.3: Differential cross sections for elastic (top) and inelastic scatterings (bot-
tom). The experimental data (red dots) are compared to two deformed potentials,
Satchler et al. (Full line) and a using modified depths for the Satchler potential
(dashed line). The blue curves in the bottom are the theoretic curves scaled with a
factor 9.
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8.3.2 Coupled channel calculation

A deformation of the optical potential is added in an attempt to improve the elastic
cross section and to calculate a theoretic differential cross section for the inelastic
scattering to the first excited state in 11Be. The deformation is set to:

δ1 = 0.84 fm and δ2 = 1.27 fm

taken from Hussein et al. [Hus08]. The parameters should lead to a coupling of the
1/2− and the 1/2+ (even to the 5/2+) according to the selection rules in section 3.3.2.
The deformation is added to the potential by Satchler et al. in a first attempt, full line
in fig. 8.3. The elastic channel is not affected much and the inelastic channel is a factor
9 too low. The depth of the the reel and the imaginary potential is scaled to:

V = 120.18 MeV and W = 19.535 MeV

in order to improve the calculated cross section. The new values are determined us-
ing sfresco [Tho88]. While the shape of the elastic scattering differential cross section
is improved at low angles, the agreement at large angles is worsened. The inelastic
scattering channel is still a factor of 9 off and the deformed potential has to be mod-
ified further. Like the Satchler potential in the optical model the deformed potential
with the modified depths will be used in the DWBA calculations of the transfer reac-
tions.

8.4 Transfer reaction data

DWBA calculations are performed for both transfer reactions ((d,t) and (d,p)). The
theory is described in section 3.3.3 and three potentials are needed to perform the
integral in eqn. 3.40. The potentials involving deuterons are given in table 8.1 and
in section 8.3.2. The potentials involving tritons and protons are listed in table 8.2
along with the papers they are taken from. The Be+p potential was derived from low
energy scattering of protons on 12C by J. R. Comfort et al. [Com80]. The potential was
also used in the 11Be(d,p)12Be experiment at TRIUMF in combination with the last
potential in table 8.1 [Kan10]. The Be+t is derived for low energy scattering of 3He on
9Be by J. Y. Park et al. [Par69]. The shapes are given in eqn. 8.1-8.3.

8.4.1 11Be(d,t)10Be

Two calculations are made for the (d,t) reaction. The core-core potential (10Be+d)
(Satchler et al.) and the potential between the final nuclei (10Be+t) (Park) will not be
changed, but calculations using both the spherical (Satchler) and the deformed poten-
tial from section 8.3 for 11Be+d, will be performed. The results are shown in fig. 8.4.
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Parameter Be+d Be+t
Comfort [Com80]. Park [Par69].

V0 57.8 172.5
r0 1.25 1.2
a0 0.25 0.5
Wd 8.08 6.8
rI 1.4 1.2
aI 0.22 1.85
Vso 6.5 5.0
rso 1.25 1.2
aso 0.25 0.5

Table 8.2: Optical potentials used in the DWBA calculations for the (d,p) and (d,t)
transfer reactions along with the optical potentials from table 8.1.

The spectroscopic factors from the two calculations are given in table 8.3. None of
the models reproduce the experimental data very well, and only the ground state is
reasonably well described. Especially the shape of the 2+2 -state cannot be reproduced.
This may fall back on the experimental cross section. The inability to determine the
2+2 cross section independently leads to a large uncertainty. The discrepancy for the
1−1 and the 2−1 -states could be an effect of the halo structures of the two states. The
DWBA cross sections are too low for all the states in both calculations, leading to un-
realistic high spectroscopic factors. Especially the deformed potential produces too
low cross sections. This might be improved upon by adding a deformation to the
10Be potentials as well. 10Be is known to be deformed as well, and an investigation of
the effect of the deformation could be interesting. At least more detailed calculations
are required to provide more reliable results.

State in 10Be Spherical Deformed
0+1 0.45(5) 2
2+1 1.2(2) 4
2+2 1.7 6
1−1 2.5 4.5
2−1 1.4(5) 4.5

Table 8.3: Spectroscopic factors determined from 11Be(d,t)10Be reactions. The results
are only preliminary.
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Figure 8.4: The experimental differential cross sections for (d,t) reactions (red dots)
compared to two DWBA calculations, using a spherical (full line) potential and a
deformed (dashed line). The 1−1 +2+2 cross section is the cross section determined from
gamma gating on the 2600 keV line. The 2+2 cross section is calculated by subtracting
the 1−1 from the 1−1 + 2+2 .
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8.4.2 11Be(d,p)12Be

Three DWBA calculations are performed for the 11Be(d,p)12Be reactions. The spheri-
cal and the deformed potentials for 11Be+d are tested. Furthermore calculations using
potentials, taken from the previous 11Be(d,p)12Be experiment [Kan10], are performed
in order to test their calculations. Only angles in the very forward direction in CM
were covered in the experiment at TRIUMF and the data from this experiment can be
used to validate the calculations at larger angles. The differential cross sections are
shown in fig. 8.5 and the spectroscopic factors are given in table 8.4 along with spec-
troscopic factors determined in the experiment at TRIUMF and spectroscopic factors
determined theoretically by H. Fortune et al. [For11].

Comparing the three DWBA calculations with the experimental data shows an
almost perfect agreement for the ground state, especially the deformed potential re-
produces the experimental data. The agreement worsens when going up in excita-
tion energy. A very flat structure is seen in all the theoretical calculations and the
experimental data for the 2+1 -state. The experimental data has a slightly steeper curve
though. Both the spherical and the deformed potential fail to reproduce the shape of
the 0+2 and the 1−1 , while the parameters taken from R. Kanungo et al. almost perfectly
reproduces the shape of 0+2 -state, though it still fails to describe the 1−1 -state. Once
again higher order terms are expected to influence the population of the high lying
states in 12Be. Especially the coupling into the continuum states in 11Be is expected to
play a significant part, and continuum discretized coupled channel (CDCC) calcula-
tions should be attempted next. Calculations, taking the proposed two-neutron halo
structure of the 1−1 -state into account, should be performed as well.

The spectroscopic factors determined using the same potentials as R. Kanungo
et al. are compared to the factors determined in the experiment at TRIUMF. The
factors are close to each other, except the 0+2 -state. The 0+2 and the 2+1 -states were not
separated in the old experiment, which lead to large uncertainties on the 0+2 -state. The
value of 0.73 has later been questioned by H. Fortune et al. [For12]. The spectroscopic
factors give an indirect comparison of the differential cross sections determined in
the two experiments, and the strong agreement indicates reliable experimental cross
sections.

All three sets of spectroscopic factors determined in this experiments are in good
agreement, except for the 2+1 -state, where the factor from the deformed potential is
higher than the other two. The spectroscopic factors of the two 0+-states are very close
to each other. This indicates a similar amount of the 1s2

1/2 configuration in the two,
and is evidence for the shell mixing in 12Be. The theoretical calculated spectroscopic
factors on the other hand are far off, only the 0+2 -state is within a factor of 2 from the
experimental data. A better agreement in the shape of the theoretic and experimental
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Figure 8.5: The experimental differential cross sections for (d,p) reactions (red dots)
compared to two DWBA calculations, using a spherical (full line) potential, a de-
formed potential (dashed line) and potentials taken from the old (d,p) experiment
(dotted).
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State in 12Be Spherical Deformed Kanungo TRIUMF Theory
[Kan10] [For11]

0+1 0.15(2) 0.25(5) 0.15(3) 0.28+0.03
−0.07 0.78

2+1 0.15(5) 0.30(1) 0.075(25) 0.1+0.09
−0.07 0.52

0+2 0.25(10) 0.20(8) 0.25(8) 0.73+0.27
−0.40 0.37

1−1 0.55(20) 0.50(20) 0.27(15) ≈ 0.35 –

Table 8.4: Spectroscopic factors determined from 11Be(d,p)12Be reactions using three
different potential parameters. The results are only preliminary. The spectroscopic
factors determined in the experiment at TRIUMF are given along with theoretical
calculated ones for comparison.

cross section is needed in order to fully disprove the theoretical spectroscopic factors
though.

8.5 Summary

Experimental differential cross sections for all bound states, except one, in 10,11,12Be
were determined. A comparison with the theoretical calculations was not successful,
and only the ground state of 12Be could be successfully reproduced. Higher order
reactions are expected to play a significant part in the reactions studied, and more de-
tailed calculations are suggested. This includes, improving the optical potentials and
attempting calculations using higher order terms. Compound reactions, exchange re-
actions and CDCC calculations have been suggested, but not yet performed. CDCC
calculations on reactions involving both 11Be and deuterons at higher beam energies
have been performed before [Del07]. .

The spectroscopic factors determined for the (d,t) reactions were unrealistically
high and must be improved upon. The large disagreement between the two (d,t)-
calculations further confirmed the unreliability of the calculations. The spectroscopic
factors from the (d,p)-data, on the other hand, were internally in good agreement
and close to previously experimental determined factors. Evidence for the mixing of
the 1s1/2 and the 0p1/2 shell was seen by comparing the spectroscopic factors for the
two 0+-states. Proving the breaking of the N=8 magic number. The latest theoretical
calculated spectroscopic factors did not agree with the experimental results and a
further investigation is necessary.



CHAPTER 9

11Be+p reactions

While the primary reactions in the experiment were reactions of 11Be on deuterons, the runs

performed on regular polyethylene proved to have enough statistic for further direct reaction

studies. The analysis of both (p,p) and (p,d) reactions seen in the runs of 11Be on regular

polyethylene are described in this chapter along with the differential cross sections and pre-

liminary theoretic calculation.

9.1 Reactions on protons

During the experiment a few runs of 11Be on a regular polyethylene target were per-
formed, section 4.4. The runs were used to determine the background from reactions
on protons in the deuterated polyethylene (chapter 7), but the data may also be used
to study scattering and transfer reactions on protons. (p,d)-reactions have been used
for years to study various nuclei including 10Be and 11Be [Win01]. 12Be can not be
reached using a proton target, but both 11Be and 10Be can be studied with these data.

9.2 The analysis of 11Be+p data

The analysis of the reactions on protons are done exactly like the analysis of the reac-
tions on deuterons described in the previous chapters, hence no detailed description
will be given.

Both high energy deuterons and protons were identified in a ∆E − E plot and the
excitation energies were calculated using eqn. 7.4. The excitation energy spectra are
shown in fig. 9.1. Only the ground states of 11Be and 10Be are seen, hence only very
limited inelastic scattering is possible. This is supported by the lack of a 320 keV peak
in the gamma spectrum, fig. 9.2. None of the excited states in 10Be are populated and
only the two ground state are studied.

The differential cross sections of 11Be(p,p)11Be(gs) and 11Be(p,d)10Be(gs) are cal-
culated using the method described in section 8.2. An optical model calculation is
done for the (p,p) scattering using a potential from J. R. Comfort et al. [Com80], seen
in table 8.2. The optical model can once again not explain the experimental data. The
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Figure 9.1: Excitation energy spectra made from runs on regular polyethylene. Top:
The excitation energy of 11Be calculated from scattered proton. Bottom: The excita-
tion energy of 10Be from (p,d) reactions.

disagreement between theory and experiment is even larger for (p,p) scattering than
for (d,d). Higher order effects could play a significant part in the (p,p)-scattering.
Especially compound reaction should be investigated further.

Preliminary DWBA calculations of 11Be(p,d)10Be are performed using the spher-
ical (Satchler) and deformed potentials, also used in chapter 8, for 10Be+d and the
potential from Comfort et al. for Be+p. The shapes are much more consistent with
the experimental data than the scattering events. Especially the deformed potential
reproduces the experimental structure. The spectroscopic factors determined from
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Figure 9.2: Gamma energy spectrum from gammas in coincidence with protons.

the DWBA calculations are:

Spherical: S = 1.25(35) (9.1)

Deformed: S = 1.15(15) (9.2)

Theory: S = 0.84 (9.3)

Prev. experiment: = 0.67/0.79 (9.4)

The theoretic value and previous experimental values are taken from Fortier et al.
[For99]. Again the spectroscopic factors are too high and the theoretical calculations
of the cross sections have to be improved.
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Figure 9.3: Experimentally determined differential cross section (red dots) for
11Be(p,p)11Be (top) and 11Be(p,d)10Be (bottom). The cross sections are compared to
theoretical calculations using potentials from table 8.2 and 8.1. Full line: Spherical
Be+d potential. Dashed line: Deformed Be+d potential.



CHAPTER 10

Further investigation of 12Be

The differential cross section and spectroscopical factors determined in the previous chapters

were the main aim of the experiment, but a further study of the (d,p) reaction led to interesting

results. Results that will be presented in this chapter along with the analysis.

10.1 Lifetime measurement of the 0+2 state in 12Be.

The lifetime of 0+2 state has been determined using the time difference between the
detection of the 511 keV gammas and the protons. The long lifetime of the state has
already been seen in fig. 7.7. Fig. 10.1 shows the time difference spectrum gated on
the energy interval in table 7.1. A decay is seen after the main peak and the data from
∆t = 200 ns to 500 ns are fitted to an exponential decay:

N = N0 exp−
(∆t − t0)
τ

. (10.1)

The fitted value for τ was:
τ = 3 57( 22)ns, (10.2)

close to and consistent with the previous measured value of 3 31( 17) ns [Shi07]. A
better time resolution is needed to improve the lifetime measurement.

10.2 Investigation of a bound 0− state in 12Be

A bound 0−-state was suggested in 12Be by C. Romero-Redondo et al. [RR08a] from a
three body calculation. The state has never been seen experimentally, but due to low
resolutions in previous experiments it has not been disproved either. The strength
and high resolution of the T-REX and MINIBALL have already been shown in chap-
ter 7, where the 2+1 and 0+2 states were separated in the data even though the difference
in excitation energy is 100 keV. The setup should be able to detect and identify any
bound 0−-state.

The excitation energy of the 0− is only predicted with a large uncertainty in
[RR08a]. The state is above the 2+1 (E∗ > 2100 keV) and below the 1n threshold
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Figure 10.1: A lifetime measurement of the 0+2 state in 12Be. A histogram of the time
difference between the detected gamma and detected proton along with a fit to an
exponential decay.

(E∗ = 3160 keV). The decay channel and lifetime is dependent on the excitation en-
ergy of the 0−1 -state. If it is below the 1−1 -state it will decay to the 2+1 through a M2
transition and it will be a long lived state (τ ≈ 10−8 s). If it lies above the 1−1 it will
decay via a M1 transition to the 1−1 -state and it will have a short lifetime (τ ≈ 10−11 s).

The population strength of a bound 0− in a (d,p)-reaction should be comparable
to the population strength of the 1−1 -state. The energies are similar, and both have
a 10Be+sp structure. The 1−1 is strongly populated as shown in chapter 7, hence a
significant amount of a 0−-state should be seen.

The investigation of a bound 0−1 -state is done in three steps. First by studying
the interval E∗ ∈ [2800 keV, 3160 keV] looking for a gamma line between 100 keV and
500 keV in the gamma spectrum for 12Be, fig. 7.6. The short lifetime for the state above
the 1−1 would lead to a prompt doppler shifted gamma like the ones from the 2+1 and
the 1−1 decay. No gamma peak is seen in this area even with the larger MINIBALL ef-
ficiency at those energies, ruling out a 0−1 -state above 2800 keV. Secondly the interval
E∗ ∈ [2200 keV, 2700 keV] is studied. The identification of the long lived 0+2 by looking
at time delayed gammas shows the ability to identify long lived states in 12Be. A 0−-
state between the 2+1 and the 1−1 states should produce a time delayed gamma line that
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can be seen in fig. 7.7 as a vertical line, like the 511 keV. No other line below 600 keV
is seen ruling out the second energy interval. This leaves the excitation energy of
the 0−1 to be within 100 keV above either the 2+1 or the 1−1 state. Gamma gates can-
not be used to study these areas, due to the lower energy limit of the MINIBALL at
100 keV. Instead the excitation energy spectrum without gamma gates is used. The
background and gamma gated spectra could not fully explain all detected protons
corresponding to E∗ > 0 MeV, fig. 7.8. The gamma gated and background spectra are
subtracted from the total to study this further, fig. 10.2. The ground state peak is still
present as expected. A broad distribution ranging from 0.5 MeV to 2.8 MeV is also
present. The distribution is too wide to be only one state and a part of it is expected
to be background yet to be understood. The distribution is situated around 2.37 MeV
and a bound 0−1 -state above the 1−1 can be ruled out, leaving only the possible excita-
tion energies of a bound 0−1 -state to be within the interval E∗ ∈ [2100 keV, 2200 keV].
The mean value of the distribution contradicts this, but a better understanding of the
background is needed to fully rule out a bound 0−1 -state in 12Be. The events in the
broad distribution might also stem from protons populating the 0+2 -state in 12Be. The
gamma gate for the 0+2 -state required a stopping of the 12Be nucleus within the reac-
tion chamber and the extra time gate might also cut away true events. These effects
were already mentioned in section 7.2.3.2 and a larger positive uncertainty should be
assigned to the spectroscopic factors of the 0+2 -state in table 8.4.
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Figure 10.2: The excitation energy spectrum left after subtraction of gamma gated
and background spectra. The ground state is clearly seen, but also a significant dis-
tribution with excitation energy above 0 MeV.
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A recent three body calculation has shown the possibility of a broad 0−-resonance
between the 1n and the 2n threshold rather than a bound state [Gar12]. This calcula-
tion is yet to be investigated, but it might be done by using the method described in
the next section.
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Figure 10.3: The energy vs. angle for all low energy particles in the forward direc-
tion. The kinetic curves for (d,p) (red), (d,d) (yellow) and (d,t) (green) populating the
lowest resonances in 12,11,10Be are shown as well.

10.3 Investigation of low lying resonances

So far only bound states of 10,11,12Be have been investigated, but also low lying res-
onances are populated in the experiment. Indications of the 5/2−-resonance in 11Be
were seen in fig. 7.15. The investigation of the resonances are complicated by the low
energy and small angles of the outgoing particles. Fig. 10.3 shows the kinetic curves
for the outgoing proton (red), deuteron (yellow) and triton (green) from reactions
populating the lowest resonances in 12Be (E∗ = 4.5 MeV), 11Be (E∗ = 1.8 MeV) and
10Be (E∗ = 7.3 MeV) respectively. The curves are plotted on top of a θlab vs. Epar for
low energy particles. Background and states identified from gamma-gates are sub-
tracted from the plot. The elastic scattered events, already investigated, are clearly
seen, but do not interfere with the resonances. The three curves are entangled, and
furthermore 4,6He, 7,8,9Li and 10Be will also be seen with similar energies and angles.
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A gate is needed to identify the three reaction types. Three attempts to make gates
for the resonances are described in this section. All the attempts are based on the fact,
that the resonances decay through neutron emission. The first one has successfully
been used on the lowest resonance in 12Be, and the analysis of this resonance will
be fully described. Only some first attempts have been made for the last two, and a
more detailed analysis is required to gain any information about resonances.

10.3.1 Gammas from decay products

The first method is to gate on gammas from the daughter nucleus. Hence the method
requires neutron emission decay to an excited state in the daughter nucleus in order
to get a subsequent gamma decay. Thus a study of the lowest resonances in 11Be and
10Be are impossible, with this method, as they decay completely to the ground state
of 10Be and 9Be respectively. The low lying 1/2−-state in 11Be makes it energetically
possible for the lowest resonance in 12Be to decay to the excited state in 11Be, which
will decay with a 320 keV gamma afterwards. The 320 keV is seen in coincidence with
low energy particles, and has been used to identify the inelastic scattered deuterons,
section 7.3.2.1. Fig. 10.4 shows the laboratory angle vs. the energy for the particles
in concidence with a 320 keV gamma. Two curves are present in the plot. The strong
curve around 60 o is inelastic scattered deuterons, the wider and weaker curve at
angles between 10 0 and 40 0 is interpreted as protons from the d(11Be,p)12Be reaction
populating the lowest resonance in 12Be. The red curve from fig. 10.3 fits perfectly
with the experimental data.

The large separation between the deuterons and protons seen in the θlab vs. E plot
makes it possible to distinguished the deuterons from the protons in the analysis, as
seen in the gamma gated excitation energy spectrum in fig. 7.14 (the large background
in the spectrum, mentioned in section 7.3.2.1, are the protons). All the gamma gated
events are analysed as d(11Be,p)12Be reactions and an excitation spectrum is shown
in fig, 10.5. The low energy peak is the deuterons, which are ignored, but the peak
centered at 4.5 MeV is the 12Be resonance. The width of the peak is determined by
comparing the experimental data with simulations using various resonance widths.
Three widths have been attempted: Γ = 0 keV (red), 200 keV (green) and 500 keV
(yellow). The simulation with a delta function resonance is too narrow as expected.
The offset in the mean value between the simulated and the experimental data, and
the tail at 4 MeV, makes a precise measurement impossible. The best estimate is: Γ =
20 0(1 00)keV, which is almost twice the accepted value of 1 07( 17) keV determined
by H. Fortune et al. [For94].

The spin and parity of the resonance were initially predicted to be 2+ by H. For-
tune et al. [For94]. The strong population of the 1/2− in 11Be through first a (d,p)
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Figure 10.4: The energy as a function of the laboratory angle for low energy particles
in coincidence with a 320 keV gamma. The inelastic scattered events are clearly seen,
but also a curve at smaller angles are present. The curve is expected to be events from
a (d,p) reaction populating the lowest resonance in 12Be.

population of the resonance and then a decay to the 1/2−-state, contradicts this pre-
diction. The branching ratio of a decay from a 2+-resonance in 12Be to the 1/2−-state
in 11Be has been estimated to less than 2 % by E. Garrido et al. [Gar12]. The branch-
ing ratio of the decay cannot be determined before a complete understanding of the
last 25 % of the low energy particles is established (fig. 10.3), but a lower limit can
be given. The lower limit is determined by comparing the number of particles in
the gamma gated spectrum (ignoring the scattered deuterons) with all unidentified
particles within ±500 keV of the red line in fig. 10.3. The lower limit is:

BR(res) ≥ 10 %. (10.3)

This is a very conservative limit, but still higher than the 2 % estimate for a 2+-
resonance. A branching ratio of 10 % would also lead to a differential cross section in
the order of 50 mb/sr for the 11Be(d,p)12Be(res) reaction. This is almost a factor of ten
higher than all the other (d,p)-cross sections and comparable to the elastic scattering
cross section. A branching ratio above 50 % seems more reliable.

New theoretical calculations predict the spin and parity of the resonance to be
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Figure 10.5: The excitation energy calculated assuming a (d,p) reaction for low en-
ergy particles in coincidence with a 320 keV. The low energy part is the inelastic
scattered deuterons, and the peak at 4.5 MeV is the lowest known resonance in 12Be.
The resonance is compared with three simulations. The Different width of the res-
onance have been used in the simulations: red: Γ = 0 keV, green: Γ = 200 keV and
yellow: Γ = 500 keV

either 1− [Gar12] or 3− [For11]. None of these values can be confirmed or disproved
with the present knowledge.

10.3.2 Neutron detection using Ge-detectors

The second method is to detect neutrons from the neutron emission decay. Detection
of neutrons in studies of resonances is not a new technique, and has been used in
various experiments. Normally dedicated neutron detectors, like plastic scintillators,
are used. The setup for this experiment was not designed for studies of resonances,
hence no neutron detectors were present in the experiment.

Instead the MINIBALL Ge-detectors were used to indirectly detect the neutrons.
The idea is to detect gammas from decays of excited germanium isotopes. The ger-
manium isotopes are excited from inelastic scattering of neutrons (Ge(n,n’)Ge∗). The
method was already suggested by Chasman et al. in 1969 [Cha65]. The three strongest
gamma lines are shown in table 10.1, the fourth line in the table is from a long lived
0+ → 0+ transition in 72Ge, described in Jenkins et al. [Jen09]. This decay was al-
ready mentioned in chapter 7. The advantage of the last line is the long lifetime,
which enables a time and energy gate, like the gate for the 0+2 -state in 12Be made in
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Reaction Eγ [keV]
600

Ge(n,n’)Ge∗ 690
835

1035
637 (22F)

11Be+12C 821 (21F)
980 (8Li)

22Ne+d 1017 (23Ne)

Table 10.1: Table showing the four strongest gamma lines produced from inelastic
neutron scattering on germanium isotopes. Some nearby gamma lines from 11Be+12C
and 22Ne+d reactions are shown as well.

section 7.2.3.2. The three first are much stronger, but unfortunately the energies are
very close to gamma lines from fusion reactions of 11Be on 12C, these lines are seen in
table 10.1 as well. The gamma peaks are shown in fig. 10.6, all four peaks are visible,
furthermore a very weak peak at 1210 keV (≈ 2 · 600 keV) is seen indicating possibly
detection of a two-neutron emission. The long lifetime of the 690 keV gamma was
shown in fig. 7.7.
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Figure 10.6: The gamma energies detected in coincidence with a low energy particle.
The energies are not corrected for doppler shift.
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Figure 10.7: The energy vs. angle for low energy particles in the forward PSD’s in
coincidence with an expected neutron. The background from reactions on carbon is
subtracted. The kinetic curves for (d,p) (red), (d,d) (yellow) and (d,t) (green) popu-
lating the lowest resonances in 12,11,10Be are shown as well.

A gate has been made using all four peaks, both for reactions on deuterated
polyethylene and on carbon. A θlab vs. E plot is made with the carbon data sub-
tracted, fig. 10.7. The statistic is low, and no clear curves are seen. An indication
of an increased intensity following the yellow ((d,d’)) line is seen. Population of the
5/2+-resonance in 11Be has already been identified, but not studied, fig. 7.15. The
large number of events still present at angles above 50 degrees indicate a significant
background in the plot, which prevents any clear identification of population of a
resonance.

Furthermore, the neutron gate can not disentangle events from the three reso-
nances, as they all decay by neutron emission. Gamma-gamma coincidences have
been used in an attempt to disentangle the states. The lowest resonance of 12Be has
already been proven to decay to the 1/2−-state of 11Be, which produces a 320 keV
gamma. First attempt is to make a gate requiring two gammas, a 320 keV and a
neutron, fig. 10.8A. The second attempt is to look for two neutrons in coincidence
coming from a two neutron decay of 12Be to the ground state of 10Be, fig. 10.8B. The
resonances in 10Be and 11Be are both under the two neutron threshold, and only the
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12Be resonance should decay with two-neutron emission. The statistics are extremely
low for the particle-gamma-gamma coincidence events and a study of the 4.5 MeV-
resonance in 12Be cannot be performed without improving the analysis.
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Figure 10.8: The energy vs. angle for low energy particles in the forward PSD’s
gated on gamma-gamma coincidence. Left: A coincidence of a neutron and a 320 keV
gamma is required. Right: A coincidence of two neutrons is required. The red curve
indicates the kinematics of the (d,p)-reaction populating the 4.5 MeV resonance in
12Be.

10.3.3 Coincidence events analysis.

Instead of detecting the emitted neutron, which has been proven complicated, the
heavy fragment can be detected. Coincidence events between tritons and 10Be have
already been used in chapter 6 for beam diagnostic. This proves that coincidence
events occurs in this experiment for reactions to the bound states of 10Be, and 11Be.
The outgoing angle of the nuclei decreases with the excitation energy, and the res-
onances are at the limit of our angular range. The emission of a neutron should for
some events lead to a larger outgoing angle of the heavy fragment, making it possible
to have coincidence events for reactions populating resonances.

The reactions to the bound states and the reactions to resonances can be separated
by looking at the missing energy in the latter. In a reaction to a bound state, like
the ground state of 10Be, the two outgoing particles carries all the kinetic energy,
while in a reaction populating a resonance some of the kinetic energy is taken by the
undetected neutron. The two types of reactions can then be identified by calculating
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the excitation of the nucleus in two ways:

E∗1 = TA − Tb − TB +Q. (10.4)

E∗2 = TA − Tb −
P2

B

2mB
+Q (10.5)

(10.6)

The latter is the same as used in chapter 7 and provides the right excitation energy.
The former will give the excitation energy minus the kinetic energy of the neutron.
The equations require knowledge of the reaction, hence the excitation energies are
calculated assuming all three reactions ((d,p), (d,d) and (d,t)) individually. The two
excitation energies are plotted against each other, fig. 10.9. If the two excitation en-
ergies are the same (E1 = E2) for an event this is a true event to a bound state. If
E1 > E2, the particles stem from another reaction (mainly fusion reactions) Finally
if E2 > E1 for an event, it is either another reaction or a population of a resonance.
Unfortunately no events are found with E2 > E1, that cannot be explained by another
reaction. Three clear peaks are seen in the plots. The lowest is yet to be understood.
The middle is scattered deuterons and the top one is tritons from population of the
6 MeV states in 10Be.

This is only a quick first attempt to use this method and might be useful if im-
proved upon.
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Figure 10.9: E∗1 vs. E∗2 for two particle coincidence events. The particles are
analysed assuming three reactions: d(11Be,p)12Be (left), d(11Be,d)11Be (middle) and
d(11Be,t)10Be (right)
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10.4 Summary

Studies of 12Be not related to the differential cross sections were described in this
chapter. The experimental setup was not designed for these studies but the high
statistic enabled it, though only results with large uncertainties could be provided.

The techniques used for the lifetime measurement and the study of the reso-
nances should be applicable for other experiments and should provide inspiration
for future work.



CHAPTER 11

Summary and outlook

The experimental investigation of neutron rich beryllium isotopes will be summarised in this

chapter. Important parts and strengths of the experimental setup and the analysis will be high-

lighted, and the physical properties of the beryllium isotopes derived from the experiment will

be given. An outlook on the future analysis of the data will be given along with suggestions

for improvements in the experimental setup in the end.

11.1 Summary

The three neutron rich beryllium isotopes, 10Be, 11Be and 12Be, have been studied
in direct reactions at low energies. The study was performed in inverse kinematics
using an intense 11Be beam incident on a deuteron (and a proton) target. The ex-
periment was performed at ISOLDE, CERN, using the REX-ISOLDE LINAC to pro-
duce a post-accelerated beam with an energy of 2.8 MeV/u. Light particles (p,d,t
and α) were produced in reactions and detected by the T-REX setup. The T-REX
setup provided an almost 2π-coverage in angles from 8 o to 152 o in the laboratory
frame. The large spatial coverage of the T-REX and the high intensity of the beam
enabled a high statistic study of the reactions. The only reactions studied in this the-
sis were 11Be(d,p)12Be, 11Be(d,d’)11Be and 11Be(d,t)10Be for the deuteron target, and
11Be(p,p)11Be and 11Be(p,d)10Be for the proton target. The 11Be(d,α)9Li and 11Be(d,6He)7Li
reactions seen in the experiment have been considered background, but differential
cross sections for the reactions can be determined with a more detailed analysis of
the experimental data.

The T-REX setup only provided a low energy resolution and limited particle iden-
tification. The limitations of the T-REX were fully compensated by the detection of
gammas with the MINIBALL array. The MINIBALL detectors provided energy res-
olution down to 10 keV and all populated states in 10,11,12Be were successfully identi-
fied. Differential cross sections were calculated for angles between 60 o and 120 o in
center of mass for all the identified states. This experiment provides the first exper-
imental differential cross section for the 0+2 -state in 12Be. The angular ranges of the
differential cross sections are sufficient to see structures in most of the cross sections.
A comparison with simple theoretical calculations show a large discrepancy between
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the experimental data and the theoretical models for most of the reactions. Especially
reactions involving loosely bound final states could not be described with the simple
theoretical models. All these states (1/2+ and 1/2− in 11Be, 1−1 in 12Be, and 1−1 and 2−1
in 10Be) are expected to be halo states, which is known to affect the reaction mech-
anisms. The halo structure of the states are expected to be the main reason for the
discrepancy. The effect of a halo structure, or at least a loosely bound neutron, on the
reaction mechanism will play an important part in all reactions studied in this exper-
iment due to the two halo nuclei in the initial state (11Be and 2H). The breakup of the
deuteron in direct reactions is known to play an important part in reactions involving
deuterons and CDCC calculations have been compared to DWBA calculations to in-
vestigate the effect [Upa12]. The coupling with continuum states is even more likely
for 11Be with a binding energy of only 501 keV. CDCC calculations should be the
next step in the study of the differential cross sections provided by the experiment.
An important ingredient in a detailed study of the coupling to the continuum is the
population of the lowest resonance in 11Be through inelastic scattering. A population
of the resonance is identified in the experimental data, but no differential cross sec-
tions are calculated yet. The possibility of compound and exchange reactions should
also be investigated.

Preliminary spectroscopic factors are determined for all the transfer reactions de-
spite the discrepancy between the structures of the differential cross sections. The
spectroscopic factors for the 11Be(d,p)12Be reactions were determined with three dif-
ferent sets of potentials and the obtained values were consistent. The spectroscopic
factors for all but the 0+2 -state were in good agreement with previous experimental
results. The spectroscopic factors determined for the 0+2 are considered more reliable
than the previous determined experimental value, due to the clear identification of
the state. Evidence for the mixing of the 1s1/2 and the 0p1/2 shell was seen by compar-
ing the spectroscopic factors for the two 0+-states in 12Be. This is a clear indication
for the breaking of the N=8 magic number. However the spectroscopic factors can
not confirm the latest shell model calculations. No reliable spectroscopic values are
determined for the reactions to 10Be (neither (d,t) nor (p,d)) and new calculations are
required before comparing with theory.

The high statistic, high energy resolution and large angular coverage provided
an excellent foundation for a more detailed analysis of the experimental data. A new
analysis technique to determine the beam structure from coincidence events were
derived. The structure of a low energy radioactive beam was determined with high
precision at the reaction point for the first time, using the technique. The energy of
a fully accelerated radioactive beam was also determined for the first time at REX-
ISOLDE. The detailed knowledge regarding the beam structure lead to an increase
in the energy resolution in spectra from charged particles and a far better agreement
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between the simulated and experimental data.
The success in using coincidence events for beam diagnostic led to a first attempt

to identifying resonances using coincidence events. The attempt was unsuccessful,
but showed promising features. An attempt to use germanium detectors for neutron
detection led to the same results. The technique has been known for years but never
used in a study of direct reaction and the analysis has to be slightly improved before
reliable results are obtained. A detection of the sequential decay of the lowest known
resonance in 12Be through the 1/2−-state in 11Be was successfully performed, provid-
ing the first data on the decay of the resonance. Lower limits could be determined
for the branching ratio (BR ≥ 10 %) and the cross section ( dσ

dΩ & 5 mb/sr), and a width
was determined with high uncertainty. Stronger limits can be reached with a more
detailed analysis of the data.

The possibility of cleanly identifying reactions populating the 0+2 -state in 12Be was
utilised to determine the lifetime of the state and give a rough estimate of the branch-
ing ratio, confirming the established values from Shimoura et al. [Shi07].

All in all the experiment can be considered successful, and the results obtained
show interesting effects.

11.2 Outlook

While the results, already obtained from the experiment, are abundant, further in-
sight of the low mass region of the nuclear chart can be gained from the data. All
information in the experimental data regarding the bound states of 10,11,12Be are ob-
tained, but more than 10 % of the data are yet to be fully understood. A further
analysis should improve the knowledge already gained on the resonances populated
in 11Be and 12Be. Especially a calculation of the differential cross section of inelastic
scattering to the resonance in 11Be would prove valuable in the understanding of the
reaction mechanisms. Studies of Lithium isotopes could furthermore be performed
by studying the outgoing helium particles, as could fusion reactions of 11Be on 12C.

Even though the experiment has proven very successful, improvements in the
experimental setup could be useful. An important part missing in the data is the
differential cross sections at small center of mass energies. Particles with small center
of mass angles have low energy in the laboratory and information regarding these
areas can only be obtained by either increasing the reaction energy or lowering the
energy limit for detection. The latter requires an upgrade of the T-REX setup, ideally
changing the PSD detectors to detectors with a lower threshold. An upgrade has
been proposed and is being designed at the moment. The higher beam energy will be
obtained with the upgrade of ISOLDE to HIE-ISOLDE. The first stage of the upgrade
is planned to be ready late 2014/early 2015. The first stage should provide energies
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up to 5 MeV/u, sufficient to detect protons from reactions populating excited states
in 12Be in the backward laboratory angles, even with the present T-REX setup.
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