Study of light neutron-deficient nuclei Progress report

Erik Asbjørn Mikkelsen Jensen

Department of Physics and Astronomy Aarhus University

August 2021

Outline

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

1 Motivation

- 2 New opportunities at MSU
- 3 Experiment at IGISOL, Aug.-Sep. 2020
- 4 Development and maintenance of software
- 5 Analysis of the decay of ²¹Mg
- 6 Outlook

Theme

Preparations and training for experiments at MSU - rescheduling of plans

Motivation

Rich and complex array of decays along drip lines

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Consolidation

Exploit **β-delayed particle emission** in order to study:

- Mechanisms of multi-proton and α emission
- β strength in decays with large open energy windows
- Properties of resonances above proton separation energies

Limited knowledge on neutron-deficient nuclei with $A\sim 20\dots 30$

β -delayed particle emission

Motivation

- New opportunities at MSU
- Experiment at IGISOL, Aug.-Sep. 2020
- Development and maintenance of software
- Analysis of the decay of ²¹Mg
- Outlook

Mechanisms of multi-proton and α emission

- β strength in decays with large open energy windows
- Properties of resonances above proton separation energies

Slowness of β -decay makes these observations possible

$$ft = rac{K}{{g_{ ext{V}}}^2 B_{ ext{F}} + {g_{ ext{A}}}^2 B_{ ext{GT}}}; \hspace{1cm} K = rac{2 \pi^3 \hbar^7 \ln 2}{{m_{ ext{e}}}^5 c^4}$$

New opportunities at MSU

Beam production

In-flight advantages:

- Short separation times
- Large separation efficiencies

ISOL advantages:

- High purity, low energy beams
- Large yields

Beam production at MSU

Combination of ISOL and in-flight methods

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

NSCL \rightarrow FRIB: Even greater yields

Low Energy Community Meeting August 9th-11th 2021

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Good news!

The experiments originally planned at NSCL would have had much greater statistics compared to any previous study The upgrade to FRIB further enhances the yield by an order of 10³! Beam time next summer would grant one whole year for analysing the data

Detection setup

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

DSSSDs and SSSDs

- Specially designed cube
- Stopping foil
- Custom-made aluminium tube
- SeGA at MSU
- Our DAQ

A. Gade, NSCL (2016).

Experiment at IGISOL, Aug.-Sep. 2020

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Jyväskylä, Finland

Andreas Gad's PhD project

Studying resonances above the *Hoyle state* in ^{12}C through the decay of ^{12}B

Brief relaxation of travel restrictions meant only Andreas and I could participate Completion would not have been possible without the tremendous assistance and effort of the people at IGISOL

Outcome of experiment at IGISOL

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Much greater statistics than previously on the decay of $^{12}\mathrm{B}$

Andreas is currently analysing the data

From *my* PhD project's point of view:

- Pilot experiment for the MSU experiment
- Training in carrying out long experiments at accelerator facilities
- Lessons learned
- Geant4 simulations

Development and maintenance of software

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

AUSAlib based on ROOT from CERN

My work

Expansion of AUSAlib Future-proofing AUSAlib:

- ROOT v. 6 (C++11) \rightarrow ROOT v. 7 (C++14)
- New CMake standards

CMake - a Build System Generator

The file CMakeLists.txt is the entry point for building the library

CMake version 2.8

CMake version 3.15

- Hard-coded variables define library, e.g. set(... "-std=c++11")
- Library's install location not persistent
 - User must provide
 FindAUSALIB.cmake

- Target descriptions dynamically define library
- Export library's interfaces
 - find_package(AUSALIB) command just works

Result

Greater ease of use: Figure 5.1 in progress report Future-proof

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Analysis of the decay of ²¹Mg

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Experiment on ²⁰Mg at IDS at CERN in 2015:

Measurements on ²¹Mg for calibration purposes (5~6 hours)

Large amount of statistics on ²¹Mg, nevertheless

New analysis; new insights

Methods

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

IDS setup shares characteristics with the MSU setup

Can utilise (and combine):

- Telescopes
- Time after production
- Clovers

Proton spectrum

JE (ke) 250 Counts / (10 keV) Erratum 2000 × 125 r 10 150 Conservation of energy 1000 400 no longer violated 201 200 100 1000 2000 3000 4000 5000 6000 7000 800 E (keV) 1000 2000 3000 4000 5000 6000 Initial results E_n (keV) $\frac{5}{2^{1}Mg}$ } $2m_{e}c^{2}$ 0 1000 2000 3000 4000 5000 6000 7000 8000 Counts / 10 keV 9.436 10³ 8 973 IAS 8.053 5/2 7/2) 10 $\alpha + {}^{17}F$ (3/2, 5/2, 7/2)+ 10 4.065 2.431 p + ²⁰Ne 1.716 $7/2^{+}$ $\frac{0.332}{0.0}$ $\frac{5/2^+}{2^1N_2}$ $\frac{3/2^+}{3/2^+}$ 0

Motivation

New opportunitie at MSU

Experiment at IGISOL, Aug.-Sep 2020

Development an maintenance of software

Analysis of the decay of ²¹Mg

Gating on transitions

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

Motivation

New opportunities at MSU

Experiment at IGISOL, Aug.-Sep. 2020

Development and maintenance of software

Analysis of the decay of ²¹Mg

Outlook

All preparations complete – ready for the experiment(s) at MSU!

In the meantime:

- Continuation of analysis of ²¹Mg
 - R-matrix theory
 - Extension to data on ¹⁷Ne, ³¹Ar
- Backup experiments?
 - Experiments at ISOLDE or IGISOL
 - Experiments at 5 MeV accelerator in Århus

Thank you for your attention!

(we apologise for any inconvenience caused)