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This note is an attempt to generalise the existing results for correlations in cascade
transitions. In particular we focus on the case of β-delayed α decay where the
intermediate state is best described as a superposition of eigenstates of the nuclear
Hamiltonian. Such a generalisation requires knowledge of the transition matrix
elements and some understanding of the density operator formalism. The density
operator formalism plays an important part in the theoretical derivation of various
correlation distributions in nuclear reactions and β decay in particular. In some
treatments, however, the formalism is introduced in a somewhat unclear fashion
[2], and for this reason I thought it useful to include a section where the basic
concepts are introduced. More complete introductions can be found, for instance
in [1] or [3].

1. Description of states

A quantum system is said to be in a pure state if it is possible to write its state vector
as |α〉. Such a state can also be described by the corresponding density operator,
having the form

ρ= |α〉〈α|. (1)

Sometimes it is convenient to expand the density operator in terms of some, com-
plete, basis {|ak〉}:

ρ=
∑

kk ′
|ak〉〈ak |ρ|ak ′〉〈ak ′ |=

∑

kk ′
|ak〉〈ak ′ |ρ(k , k ′), (2)

where ρ(k , k ′) is the density matrix describing the state. One strength of the density
operator formalism is that it is possible not only to describe pure quantum states,
but also mixed states of the form

ρ= p(α)|α〉〈α|+ p(β)|β〉〈β|. (3)

Here, p(α) and p(β) denote the probability that the system is in the state |α〉 or
|β〉, respectively. It would not be possible to treat such a state in the ordinary state
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vector notation. Clearly, the probabilities must add up to 1, which immediately
leads to the useful relation

tr(ρ) = 1, (4)

i.e., the diagonal elements of the density matrix must add up to unity.
The density operator formalism is also useful when dealing with compound

systems. If we have a compound system consisting of two sub-systems, A and B ,
which is described by the density operator ρAB , it is possible to find the state of
each sub-system by “tracing out” the other system, i.e.

ρA= trB (ρAB ), (5)

where trB denotes the partial trace over system B . ρA is now the reduced density
operator for system A. The idea can be illustrated by a pure system of two entangled
spins:

|ψAB〉= |↑A↓B〉+ |↓A↑B〉
⇒ ρAB = |ψAB〉〈ψAB |

= |↑A↓B〉〈↑A↓B |+ |↑A↓B〉〈↓A↑B |+ |↓A↑B〉〈↑A↓B |+ |↓A↑B〉〈↓A↑B | (6)

The density operator for sub-system A is obtained by taking the partial trace over
sub-system B .

ρA= trB (ρAB ) = |↑A〉〈↑A|+ |↓A〉〈↓A|. (7)

It is worth noting that while the combined system is in a pure state, the state of
each sub-system is a statistical mixture. The only knowledge we have about such a
system is the probability with which it occupies each of the possible states.

2. Transitions and cascades

Consider a system which undergoes a transition due to the operator T1, i.e. a final
state can be expressed in terms of an initial state like | f 〉= T1|i〉. If the initial state
is described by the density operator ρA, the final state becomes

ρB = T1ρAT †
1 =

∑

kk ′
T1|ak〉〈ak ′ |T

†
1 ρA(k , k ′). (8)

According to [1] this is only strictly true if T1 is unitary. If T1 is not unitary, the
state ρB is not normalised and does not fulfill the trace condition in eq. (4) (however
the norm of ρB might still contain useful information).
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Again, it is straightforward to express the resulting state in the most convenient
basis, as long as it forms a complete set {|bl 〉}:

ρB =
∑

l l ′
|bl 〉〈bl |ρB |bl ′〉〈bl ′ |

=
∑

l l ′

∑

kk ′
|bl 〉〈bl |T1|ak〉〈ak ′ |T

†
1 |bl ′〉〈bl ′ |ρA(k , k ′)

=
∑

l l ′

∑

kk ′
|bl 〉〈bl ′ | 〈bl |T1|ak〉〈bl ′ |T1|ak ′〉

∗
︸ ︷︷ ︸

ρ1

ρA(k , k ′). (9)

The brace in the last line indicates ρ1, which is also defined in eq. (7.7) of [2] and
in eq. (47) of [3] (although in slightly different notations) as

ρ1(l , l ′, k , k ′) = 〈bl |T1|ak〉〈bl ′ |T1|ak ′〉
∗ (10)

In [2, 3] ρ1 is introduced as a density matrix, which I find a bit confusing. As
far as I can see, it is not a density matrix in the ordinary sense, since it does not
describe a quantum state. In the following we speak, however, of ρ1 as a density
matrix, since this appears to be the generally accepted term. We can use ρ1 to write
a conventional density operator for the daughter state. If we define

ρB (l , l ′) =
∑

kk ′
ρ1(l , l ′, k , k ′)ρA(k , k ′), (11)

then

ρB =
∑

l l ′
|bl 〉〈bl ′ |ρB (l , l ′). (12)

It is possible to use this formalism to describe cascade transitions, where the
final state of the first transition acts as intial state of the second transition1. Let the
operator T2 be responsible for the second transition. The density operator for the
final state is then

ρC = T2ρB T †
2 =

∑

l l ′
T2|bl 〉〈bl ′ |T

†
2 ρB (l , l ′). (13)

We now express ρC in terms of a complete basis {|cm〉}. Following the same proce-
dure as in eqs. (2) and (9), we obtain

ρC =
∑

mm′
|cm〉〈cm |ρC |cm′〉〈cm′ |

=
∑

mm′

∑

l l ′
|cm〉〈cm |T2|bl 〉〈bl ′ |T

†
2 |cm′〉〈cm′ |ρB (l , l ′)

=
∑

mm′

∑

l l ′
|cm〉〈cm′ | 〈cm |T2|bl 〉〈cm′ |T2|bl ′〉

∗
︸ ︷︷ ︸

ρ2

ρB (l , l ′), (14)

1Assuming there are no extranuclear fields that modify the intermediate state between the tran-
sitions.
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where ρ2 is defined in the same way as ρ1 of eq. (10):

ρ2(m, m′, l , l ′) = 〈cm |T2|bl 〉〈cm′ |T2|bl ′〉
∗. (15)

With these definitions we can combine the results in eqs. (11) and (14) and write
the density matrix for the final state in terms of the density matrix of the initial
state, ρA, and the two transition density matrices, ρ1 and ρ2:

ρC (m, m′) =
∑

l l ′

∑

kk ′
ρ2(m, m′, l , l ′)ρ1(l , l ′, k , k ′)ρA(k , k ′). (16)

It is straightforward to extend the formalism to even more complicated situations
involving triple- or quadrupel-cascades. A couple of examples immediately spring
to mind:

12N
β
−→ 12C∗

α−→ 8Be
α−→ 4He

11B
p
−→ 12C∗∗

γ
−→ 12C∗

α−→ 8Be
α−→ 4He.

3. The correlation function

According to the definition of the density matrix the probability of finding the
daughter system in the state |cm〉 is given by

p(cm) = 〈cm |ρC |cm〉. (17)

If we consider nuclear transitions involving the emission (or absorption) of some
kind of radiation, then ρC is not only dependent on the quantum numbers of the
nuclear system, but also on the properties of the radiation; energy, momentum and
polarisation. To be more explicit, we could therefore write for the double-cascade

p(cm) = 〈cm |ρC (k1,k2)|cm〉, (18)

where k1,k2 denote the properties of the radiations involved in the cascade. To
calculate the probability of finding the daughter system in any state, given k1 and
k2, we trace over all possible final states:

W (k1,k2) =
∑

m
〈cm |ρC (k1,k2)|cm〉= tr(ρC ). (19)

This is the general formula for the correlation function in a double-cascade. If
some properties of the radiation are not observed, the expression should be inte-
grated/summed over those unobserved properties.
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4. Nuclear β decay

In nuclear β decay we are considering transitions from an initial state, which is
expressed in terms of angular momentum quantum numbers IA and mA, to a final
state which contains the daughter nucleus, described by IB and mB , as well as the
two leptons, described by their momenta, pe , pν , and their spins me and mν . This
means that the initial and final states are often expressed in terms of basis kets of
the types

|IAmA〉 (basis for initial system)
|IB mBpepνme mν〉 (basis for final system) (20)

Typically the initial state is completely mixed, and describes a statistical ensemble of
either unoriented or polarised nuclei. The density matrices for the two possibilities
are2

ρA(mA, m′A) = (2IA+ 1)−1δmAm′A
(21)

or

ρA(mA, m′A) = p(mA)δmAm′A
, (22)

where the numbers p(mA) are the population probabilities indicating the polari-
sation of the ensemble, and we have

∑

mA
p(mA) = 1. In [2, 3, 4] many useful

calculations are found, however, only transitions to final states of sharp angular
momentum are treated. In the following we try to generalise the results to cases
where the daughter state of the β decay does not necessarily have a well-defined
nuclear spin.

We take the transition matrix element for β− decay from eq. (6.174) of [2] as
our starting point:

Tβ− =
Gβ

4π

∑

KM

∑

κeµe
κνµν

(−1)IB−mB+K+M+ je−µe+µν−lν+
1
2

×
�

(2IA+ 1)(2K + 1)
� 1

2

�

IB K IA
−mB M mA

��

je K jν
−µe −M −µν

�

× a∗κeµe
b ∗κνµνακe

�

MK (ke , kν )+ sign(κe )mK (ke , kν )
�

. (23)

Here, the κ’s and µ’s are quantum numbers for the lepton wave functions, and

κ=

(

l for j = l − 1
2

−(l + 1) for j = l + 1
2

(24)

2The expression in eq. (21) deviate from the expression in [2] by a factor (2IA+ 1)−1.
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and k = |κ|. The quantities aκµ and bκµ are the coefficients of the partial wave ex-
pansion of the plane wave lepton states, and they are given explicitly in eqs. (6.115b)
and (6.117) of [2] as

aκeµe
=

4π
p

2

1

pe
〈le

1
2 (µe −me )me | jeµe〉Y

µe−me∗
le

( p̂e )exp(i∆κe
)

bκνµν =
4π
p

2
〈lν

1
2 (µν −mν )mν | jνµν〉Y

µν−mν∗
lν

( p̂ν ) (25)

ακ and ∆κ are the Coulomb-amplitude and phase-shift of the electron radial wave
function, respectively, see [5] or sec. 4.1 of [2] for a discussion of these quantities.
The quantum number, K , is the “multipolarity” of the transition, i.e. the total an-
gular momentum carried away by the leptons3 and, finally, we have the quantities
MK (ke , kν ) and mK (ke , kν ), which are defined in eqs. (6.171) and (6.172) of [2]. The
expressions for MK (ke , kν ) and mK (ke , kν ) are rather formidable, and they are for-
mally written in terms of the so-called nuclear form-factor coefficients, which appear
from the relativistic treatment of nuclear β decay. If certain approximations are
made, however, MK (ke , kν ) and mK (ke , kν ) are simply related to the non-relativistic
matrix elements of Fermi and Gamow-Teller transitions.

To proceed, we use the definition of the transition density matrix in eq. (10)
and combine it with our formula for Tβ− (note that in the notation of the earlier
sections, Tβ− = 〈bl |Tβ− |ak〉, such that ρβ− = 〈bl |Tβ− |ak〉〈bl ′ |Tβ− |ak ′〉∗)

ρβ− =
G2
β

(4π)2
∑

KM

∑

K ′M ′

∑

κeµe
κνµν

∑

κ′eµ
′
e

κ′νµ
′
ν

(−1)IB+I ′B−mB−m′B+K+K ′+M+M ′+ je+ j ′e−µe−µ′e+µν+µ
′
ν

× (−1)−lν−l ′ν+1(2IA+ 1)
�

(2K + 1)(2K ′+ 1)
� 1

2

�

IB K IA
−mB M mA

�

×
�

I ′B K ′ IA
−m′B M ′ m′A

�
�

je K jν
−µe −M −µν

�
�

j ′e K ′ j ′ν
−µ′e −M ′ −µ′ν

�

× a∗κeµe
aκ′eµ′e b ∗κνµν bκ′νµ′νακe

ακ′e
�

MK (ke , kν )M
′
K ′
(k ′e , k ′ν )

+ sign(κe )mK (ke , kν )M
′
K ′
(k ′e , k ′ν )+ sign(κ′e )MK (ke , kν )m

′
K ′
(k ′e , k ′ν )

+ sign(κe )sign(κ′e )mK (ke , kν )m
′
K ′
(k ′e , k ′ν )

�

. (26)

This formula looks very similar to eq. (7.1) of [2], but we have allowed for the
possibility that IB 6= I ′B . Also, we have put primes on some of the MK and mK
parameters to allow for several nuclear daughter states to be populated in the tran-
sition. The next step is to substitute the aκµ’s and bκµ’s with the expressions in eq.
(25) and simplify. Following eq. (7.2) to (7.5) in [2] we arrive at a more transparent

3It is also the rank of the spherical tensor operator which is responsible for the transition.
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form of the density matrix

ρβ− =
G2
β
π

p2
e

∑

KM

∑

K ′M ′

∑

κeµe
κνµν

∑

κ′eµ
′
e

κ′νµ
′
ν

∑

k m

∑

k ′m′
(−1)IB+I ′B−mB−m′B+K+K ′+M+M ′+ je+ j ′e

× (−1)le+l ′e−1+m′e+m′ν−µ
′
e−µ

′
ν (2IA+ 1)

�

(2K + 1)(2K ′+ 1)(2 je + 1)(2 j ′e + 1)

× (2 jν + 1)(2 j ′ν + 1)(2le + 1)(2l ′e + 1)(2lν + 1)(2l ′ν + 1)(2k + 1)(2k ′+ 1)
� 1

2

×
�

IB K IA
−mB M mA

�
�

I ′B K ′ IA
−m′B M ′ m′A

�
�

je K jν
−µe −M −µν

�

×
�

j ′e K ′ j ′ν
−µ′e M ′ −µ′ν

��

le
1
2 je

µe −me me −µe

��

l ′e
1
2 j ′e

µ′e −m′e m′e −µ′e

�

×
�

le l ′e k
µe −me µ′e −m′e m

��

le l ′e k
0 0 0

��

lν
1
2 jν

µν −mν mν −µν

�

×
�

l ′ν
1
2 j ′ν

µ′ν −m′ν m′ν −µ
′
ν

��

lν l ′ν k ′

µν −mν m′ν −µ
′
ν m′

�
�

lν l ′ν k ′

0 0 0

�

×Y m∗
k ( p̂e )Y

m′∗
k ′
( p̂ν )ακe

ακ′e
�

MK (ke , kν )M
′
K ′
(k ′e , k ′ν )

+ sign(κe )mK (ke , kν )M
′
K ′
(k ′e , k ′ν )+ sign(κ′e )MK (ke , kν )m

′
K ′
(k ′e , k ′ν )

+ sign(κe )sign(κ′e )mK (ke , kν )m
′
K ′
(k ′e , k ′ν )

�

exp
�

−i
�

∆κe
−∆κ′e

��

. (27)

This is the complete density matrix for a nuclear β decay. If some properties re-
main unobserved they should be traced out of the expression, a process which usu-
ally provides great simplification.

We now consider the case where neither of the lepton polarisations are ob-
served. In this situation the density matrix is modified

ρβ− −→
∑

me m′e

∑

mνm′ν

ρβ−(me , m′e , mν , m′ν )δme m′e
δmνm′ν

. (28)

These sums, together with the summation overµe ,µ′e ,µν andµ′ν , are carried out in
eqs. (7.9) to (7.11) in [2]. The procedure is trivial in the sense that it only requires
knowledge about the properties of the Wigner 3 j -symbols (see appendix B), and we
find

ρβ− =G2
βπF0

∑

KM

∑

K ′M ′

∑

N s

∑

k m

∑

k ′m′
(−1)IB+I ′B−mB−m′B+N+K+K ′+M ′

× (2IA+ 1)(2N + 1)
1
2

�

IB K IA
−mB M mA

�
�

I ′B K ′ IA
−m′B M ′ m′A

�

×
�

N K ′ K
s −M ′ M

��

k ′ N k
m′ s m

�

aN
kk ′
(K ,K ′)Y m∗

k ( p̂e )Y
m′∗
k ′
( p̂ν ). (29)
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Here, we have also introduced the factor aN
kk ′
(K ,K ′) which depends only on the β

transition:

aN
kk ′
(K ,K ′) =

1

F0 p2
e

∑

κeκ
′
e

∑

κνκ
′
ν

g kk ′N
KK ′
(κe ,κ′e ,κν ,κ

′
ν )ακe

ακ′e
�

MK (ke , kν )M
′
K ′
(k ′e , k ′ν )

+ sign(κe )mK (ke , kν )M
′
K ′
(k ′e , k ′ν )+ sign(κ′e )MK (ke , kν )m

′
K ′
(k ′e , k ′ν )

+ sign(κe )sign(κ′e )mK (ke , kν )m
′
K ′
(k ′e , k ′ν )

�

exp
�

−i
�

∆κe
−∆κ′e

��

, (30)

where the geometrical factor, g kk ′N
KK ′
(κe ,κ′e ,κν ,κ

′
ν ), is defined in eq. (7.14) of [2].

Again, the primes on some of the MK ’s and mK ’s make our definition of aN
kk ′
(K ,K ′)

slightly more general than the standard definition. The remaining factors in eq. (29)
depend only on the quantum numbers of the nuclear states and the Fermi function,
F0.

5. Emission of α particles

In this section we attempt to apply the density matrix formalism to another kind
of transitions, namely α transitions. The idea is to find an expression equivalent to
eq. (29) and eventually combine the results in a correlation function for β-delayed
α decays. We start from the general transition matrix element in eq. (59) of [3],
describing a transition from an initial state with spin, IB , to a final state of spin IC :

Tα =
∑

LMµ

(−1)−Ic+L−mB

�

IC L IB
mC M −mB

�

〈0σ |Lµπ〉〈IC ‖Lπ‖IB〉D
L∗
Mµ(z→ p).

(31)

In the above formula, 〈0σ |Lµπ〉 is the eigenfunction of radiation emitted along the
z-axis corresponding to definite values of angular momentum, its projection and
parity.4 Furthermore we have the reduced matrix element, 〈IC ‖Lπ‖IB〉, which can
be chosen to be real if the transition operator is symmetric under time reversal [3].
Finally, D∗LMµ is an element of the rotation matrix, see for instance appendix A.

It is straightforward to construct a transition density matrix from eq. (31).

ρα =
∑

LMµ

∑

L′M ′µ′
(−1)−2IC+L+L′−mB−m′B 〈0σ |Lµπ〉〈0σ ′|L′µ′π′〉∗

×〈IC ‖Lπ‖IB〉〈IC ‖L
′π‖I ′B〉

∗
�

IC L IB
mc M −mB

�
�

IC L′ I ′B
m′C M ′ −m′B

�

×DL∗
Mµ(z→ p)DL′∗

M ′µ′
(z→ p) (32)

4This is probably not very well stated. See sec. 3.2.1 and 3.5 of [3] and figure out the correct
interpretation.
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The elements of the rotation matrix have many useful properties, some of which
are summarised appendix A. Specifically we can write the product of two matrix
elements in terms of single matrix elements (eq. (74)), and we find

DL∗
Mµ(z→ p)DL′∗

M ′µ′
(z→ p)

= (−1)M−µ
∑

k

(2k + 1)(−1)τ+N
�

L L′ k
M −M ′ N

��

L L′ k
µ −µ′ τ

�

Dk
Nτ(z→ p).

(33)

Substituting this identity into (32) we get

ρα =
∑

LMµ

∑

L′M ′µ′

∑

kNτ

(−1)−2IC+L+L′−mB−m′B+M−µ+τ+N 〈0σ |Lµπ〉〈0σ ′|L′µ′π′〉∗

×〈IC ‖Lπ‖IB〉〈IC ‖L
′π‖I ′B〉

∗(2k + 1)
�

IC L IB
mC M −mB

�

×
�

IC L′ I ′B
m′C M ′ −m′B

�
�

L L′ k
M −M ′ N

��

L L′ k
µ −µ′ τ

�

Dk
Nτ(z→ p), (34)

which is the formula for an α transition from a state without a well-defined angular
momentum, denoted IB , I ′B , to a single state of angular momentum IC . The sign-
factor can be simplified a bit by realising that the third of the 3 j -symbols vanishes
unless

N =M ′−M ⇒ M +N =M ′. (35)

The last 3 j -symbol vanishes unless τ = µ′ −µ. This means that τ has to be an
integer, and we find

(−1)τ−µ = (−1)−τ−µ = (−1)−µ
′
. (36)

The sign-factor can now be re-written in a slightly more compact way:

(−1)−2IC+L+L′−mB−m′B+M−µ+τ+N = (−1)−2IC+L+L′−mB−m′B+M ′−µ′ . (37)

6. Correlations in β-delayed α decay

Now that we have found expressions for the transition density matrices of both
β and α transitions, we are ready to combine the results and write down the cor-
relation function for a β-α cascade. The initial and final states are specified by
their angular momentum quantum numbers, {IA, mA} and {IC , mC }, respectively,
and we assume that the transition can proceed through several intermediate nucle-
ar states, labelled λB , with angular momentum quantum numbers {IB , mB}. Note
that the states λB are assumed to be eigenstates of the nuclear hamiltonian, and they
are therefore states of definite angular momentum. This means that λB implicitly
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specifies IB , but for the sake of clarity we retain IB in the formulas below. The stan-
dard treaments only consider the possibility of a single intermediate state, and in
these treatments only the specification of the magnetic sub-states, mB , is required
[2, 3, 4]. Following eqs. (16) and (19) we write

W = tr(ρC ) =
∑

mC

∑

λBλ
′
B

∑

mB m′B

∑

mAm′A

ρα(mC , mC , IB , I ′B , mB , m′B )

×ρβ−(IB , I ′B , mB , m′B , mA, m′A)ρA(mA, m′A)

=
∑

λBλ
′
B

∑

mB m′B

�

∑

mC

ρα(mC , mC , IB , I ′B , mB , m′B )
�

×
�

∑

mAm′A

ρβ−(IB , I ′B , mB , m′B , mA, m′A)ρA(mA, m′A)
�

. (38)

Here, we follow more or less the notation of [2], where the dependence of each
density matrix on the various quantum numbers has been made explicit. Keep in
mind, however, that ρα and ρβ− also depend on the energies and momenta of the
emitted radiations.

To proceed, we evaluate each of the brackets in eq. (38) separately. We start
with the second bracket, where we immediately replace ρA with the density matrix
for an unpolarised ensemble, which we get from eq. (21). Taking the transition
density matrix from eq. (29), we need to calculate
∑

mAm′A

ρβ−(IB , I ′B , mB , m′B , mA, m′A)δmAm′A
(2IA+ 1)−1 = trA(ρβ−ρA)

=G2
βπF0

∑

mA

∑

K1M1

∑

K ′1M ′1

∑

N1 s1

∑

k1 m1

∑

k ′1 m′1

(−1)IB+I ′B−mB−m′B+N1+K1+K ′1+M ′1(2N1+ 1)
1
2

×
�

Ib K1 IA
−mB M1 mA

�
�

I ′B K ′1 IA
−m′B M ′1 mA

��

N1 K ′1 K1
s1 −M ′1 M1

�

×
�

k ′1 N1 k1
m′1 s1 m1

�

aN1

k1k ′1
(K1,K ′1)Y

m1∗
k1
( p̂e )Y

m′1∗
k ′1
( p̂ν ), (39)

where all quantum numbers and summation indices related to the β transition has
been labelled with a “1”. In the following we need to do some gymnastics with
the Wigner 3 j -symbols, and therefore it is probably a good idea to have a look in
appendix B, where some important properties of the Wigner-symbols are listed.
We can use eq. (84) to show that

∑

M1M ′1 mA

(−1)M
′
1−mB−m′B

�

IB K1 IA
−mB M1 mA

�
�

I ′B K ′1 IA
−m′B M ′1 mA

��

N1 K ′1 K1
s1 −M ′1 M1

�

= (−1)IA+IB+I ′B+m′B

�

IB I ′B N1
mB −m′B s1

�¨

IB I ′B N1
K ′1 K1 IA

«

. (40)
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In obtaining the above result it is necessary to realise that M ′1 − mA − m′B is an
integer, such that (−1)M

′
1−mA−m′B = (−1)−M ′1+mA+m′B . Doing the summations over

M1, M ′1 and mA in eq. (39) we find

trA(ρβ−ρA) =G2
βπF0

∑

K1K ′1

∑

N1 s1

∑

k1 m1

∑

k ′1 m′1

(−1)IA+2IB+2I ′B+m′B+N1+K1+K ′1(2N1+ 1)
1
2

×
�

IB I ′B N1
mB −m′B s1

�¨

IB I ′B N1
K ′1 K1 I ′A

«�

k ′1 N1 k1
m′1 s1 m1

�

× aN
kk ′
(K1,K ′1)Y

m1∗
k1
( p̂e )Y

m′1∗
k ′1
( p̂ν ). (41)

Since IB and I ′B can only differ by an integer, the sum IB + I ′B must be an integer.
This means that the term 2IB +2I ′B must be an even number, and we are allowed to
ignore it when it appears in the sign factor.

We now focus on the special (although quite common) case in which the neu-
trino is not observed. This means that we must integrate over p̂ν . We have

∫

Y
m′1∗
k ′1
( p̂ν )d p̂ν =

p
4π δk ′10δm′10

⇒ k ′1 = 0 and m′1 = 0. (42)

These constraints on k ′1 and m′1 in turn lead to constraints on N1 and s1 through
the 3 j -symbol and the identity in eq. (78).

�

0 N1 k1
0 s1 m1

�

= (−1)−N1−m1(2k1+ 1)
1
2δN1k1

δs1(−m1)

⇒ N1 = k1 and s1 =−m1. (43)

Under these conditions eq. (41) simplifies considerably:

trA(ρβ−ρA) =2π
3
2 G2

βF0

∑

K1K ′1

∑

k1 m1

(−1)IA+m′B+K1+K ′1−m1

×
�

IB I ′B k1
mB −m′B −m1

�¨

IB I ′B k1
K ′1 K1 IA

«

ak1
k10
(K1,K ′1)Y

m1∗
k1
( p̂e ). (44)

It is now customary to define the particle parameters of the nuclear β transition as

b (k)
KK ′
=

ak
k0
(K ,K ′)+ ak

k0
(K ′,K)

4(1+δKK ′)
(45)

and replace the sum over K and K ′ with a sum over K ≤ K ′. This definition of
the particle parameters is identical to the definition in [2, 4, 5], but differs by some
factors from the definition in [3]. Tables 7.2 of [2], 10.8 of [4] and 7 of [5] all
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provide explicit expressions for b (k)
KK ′

in terms of MK ’s and mK ’s, however, we must
keep in mind that since our definition of the aN

kk ′
(K ,K ′)-parameters in eq. (30) is

somewhat more general than the standard definition, these tables cannot be used
directly. We shall see later how to deal with this problem.

In order to bring the β- and the α-part of the density matrix on the same form
we replace the spherical harmonic with a matrix element of the rotation operator
using eq. (75). After a little rearrangement we find

trA(ρβ−ρA) =4πG2
βF0

∑

K1≤K ′1

∑

k1 m1

(−1)IA+m′B+K1+K ′1−m1(2k1+ 1)
1
2

×
�

IB I ′B k1
mB −m′B −m1

�¨

IB I ′B k1
K ′1 K1 IA

«

b (k1)
K1K ′1
Dk1

m10(z→ pe ). (46)

In the special case where only a single intermediate state is populated in the tran-
sition, i.e. when IB = I ′B , the above result should be identical to eq. (7.65) in [2].
This is indeed the case, except for an apparent difference in sign. In [2] the term
−IA−m′B appears in the sign factor, whereas here we have IA+m′B . The fact that
IA+m′B is an integer resolves this apparent discrepancy.

Returning now to eq. (38) we now take a closer look at the expression in the
first of the two brackets. Using eq. (34) to replace ρα we obtain

∑

mC

ρα(mC , mC , IB , I ′B , mB , m′B ) = trC (ρα)

=
∑

mC

∑

L2M2µ2

∑

L′2M ′2µ
′
2

∑

k2N2τ2

(−1)−2IC+L2+L′2−mB−m′B+M ′2−µ
′
2(2k2+ 1)

×〈0σ |L2µ2π2〉〈0σ
′|L′2µ

′
2π
′
2〉
∗〈IC ‖L2π2‖IB〉〈IC ‖L

′
2π
′
2‖I
′
B〉
∗

×
�

IC L2 IB
mC M2 −mB

�
�

IC L′2 I ′B
mC M ′2 −m′B

��

L2 L′2 k2
M2 −M ′2 N2

�

×
�

L2 L′2 k2
µ2 −µ′2 τ2

�

Dk2
N2τ2
(z→ pα), (47)

where we have put the subscript “2” on those quantum numbers, which are related
to the second transition in the β-α cascade. Employing eq. (84) we can carry out
the summation over mC , M2 and M ′2:

∑

mC M2M ′2

(−1)IC−mB−m′B+M ′2

�

IC L2 IB
mC M2 −mB

�
�

IC L′2 I ′B
mC M ′2 −m′B

�

×
�

L2 L′2 k2
M2 −M ′2 N2

�

= (−1)m
′
B+k2

�

IB I ′B k2
mB −m′B N2

�¨

IB I ′B k2
L′2 L2 IC

«

. (48)

Further simplification can be achieved by replacing the slightly mysterious quan-
tities 〈0σ |Lµτ〉. In sec. 6.1 of [3] it is found that for a spinless particle travelling
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along the z-axis the quantities are given by

〈0σ |Lµπ〉→ 〈00|Lµπ〉=
(

(2L+ 1)
1
2δµ0 for Z = 0

(2L+ 1)
1
2 exp(−iσL)δµ0 for Z 6= 0

(49)

where σL is the normal Coulomb phase shift.5 As a consequence we have µ2 = 0,
µ′2 = 0 and, since τ2 = µ

′
2−µ2, we also have τ2 = 0. Taking this knowledge into

account we can rewrite eq. (47) as

trC (ρα) =
∑

L2L′2

∑

k2N2

(−1)IC+L2+L′2+m′B+k2(2k2+ 1)
�

(2L2+ 1)(2L′2+ 1)
� 1

2

×〈IC ‖L2π2‖IB〉〈IC ‖L
′
2π
′
2‖I
′
B〉
∗
�

IB I ′B k2
mB −m′B N2

�

×
¨

IB I ′B k2
L′2 L2 IC

«
�

L2 L′2 k2
0 0 0

�

exp
�

−i(σL2
−σL′2

)
�

Dk2
N20(z→ pα).

(50)

Traditionally it is now argued that since the intermediate and final states have well-
defined parities, and since the parity of the α radiation is π = (−1)L, the values of
L and L′ can only differ by an even number, i.e. L = L′, L = L′+ 2, ... Therefore,
L+ L′ is an even number, and, since the 3 j -symbol vanishes unless L+ L′ + k is
an even number (a consequence of eq. (81)), k must also be an even number. I
think, however, that in the present case where we are considering the possibility
of populating several intermediate states, possibly of differing parity, that such an
argument cannot be made.

We are now in a position to combine our results and write the correlation func-
tion for a β-delayed α decay explicitly. Combining eqs. (38), (46) and (50) we
obtain

W =
∑

λBλ
′
B

∑

mB m′B

∑

L2L′2

∑

k2N2

∑

K1≤K ′1

∑

k1 m1

(−1)−IA+IC+L2+L′2+k2+K1+K ′1−m1

× 4πG2
βF0(2k2+ 1)

�

(2k1+ 2)(2L2+ 1)(2L′2+ 1)
� 1

2

�

IB I ′B k1
mB −m′B −m1

�

×
�

IB I ′B k2
mB −m′B N2

�
�

L2 L′2 k2
0 0 0

�
¨

IB I ′B k1
K ′1 K1 IA

«¨

IB I ′B k2
L′2 L2 IC

«

×〈IC ‖L2π2‖IB〉〈IC ‖L
′
2π
′
2‖I
′
B〉
∗b (k1)

K1K ′1
exp
�

−i(σL2
−σL′2

)
�

×Dk1
m10(z→ pe )D

k2
N20(z→ pα). (51)

5Probably the inclusion of a resonant phase factor could also be appropriate here. This would be
a way of connecting to the R-matrix formalism...?
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From eq. (83) it follows that

∑

mB m′B

(2k2+ 1)
�

IB I ′B k1
mB −m′B −m1

��

IB I ′B k2
mB −m′B N2

�

= δk1k2
δ(−m1)N2

. (52)

Also, using eqs. (71) to (73), we can show that
∑

m
(−1)mDk

m0(z→ pβ)D
k
(−m)0(z→ pα) =D

k
00(pα→ pe ) = Pk (cosθβα). (53)

With these results we get our final expression for the correlation function

W = 4πG2
βF0

∑

k

∑

λBλ
′
B

∑

L2L′2

∑

K1≤K ′1

(−1)−IA+IC+L2+L′2+K1+K ′1+k

×
�

(2k + 2)(2L2+ 1)(2L′2+ 1)
� 1

2

�

L2 L′2 k
0 0 0

�
¨

IB I ′B k
K ′1 K1 IA

«¨

IB I ′B k
L′2 L2 IC

«

×〈IC ‖L2π2‖IB〉〈IC ‖L
′
2π
′
2‖I
′
B〉
∗b (k)

K1K ′1
exp
�

−i(σL2
−σL′2

)
�

Pk (cosθβα). (54)

It may not be immediately clear how to extract any conclusions from this corre-
lation function, which still appear somewhat complicated. It is possible, however,
to write down a list of selection rules imposed by the Wigner-symbols which will
come in handy, when we later explore the correlation function in specific examples.

I ′B = |IB − k|, . . . , IB + k

K ′1 = |K1− k|, . . . ,K1+ k

K1 = |IA− IB |, . . . , IA+ IB

K ′1 = |IA− I ′B |, . . . , IA+ I ′B
L′2 = |L2− k|, . . . , L2+ k

L2 = |IC − IB |, . . . , IC + IB

L′2 = |IC − I ′B |, . . . , IC + I ′B
L2+L′2+ k = an even number. (55)

7. Particle parameters

As mentioned earlier the standard formulas for the particle parameters, b (k)
KK ′

, can-
not be used directly in our case. In this section we take a closer look at the definition
of the parameters and derive the expressions for a few special cases.
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From eq. (30) it is possible to derive a formula for the special combination of
indices N = k and k ′ = 0:

ak
k0(K ,K ′) =

2

p2
e F0

∑

κeκ
′
e

∑

kν

f k
KK ′
(κe ,κ′e , kν )ακe

ακ′e
�

MK (ke , kν )M
′
K ′
(k ′e , kν )

+ sign(κe )mK (ke , kν )M
′
K ′
(k ′e , kν )+ sign(κ′e )MK (ke , kν )m

′
K ′
(k ′e , kν )

+ sign(κe )sign(κ′e )mK (ke , kν )m
′
K ′
(k ′e , kν )

�

exp
�

−i
�

∆κe
−∆κ′e

��

,

(56)

where the coefficients are given by eq. (7.27) of [2] or eq. (10.30) of [4] as

f (k)
KK ′
(κe ,κ′e , kν ) = (−1)K+K ′+ je+ j ′e+ jν+

1
2
�

(2K + 1)(2K ′+ 1)(2k + 1)(2 je + 1)(2 j ′e + 1)

× (2le + 1)(2l ′e + 1)
� 1

2

�

le l ′e k
0 0 0

�¨

le l ′e k
j ′e je

1
2

«¨

K K ′ k
j ′e je jν

«

. (57)

These coefficients are tabulated in Table 7.1 of [2]. If we take the definition of the
particle parameters in eq. (45) it is possible to use eq. (56) to write the parameters
in terms of the MK and mK quantities:

b (k)
KK ′
=

1

2 p2
e F0

1

1+δKK ′

∑

κeκ
′
e

∑

kν

h

f (k)
KK ′
(κe ,κ′e , kν )ακe

ακ′e

n

MK (ke , kν )M
′
K ′
(k ′e , kν )

+ sign(κe )mK (ke , kν )M
′
K ′
(k ′e , kν )+ sign(κ′e )MK (ke , kν )m

′
K ′
(k ′e , kν )

+ sign(κe )sign(κ′e )mK (ke , kν )m
′
K ′
(k ′e , kν )

o

exp
�

−i
�

∆κe
−∆κ′e

��

+ f (k)
K ′K
(κe ,κ′e , kν )ακe

ακ′e

n

MK ′(ke , kν )M
′
K (k

′
e , kν )

+ sign(κe )mK ′(ke , kν )M
′
K (k

′
e , kν )+ sign(κ′e )MK ′(ke , kν )m

′
K (k

′
e , kν )

+ sign(κe )sign(κ′e )mK ′(ke , kν )m
′
K (k

′
e , kν )

o

exp
�

−i
�

∆κe
−∆κ′e

��

i

. (58)

At this point it should be reiterated that an un-primed quantity is associated with a
transition to λB , while the primed quantities are associated with transitions to λ′B .

When dealing with eq. (58) we need to carry out sums over κe , κ′e and kν .
Therefore, a question which quickly arises is which values of the summation indices
should be included in the sums. To determine this we derive a few selection rules
from the Wigner-symbols in eq. (57).

l ′e = |le − k|, . . . , le + k

j ′e = | je − k|, . . . , je + k

K ′ = |K − k|, . . . ,K + k
jν = |K − je |, . . . ,K + je and jν = |K

′− j ′e |, . . . ,K ′+ j ′e . (59)
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In order to get a better feeling for the procedure, let us take a look at the simple
(but not unimportant) case where k = K = K ′ = 0. The allowed combinations
of quantum numbers are listed in Table 0.1. In principle there are infinitely many
terms in the summation, however, the order of magnitude of the terms vary a lot,
and in practice it is only necessary to include a few dominant terms.

Table 0.1: Allowed combinations of the lepton quantum numbers that could be included
in the calculation of the particle parameters in eq. (58). Only combinations for the case
k = K = K ′ = 0 are listed here! We note that several values of lν and κν result in the same
kν .

le je κe ke l ′e j ′e κ′e k ′e lν jν κν kν

0 1
2 -1 1 0 1

2 -1 1 0/1 1
2 -1/1 1

1 1
2 1 1 1 1

2 1 1 0/1 1
2 -1/1 1

1 3
2 -2 2 1 3

2 -2 2 1/2 3
2 -2/2 2

2 3
2 2 2 2 3

2 2 2 1/2 3
2 -2/2 2

2 5
2 -3 3 2 5

2 -3 3 2/3 5
2 -3/3 3

...
...

...

According to eqs. (7.42) to (7.47) of [2] each term in eq. (58) is proportional to

(pe R)ke+k ′e−2(pνR)
2kν−2, (60)

and with

0≤ pe R® 0.2 and 0≤ pνR® 0.2, (61)

the magnitude is roughly determined by the exponent ke + k ′e + 2kν − 4, where
the combination with the smallest value of this number will give the dominant
term. This means that only the terms in the first two lines of Table 0.1 contribute
significantly to the particle parameter b (0)00 (allowed Fermi transitions). It is now
straightforward to derive direct expressions for the particle parameters. The two
simplest examples are

b (0)00 =L0

h

�

M0(1,1)M ′0(1,1)+m0(1,1)m′0(1,1)
	

−µ1γ1
1

We

�

m0(1,1)M ′0(1,1)+M0(1,1)m′0(1,1)
	

i

(62)

b (0)11 =−
p

3L0

h

M1(1,1)M ′1(1,1)+m1(1,1)m′1(1,1)+M1(1,2)M ′1(1,2)

−µ1γ1
1

We

�

m1(1,1)M ′1(1,1)+M1(1,1)m′1(1,1)+m1(1,2)M ′1(1,2)

+M1(1,2)m′1(1,2)
	

+λ2
�

M1(2,1)M ′1(2,1)

−µ2γ2
1

2We

�

m1(2,1)M ′1(2,1)+M1(2,1)m′1(2,1)
	�

i

, (63)
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where we have included the so-called allowed and first-forbidden contributions. The
functions L0, µ, γ and λ are combinations of the Coulomb amplitudes and phases,
and they are defined in eq. (7.51) of [2] in such a way that their value is very close
to unity, except for very high Z or very low electron momenta. For numerical
values, see Table 2 of [5]. Comparing to the standard particle parameters listed in
[2, 4, 5] we see that the expressions are very similar, and that our result reduces to
the standard result when λB = λ

′
B , as indeed it should. In general, terms with the

smallest values of K , K ′ and k are expected to contribute most a transition.

8. Allowed decays

A common type of transitions are the allowed transitions. These transitions are the
ones that satisfy

∆I = 0,±1 and πiπ f =+1, (64)

and the dominant terms are related to only two quantities:

M0(1,1) = VF (0)000 =CV

∫

1=CV MF

M1(1,1) =−AF (0)101 =−CA

∫

σ =−CAMGT . (65)

In general, all observables can be expressed in terms of the form factor coefficients,
VF (k)KLs and AF (k)KLs , and these are also the quantities which can be derived from exper-
imental data. If one wishes to compute observables theoretically from some kind
of model or to extract nuclear structure information from a β-decay experiment,
the form factors need to be related to the nuclear transition matrix elements. In eq.
(65) the particularly simple relation for Fermi and Gamow-Teller matrix elements
are presented.

Since only M0(1,1) and M1(1,1) contribute significantly to allowed decays, very
few of the particle parameters are non-negligible:

b (0)00 = L0M0(1,1)M ′0(1,1)

b (0)11 =−
p

3L0M1(1,1)M ′1(1,1)

b (1)01 = L0Λ1
pe

We

�

M0(1,1)M ′1(1,1)+M1(1,1)M ′0(1,1)
�

b (1)11 =
p

2L0Λ1
pe

We
M1(1,1)M ′1(1,1) (66)

Of special importance here is that no terms with k ≥ 2 appear. In normal decays the
quoted particle parameters are sufficient to describe the observables to a very good
approximation, however, if the allowed matrix elements are somehow suppressed,
higher-order effects could become important, see for instance [6].



18

9. Examples

In this section we apply our formula for the correlation function to some examples
in order to investigate the possible consequences of several intermediate states being
populated in a cascade transition.

9.1 Allowed GT-transitions through a single intermediate state

This is probably the simplest case we can consider. We choose the hypothetical
decay sequence

1+→ 0+2 → 0+1 .

Since the intermediate state has a well-defined parity only terms with even k can
contribute, see the discussion following eq. (50). Therefore, we only need to con-
sider k = 0 in the correlation function in eq. (54), a conclusion which is indepen-
dent of our choice of IB . This already leads to our first important result, namely
that the directional distribution in an allowed β-delayed α decay is isotropic, be-
cause P0(cosθ) is a constant. This fact is a direct consequence of the leptons being
emitted in an L= 0 wave, which is spherically symmetric.

Our problem directly dictates λB = λ
′
B and IB = I ′B = 0. The selection rules in

eq. (55) then provide us with the constraints L′2 = L2 = IB and K ′1 = K1 = 1. The
direct expression for the correlation function is

W = 4πG2
βF0(−1)−1+0+0+0+1+1+0�(2 · 0+ 1)(2 · 0+ 1)(2 · 0+ 1)

� 1
2

×
�

0 0 0
0 0 0

��

0 0 0
1 1 1

��

0 0 0
0 0 0

�

|〈0+1 ‖L= 0‖0+2 〉|
2b (0)11 P0(cosθβα)

= 4πG2
βF0L0|CA|

2|MGT (0
+
2 )|

2|〈0+1 ‖L= 0‖0+2 〉|
2. (67)

The result seems reasonable: We have the β decay part given by the β decay cou-
pling constants, Gβ and CA, the Fermi function6 F (Z ,We ) = F0L0 and the squared
Gamow-Teller matrix element, |MGT |2. Furthermore, the reduced matrix element
for the α transition and a constant front factor of 4π appear.

If we do a similar calculation for a cascade with IB = 2, we obtain instead

W =
4π

5
G2
βF0L0|CA|

2|MGT (2
+
1 )|

2|〈0+1 ‖L= 0‖2+1 〉|
2. (68)

The general structure is exactly the same as before, but the front factor changes by
a factor 1

5 . That somehow bothers me, and I suspect there could be missing a factor

of (2IB + 1) somewhere, or perhaps [(2IB + 1)(2I ′B + 1)]
1
2 .

6Apparently there is not complete consensus in the litterature about whether to denote F0 or
F0L0 the Fermi function.
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9.2 Allowed GT-transitions through several intermediate states

We now take a look at the cascade

1+→ 0+2 , 0+3 → 0+1 ,

i.e. a case where two intermediate states could potentially be populated. According
to the selection rules in eq. (55) we have k = 0, K ′1 = K1 = 1 and L′2 = L2 = IB =
I ′B = 0. Calculation of the correlation function gives us

W = 4πG2
βF0L0|CA|

2
h

|〈0+1 ‖L= 0‖0+2 〉|
2|MGT (0

+
2 )|

2

+ 〈0+1 ‖L= 0‖0+2 〉〈0
+
1 ‖L= 0‖0+3 〉

∗MGT (0
+
2 )MGT (0

+
3 )

+ 〈0+1 ‖L= 0‖0+3 〉〈0
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As in the previous example, the result appears rather simple in form, but it is worth
noting that the contributions from the two intermediate states add up coherently.
From a naïve point of view this could potentially complicate the analysis of exper-
imental spectra or the theoretical prediction of spectra from nuclear models, since
the reduced matrix elements could in principle be complex and carry a phase be-
tween 0 and 2π. In fact, the challenge is not quite so severe since, as we briefly
touched upon earlier, the reduced matrix elements can be chosen real if the op-
erator, which is responsible for the transition, is a Hamiltonian operator which
commutes with the time reversal operator [3]. This means that we only need to
determine the magnitude and sign of the matrix elements.

As our next example we take a cascade where the intermediate states have dif-
fering spins:

1+→ 0+2 , 2+1 → 0+1 .

The selection rules in this case only allow two terms to contribute to the correlation
function for allowed transitions, see Table 0.2. We obtain
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2
i

. (70)
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Again, a factor 1
5 appear on the term related to the 2+ intermediate state, possibly

indicating an issue with the normalisation. The result in (70) is fundamentally dif-
ferent from the preceding result, since the contributions from the two intermediate
states are added incoherently. This is simply the consequence of only considering
allowed transitions, i.e. transitions with k = 0, since the selection rules then im-
pose IB = I ′B , making the cross-terms disappear. Were we to allow for k = 2,4

Table 0.2: Quantum numbers for the two terms that contribute to the allowed transitions
in the 1+→ 0+2 , 2+1 → 0+1 cascade.

k λB λ′B L2 L′2 K1 K ′1
0 0+2 0+2 0 0 1 1
0 2+1 2+1 2 2 1 1

also, some cross-terms might start to appear. These terms would contain first- or
second-forbidden matrix-elements though, and we would not expect them to result
in pronounced interference effects.

When we consider the correlation function in eq. (54) it has a feature, which we
have not commented upon yet: The result appears as a sum over k with each term
multiplied by a k’th order Legendre polynomial. In many experiments with β-
delayed α breakups the direction of the β particle is not measured, and the proper
correlation function would be obtained by integrating over θβα and the energy of
the β particle. Since Pk (cosθ) integrate to zero except for k = 0, only terms with
k = 0 contribute to the spectrum in this type of experiment.

10. Summary

We have generalised the existing theory of correlations in β-delayed α decays to
allow for the possibility of mutiple intermediate taking part in the cascade. We
have derived the correlation function and found an expression for the β-decay par-
ticle parameters which replaces the standard definition. The investigation of a few
examples have led to the following conclusions:

1. If several intermediate states of identical angular momentum are populated in
the β decay, their contributions to the correlation function add coherently.

2. If several intermediate states of different angular momentum are populated
in an allowed β decay, their contributions to the correlation function add
incoherently. Higher-order cross-terms could appear and cause (small) inter-
ference effects.

3. If several intermediate stated of different angular momentum are populated
in theβ decay, their contributions add incoherently if the direction of theβ
particle is not observed.
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It it is important to realise that in the present treatment we have ignored the effects
associated with the nuclear recoil. The nuclear recoil may induce correlations,
particularly in the delayed α breakup of light nuclei, that are of the same order of
magnitude as the effects caused by the forbidden matrix-elements. The standard
reference on this subject seems to be [7].

A Matrix elements of representations of the rotation group

The matrix elements of the (2L+ 1)-dimensional irreducible representation of the
rotation group, DL, have some basic properties, which are useful when doing ex-
plicit calculations. We only list these basic properties here; for a more in-depth
discussion of the rotation operator and its representations, see for instance sec. 3.5
of [1] or sec. 3.2.1 of [3].

DL
µM (p→ z) =DL∗

Mµ(z→ p) (71)

DL∗
µM (p→ z) = (−1)µ−MDL

−µ−M (p→ z) (72)

DL
µM (p→ z) =

∑

M ′
DL
µM ′
(p→ z′)DL

M ′M
(z′→ z) (73)

Here, the argument (z→ p) denotes the three Euler angles, (φ,θ,γ ), while (p→ z)
represents the inverse rotation. A product of two matrix elements can be expressed
as a sum over single matrix elements:

DL
µM (p→ z)DL′

µ′M ′
(p→ z) =

L+L′
∑

k=|L−L′|
〈LL′µµ′|kτ〉Dk

τN (p→ z), (74)

where τ = µ+ µ′ and N = M + M ′. Finally, some special matrix elements are
directly related to the spherical harmonics and Legendre polynomials:

DL
µ0(z→ p) =

� 4π

2L+ 1

�
1
2

Yµ∗
L (θ,φ) (75)

DL
0M (z→ p) =

� 4π

2L+ 1

�
1
2

Y−M
L (θ,φ) (76)

DL
00(z→ p) = PL(cosθ) (77)

B Properties of the Wigner-symbols

When dealing with the coupling of angular momenta most physicists have been
exposed to the Clebsch-Gordan coefficients, 〈 j1 j2m1m2| j3m3〉. The Wigner 3 j -
symbols are related to the Clebsch-Gordan coefficients through the relation

�

j1 j2 j3
m1 m2 m3

�

= (−1) j1− j2−m3(2 j3+ 1)−
1
2 〈 j1 j2m1m2| j3−m3〉. (78)
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The 3 j -symbols are not affected by an even permutation of the columns, but an
odd permutation, or the transformation of all m to−m, corresponds to a multipli-
cation by (−1) j1+ j2+ j3 , i.e.

�

j1 j2 j3
m1 m2 m3

�

=
�

j2 j3 j1
m2 m3 m1

�

=
�

j3 j1 j2
m3 m1 m2

�

(79)

(−1) j1+ j2+ j3

�

j1 j2 j3
m1 m2 m3

�

=
�

j2 j1 j3
m2 m1 m3

�

= · · · (80)

=
�

j1 j2 j3
−m1 −m2 −m3

�

. (81)

The 3 j -symbols satisfy the following orthogonality relations:

∑
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�
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��

j1 j2 j3
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�
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(82)

∑
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�

= δ j3 j ′3
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(83)

Sums over multiple 3 j -symbols containing the same quantum numbers can often
be carried out using a 6 j -symbol:

∑

m4 m5 m6

(−1) j4+ j5+ j6+m4+m5+m6
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��
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. (84)

The 6 j -symbol has very simple symmetry properties: It is invariant under the per-
mutation of any two columns, and it is invariant under the interchange of the upper
and lower arguments an any two columns, i.e.

�

j1 j2 j3
j4 j5 j6

�

=
�

j2 j3 j1
j5 j6 j4

�

=
�

j1 j5 j6
j4 j2 j3

�

= · · · (85)

Furthermore, the 6 j -symbol is zero unless j1, j2 and j3 satisfy the triangle condi-
tion, i.e.

| j2− j3| ≤ j1 ≤ j2+ j3. (86)

Note that through the allowed permutations of the arguments in the 6 j -symbol,
the triangle condition can be applied to several combinations of the j ’s.
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