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CHAPTER 1

Introduction

1.1 Origins of light nuclei

The elements making up our bodies and the planet we live on were all created
by nuclear processes somewhere in the universe. The light elements, hydro-

gen, helium and a small amount of lithium were created only a few minutes
after the Big Bang in the primordial nucleosynthesis. The remaining lithium

and all of beryllium and boron originate from spallation of heavier elements
by cosmic radiation. Elements from carbon to uranium were created in the
furnaces of stars [Rolfs 1988].

Our sun is fuelled by the fusion of four hydrogen nuclei or protons into a
helium nucleus, and because helium is lighter than four protons, energy is re-

leased in the process. That hydrogen fusion is the energy source powering the
sun was first suggested by Eddington in 1920 after the discovery that helium

is slightly lighter than four times the hydrogen mass. The calculated reaction
rates were too low however, because the quantum mechanical effect of tun-

nelling was not known at the time. It took almost 20 years before the nuclear
processes could be explained [Bethe 1938, Bethe 1939].

In the nucleosynthesis model by Alpher and Gamow [Alpher 1948], all el-
ements were created in the Big Bang by neutron capture followed by β decay.

Later it became known that all isotopes with mass five and eight are unsta-
ble (see figure 1.1), and these mass gaps prevented the formation of elements

heavier than lithium in the primordial nucleosynthesis.

The alternative was found to be stellar nucleosynthesis. In red giant stars,

hydrogen is depleted in the core, and three helium nuclei or α particles fuse
to a 12C nucleus by the triple-α process. In a two-step process, first two α

particles collide and form a 8Be nucleus. This nucleus is very short-lived and
decays back to two α particles in about 10−16 seconds. Only if another α par-
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ticle immediately collides with the 8Be nucleus a 12C nucleus can be formed.
This is not enough however, because the excited 12C nucleus will break up

again, if it does not live long enough to de-excite to a bound state. 12C is
the fourth most abundant element in the universe after 1H, 4He and 16O, and

with the knowledge of the 8Be and 12C nuclei in the beginning of the 1950’s,
Hoyle was not able to explain the high abundances of 12C and 16O from the

calculated triple-α reaction rates at the expected stellar temperatures. This
led Hoyle to the prediction of an unbound excited state in 12C just above the
triple-α threshold energy [Hoyle 1953]. This state could enhance the reaction

rate due to the increased cross section for the fusion of an α particle and a
8Be nucleus. The state was soon after found experimentally at almost the ex-

act energy predicted by Hoyle [Dunbar 1953]. This 0+2 state in 12C has since
been known as the Hoyle state, and its remarkable discovery established the

concept of stellar nucleosynthesis [Burbidge 1957].
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Figure 1.1: Chart of the lightest nuclides. The numbers of neutrons, N, and protons,
Z, in the nucleus define the two axes. The Black squares indicate stable nuclides,
and all other nuclides shown are unstable with different colours indicating the half-
life. The least stable nuclides are light red (gray means the half-life if unknown)
[NNDC 2010].
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1.2 Nuclear structure

Atomic nuclei are composed of neutrons and protons and in light, stable nu-

clei the numbers of protons and neutrons are close to equal (except for hydro-
gen with only one proton) as seen in figure 1.1. The interaction between the

nucleons is governed by the strong nuclear interaction and an exact descrip-
tion of even the light nuclei is extremely difficult due to the complex inter-

nal structure of the nucleons and complicated internucleon interaction. The
most advanced models solve the many-body Schrödinger equation for real-

istic nucleon-nucleon interaction potentials obtained by fitting nucleon scat-
tering data. This is only possible for the lightest nuclei and the results are

not always in correspondence with the experimental data. Three-body forces
are often needed to obtain agreement with experimental data, e.g. due to the

effect of nucleon excitations [Epelbaum 2009].

Two types of nuclear models have proven very useful for describing nu-
clear states: The independent particle models and collective models of the

nucleus. The nuclear shell model is the quantum mechanical variant of the
independent particle models and was developed in analogy to the atomic

shell model to explain the occurence of magic numbers - mass numbers for
nuclei with unexpectedly high binding energies per nucleon [Mayer 1949,

Haxel 1949]. In the independent particle model, the nuclear properties are
determined by the least bound nucleons moving in a mean-field potential in-

dependently of the remaining nucleons forming an inert core. It is quite sur-
prising that such a model is at all usefull in describing the system of strongly

interacting nucleons with no central core, but its usefulness is evident from its
ability to explain experimental data. In the collective models the nuclear mo-

tion and excitations are correlated or collective. The collective model is useful
for deformed nuclei, typically nuclei in between the magic numbers, and for

many excited nuclear states. Some collective modes are well described in a
cluster model, where one or more groups of nucleons form clusters that can

be treated as one entity. The α particle is a prime example of a cluster, and the
one relevant for light nuclei [Freer 2007a].

The two isotopes studied in this work are 8Be and 12C. Both are so-called

α-conjugate nuclei with an even and equal number of neutrons and protons.
The α-conjugate nuclei are particularly stable isotopes and Hafstad and Teller
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showed a linear dependency between the binding energy and the number of
α-α bonds indicating that their ground states could be described by a cluster of

α particles with a constant α-α interaction scaled by the number of bonds [Haf-
stad 1938]. This picture is now known to be too simplistic. Most ground states

are better described in the nuclear shell-model rather than as cluster states.
For clustering to arise a lower density is required and clustering is seen to ap-

pear when approaching the energy threshold for α break-up [Ikeda 1968]. The
8Be nucleus is unbound in its ground state at 91.8 keV above the 2α thresh-
old and has a clearly clustered 2α structure as seen in figure 1.2. In fact, the

ground state of 8Be is quite similar to the Hoyle state of 12C at 0.38 MeV above
the 3α threshold, the structure of which is shown in figure 1.3. Both are short-

lived cluster states close to an α-particle threshold with spin and parity 0+.
Because of their proximity to the threshold the measured energy profiles are

highly asymmetric as discussed in detail in later sections. The ground state
of 12C is an example of a more compact state described within the nuclear

shell-model. 12C with its six protons and six neutrons has filled proton and
neutron p3/2 sub-shells in its ground state. In advanced no-core shell-model

calculations the bound states of 12C are well described, but as seen in figure
1.4 the Hoyle state is missing in the calculations at 7.65 MeV indicating that it

is of a more collective than shell-model like type.

Figure 1.2: Green’s function Monte Carlo calculation of the density distribution of
the 8Be ground state. The left hand side is in the laboratory frame and the right hand
side is in the intrinsic frame [Wiringa 2000].
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Figure 1.3: Density distributions in Fermionic Molecular Dynamics calculations of
12C. The Hoyle state, 0+2 , has a large overlap with the four configurations to the
left, whereas the ground state, 0+1 , is of a more compact type as shown to the
right [Chernykh 2007]

Figure 1.4: No-core shell model calculations for 12C [Hyldegaard 2009b]. The bound
states and the unbound 1+ state are well reproduced, but no states are found close to
the Hoyle state energy at 7.65 MeV. Further discussion of these calculations is given
in section 4.7.

1.3 Probing light nuclei with β decay

The method used for production of the light nuclei studied in this work is β

decay. β decay is a weak interaction process where in β+ decay a proton in
the parent nucleus is converted into a neutron in the daugther nucleus with

the emission of a positron and an electron neutrino. In β− decay a neutron
is converted into a proton with the emission of an electron and an electron

antineutrino.

p→ n + e+ + νe (β+decay) (1.1)

n→ p + e− + ν̄e (β−decay) (1.2)
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The available energy for populating excited states in the daughter nucleus,
the Q-value, is given by

Qβ+ = (M(A,Z) −M(A,Z − 1) − 2me) c2 (1.3)

Qβ− = (M(A,Z) −M(A,Z + 1)) c2 (1.4)

for β+ and β− decay respectively, where the masses are atomic masses which
is the reason for the difference of two electron masses for β+ decay.

β decay can be classified into two types according to weather or not the
spin of the interacting quark inside the nucleon flips its direction. If the spin

does not change, the interaction is a Fermi transition, and for allowed decays
with orbital angular momentum of the leptons, l = 0, the spin and parity of

the final state is the same as that of the initial state. If the spin flips over it
is a Gamow-Teller transition and the parity in allowed decays is unchanged

and the possible spin differences are ∆J = 0,±1 (0+ → 0+ forbidden) [Hodg-
son 1997].

The selection rules for β decay means that a lot fewer excited states are

populated in β decay compared to reaction and scattering. Figure 1.5 illus-
trates this for the 12C nucleus populated in two reactions compared to 12N β

decay. In β decay of 12N the allowed final states are 0+, 1+ and 2+, allowing
for much cleaner selection of the interesting 0+ and 2+ states (see chapter 4).

Another difference is the transition phase space which is a decreasing func-
tion of energy going to zero at the Q-value. This limits the applicability of β

decay to only low-energy states in the daughter nucleus.

The experimental techniques have undergone dramatic development since

the early studies of nuclei. For β-decay studies with halflives of the order 10–
20 ms it is a challenge to separate the produced nuclei and transport them

to the detector setup before they decay. This was not possible when the first
β-decay studies were performed [Cook 1958, Wilkinson 1963, Schwalm 1966,

Wilkinson 1971]. The α particles from β-delayed breakup were detected di-
rectly as they were emitted from the target. The first isotope separator con-

nected directly to an accelerator was developed for the Copenhagen Cyclotron
at Universitetets Institut for Teoretisk Fysik (the later Niels Bohr Institute) in

Copenhagen in 1951 by Otto Kofoed-Hansen and Karl Ove Nielsen [Krige 1996].
The technique, now known as Isotope Separation On-Line (ISOL), is used
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Figure 1.5: 3α sum energy spectra from the reactions 3He+11B → d + α + α + α and
3He+10B → p + α + α + α compared to β-delayed 3α breakup. The reaction data is
from [Kirsebom 2009] and the β-decay results will be discussed in chapter 4. The β-
decay spectrum shown in this figure has been corrected for the β-decay phase space
and scaled for comparison. The spectrum for the 11B reaction drops down at 15 MeV
because the deuterons have too low energy to be detected.

at many research facilities around the world, arguably the principle facil-
ity is ISOLDE at CERN, a joint European facility on the Franco-Swiss bor-

der near Geneva. The radioactive nuclei are produced by protons impinging
on a thick high-temperature target via spallation, fission or fragmentation re-

actions. Subsequently the produced isotopes diffuse out of the target after
which they are ionised, accelerated and mass-separated. More than 600 iso-

topes with half-lives down to milliseconds have been produced and separated
at ISOLDE [ISOLDE 2010]. However some isotopes can not diffuse out of a

thick target and in order to produce them a thin target is required. The Ion
Guide Isotope Separator On Line (IGISOL) technique was developed in Fin-

land in 1981 at the University of Jyväskylä. Here, a thin target is used and the
reaction products recoiling out of the target are stopped in a gas, transported

by the gas flow through a differential pumping system, after which they are
accelerated and mass-separated. With the IGISOL technique, isotopes with
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half-lives down to the sub-millisecond range can be studied. A different tech-
nique relevant for this work is isotope production using inverse kinematics

followed by mass-separation. This methods yields a high-energy beam useful
for implantation experiments as presented in section 4.4.

Not only isotope separation techniques but also detectors have undergone

significant development. The Double Sided Si Strip Detectors (DSSSDs) used
in this work provide both high energy and spatial resolution allowing for

complete kinematics measurements as described in sections 3.2 and 4.2. A
smaller detector with increased segmentation has been used for implantation

measurements (section 4.4).

1.4 The R-matrix

The theoretical framework for treating nuclear resonances was developed start-

ing in the 1930’s with Bohr’s compound nucleus mechanism. Nuclear reso-
nances were first observed as peaks in the cross section for scattering reac-

tions, with the lifetime of the resonance, τ inversely proportional to the width
of the peak, Γ = ~/τ. The compound nucleus mechanism could explain why

the resonances were so long lived as experiments had shown. The idea is,
that the projectile energy is shared among the individual nucleons in a colli-

sion due to the strong, short-range interaction until a statistical equilibrium
is obtained. Due to the constant fluctuations in the energy and spatial distri-

butions of the nucleons, there will be some statistical probability of the com-
pound nucleus to split up into smaller constituents. A less probable scenario

is the conversion of the collective exciation energy into radiation and subse-
quent deexcitation, and it is this very small radiative width of the Hoyle state

which makes the triple-α process possible. Rigorous theories of nuclear reac-
tions were developed by Kapur, Peierls, Breit, Wigner and Eisenbud among

others and the variant used in this work is the R-matrix theory as presented by
Lane and Thomas in their review from 1958 [Lane 1958]. The formalism was

later generalised to the treatment of β decay followed by two-body breakup
by Barker [Barker 1969]. In this work the theory will be taken to its limits with

a formalism developed for β-delayed three-body breakup via short-lived in-
termediate states.
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1.5 Outline

The work presented in this thesis is the partial analysis of two experiments

performed at the IGISOL facility of the Jyväskylä Accelerator Laboratory (JYFL),
Finland, and the full analysis of an experiment performed at the KVI in Gronin-

gen, the Netherlands. The first experiment was a complete kinematics experi-
ment studying β decay of 12N and 12B at JYFL in 2004. The analysis of the data

from this experiment constitutes the majority of the Ph.D.-work by C. Aa. Di-
get. A parallel analysis of the single-α data will be presented in section 4.2.

A similar experiment was performed at JYFL in 2008, studying the β-decay of
8B. These data have been analysed by O. S. Kirsebom to extract accurate final

state distributions. The R-matrix analysis of these spectra will be presented in
chapter 3. The full analysis of an implantation experiment for β-decay studies

of 12C performed at KVI in 2006 will be presented in chapter 4. The R-matrix
model for the mass 8 breakup is simpler than for mass 12, so the analysis of

the 8B data will be presented first. The R-matrix theory applied to the analysis
will be presented in chapter 2. The possibility of a direct decay component in
both the A = 8 and A = 12 data will be discussed in chapter 5. Finally the

work will be summarised in chapter 6.





CHAPTER 2

R-matrix theory

The R-matrix formalism has been used to analyse the beta-delayed breakups

studied in this work. In this chapter the formalism will be derived starting
with the basic theory for nuclear scattering processes involving an unlimited

number of reaction channels and energy levels. This will be followed by a gen-
eralisation of the theory to encompass beta decay and subsequently the for-

malism for sequential decay via broad intermediate states will be presented.
The R-matrix theory was first developed to treat nuclear resonance reactions,
but has over the years been applied to many different branches of physics.

Some of these alternative applications will be discussed in the final section of
this chapter.

2.1 The many-channel, multi-level R-matrix theory

The notation used in the following will largely be the same as that of the stan-

dard R-matrix reference by Lane and Thomas [Lane 1958]. The derivation will
be performed for the general many-channels, multi-level scattering process,

and large parts of it follows the reviews by Vogt [Vogt 1962, Vogt 2004].

The essence of the R-matrix theory is the separation of configuration space

into an internal and an external region. The internal region is where the nu-
clear interactions take place, such as formation of a compound nucleus in res-

onant reactions. In the external region the interactions are purely Coulomb.
The compound nucleus can be formed and decay through various possible

channels, which are defined by the two nuclei in the channel and their inter-
nal and relative quantum numbers.

To find the cross section of a nuclear process the exact solutions for the

wave function in the external region are found and matched to the wave
functions in the internal region. The wave functions in the internal region
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are constrained by boundary conditions on their logarithmic derivatives. A
discussion of the boundary conditions will follow later in this chapter.

First, we consider the solutions in the external region. The wave function
in the external region for a nuclear process involving the channels, c, can be

factorised as

Ψ =

∑

c

ψcuc(r), (2.1)

where ψc is the channel wave function containing all spin and angular mo-

mentum dependencies, and uc(r) is the radial wave function, which is a solu-
tion to the radial Schrödinger equation,

− ~
2

2µ
d2uc

dr2 +
l(l + 1)

r2 uc + (VC − E)uc = 0, (2.2)

where VC is the Coulomb potential. The solutions to this equation are the
regular (Fc) and irregular (Gc) Coulomb functions, and in terms of these one

can write the incoming wave,

Ic = (Gc − iFc)eiωc , (2.3)

and outgoing wave,

Oc = (Gc + iFc)e−iωc , (2.4)

where ωc is the Coulomb phase shift. The radial wave function is a linear
combination,

uc = v−1/2
c

(

xcOc + ycIc
)

, (2.5)

where xc and yc are amplitudes of the incoming and outgoing waves and vc is
the relative velocity. The collision matrix, U, is defined by the relation between

the amplitudes:

xc′ = −
∑

c

Uc′cyc. (2.6)

Let us now consider the internal region. The Schrödinger equation for the

full wave function is

HΨ = EΨ, (2.7)
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and the mutually orthogonal eigenfunctions, Xλ, at energy eigenvalues, Eλ,
fulfil

HXλ = EλXλ. (2.8)

The boundary condition constrains the logarithmic derivatives of the eigen-
functions to a real constant, Bc, for each channel

ac
dXλ

dr

∣

∣

∣

∣

∣

r=ac

= BcXλ(ac), (2.9)

where ac is the channel radius of the bounding sphere separating the internal
and external regions. The full wave function can be expanded in terms of the

internal eigenfunctions as

Ψ =

∑

λ

CλXλ, (2.10)

and the coefficients Cλ are given by

Cλ =

∫

τ

X∗λΨdτ, (2.11)

integrated over the internal region, τ.

2.2 Collision matrix

The physics of the theory has now been presented and the collision matrix can
be derived. This requires some mathematical manipulations, and in the pro-

cess, the R-matrix will be introduced. In the final expression for the collision
matrix each internal eigenstate or level, λ, will contribute via its energy, Eλ,

and reduced width amplitudes, γλc, and the energy dependency will be con-
tained in the shift and penetration functions which only depend on properties

of the Coulomb wave-functions on the boundary surface.
First equation 2.7 is multiplied by X∗

λ
,

X∗λHΨ = X∗λEΨ, (2.12)

and the complex conjugate of equation 2.8 byΨ,

(HXλ)∗Ψ = EλX∗λΨ. (2.13)
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Subtracting equation 2.12 from 2.13,

(Eλ − E)X∗λΨ = (HXλ)∗Ψ − X∗λHΨ, (2.14)

and inserting the Hamiltonian,

H = − ~
2

2µ
∇2
+ V, (2.15)

where the interaction term, V, is assumed to be self-adjoined, and therefore
not to contribute to the right hand side of equation 2.14. Integrating over the

internal region, τ, equation 2.14 becomes

(Eλ − E)
∫

τ

X∗λΨdτ =
~2

2µ

∫

τ

(X∗λ∇2
Ψ − (∇2Xλ)∗Ψ)dτ. (2.16)

Applying Green’s theorem to the right hand side transforms the volume inte-

gral into a surface integral. Using equation 2.11, the coefficients, Cλ can now
be written as

Cλ =
~2

2µ
1

Eλ − E

∫

S

(

X∗λ∇nΨ − (∇nXλ)∗Ψ
)

dS, (2.17)

where ∇n is the gradient normal to the boundary surface. The wave function,
Ψ, and its gradient, ∇nΨ, must equal the solutions for the external region

at the boundary, Ψ =
∑

cψcuc, and ∇nΨ =
∑

c ψc∇nuc =
∑

cψcduc/dr. The
boundary condition on the internal eigenfunctions is applied to the last term

in the integral:

Cλ =
~2

2µ
1

Eλ − E

∑

c

∫

S

(

X∗λψc
duc

dr
− a−1

c BcX
∗
λψcuc

)

dS

=

∑

c

~2

2µac

1
Eλ − E

(

ac
duc

dr

∣

∣

∣

∣

∣

r=ac

− Bcuc(ac)
) ∫

S

X∗λψcdS

=

∑

c

(

~2

2µac

)1/2
γλc

Eλ − E

(

ac
duc

dr

∣

∣

∣

∣

∣

r=ac

− Bcuc(ac)

)

(2.18)

where the definition of the reduced width amplitude,

γλc =

(

~2

2µac

)1/2 ∫

S

X∗λψcdS, (2.19)
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has been introduced. Now this is used in equation 2.10, which is multiplied
by ψ∗c′ and integrated over the boundary surface:

∫

S

ψ∗c′ΨdS =
∑

λ

Cλ

∫

S

ψ∗c′XλdS. (2.20)

The integral on the right hand side is recognised as γ∗
λc′ (apart from the front

factor), but as it turns out that the reduced width amplitudes are real, γ∗
λc′ =

γλc′ . The left hand side is
∫

S

ψ∗c′ΨdS =

∫

S

ψ∗c′
∑

c

ψcucdS =
∑

c

uc(ac)
∫

S

ψ∗c′ψcdS =
∑

c

uc(ac)δc′c = uc′(ac′),

(2.21)

where the orthonormality of the channel wave functions has been applied.
Inserting the results into equation 2.20 one obtains the fundamental R-matrix

relation

uc′(ac′) =
∑

λc

(

ac′

ac

)1/2 γλc′γλc

Eλ − E

(

ac
duc

dr

∣

∣

∣

∣

∣

r=ac

− Bcuc(ac)
)

=

∑

c

(

ac′

ac

)1/2
Rc′c

(

ac
duc

dr

∣

∣

∣

∣

∣

r=ac

− Bcuc(ac)
)

, (2.22)

with the R-matrix defined as

Rc′c =

∑

λ

γλc′γλc

Eλ − E
. (2.23)

To simplify the expressions the dimensionless derivative rd/dr will be denoted

by a prime, and it will not be given explicitly that the functions are evaluated
at the boundary. In simplified notation, equation 2.22 is given by

a−1/2
c′ uc′ =

∑

c

a−1/2
c Rc′c

(

u′c − Bcuc
)

. (2.24)

Inserting the solutions for the external wave functions in terms of incoming

and outgoing waves,

(ac′vc′)−1/2 (

xc′Oc′ + yc′Ic′
)

=

∑

c

(acvc)−1/2Rc′c
((

xcO
′
c + ycI

′
c

) − Bc
(

xcOc + ycIc
))

,
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rearranging the outgoing and incoming terms on each side and using ρc =

kcac = µcvcac/~, where µc is the reduced mass,

ρ−1/2
c′ xc′Oc′ −

∑

c

ρ−1/2
c Rc′c(O′c − BcOc)xc = −ρ−1/2

c′ yc′Ic′ −
∑

c

ρ−1/2
c Rc′c(I′c − BcIc)yc,

and, after some manipulations,

∑

c

ρ−1/2
c Oc

(

δc′c − Rc′c

(

O′c
Oc
− Bc

))

xc = −
∑

c

ρ−1/2
c Ic

(

δc′c − Rc′c

(

I′c
Ic
− Bc

))

yc.

(2.25)

The logarithmic derivative of the outgoing wave is denoted by

Lc ≡
O′c
Oc
= ρc

dOc

dρc

1
Oc
= Sc + iPc, (2.26)

and can be calculated using equation 2.4. The real part, Sc is called the shift
function and is given by

Sc = ρc

(

Fc
dFc

dρc
+ Gc

dGc

dρc

)

1
F2

c + G2
c

, (2.27)

whereas the imaginary part, Pc, is called the penetration function,

Pc =
ρc

F2
c + G2

c

, (2.28)

where the identity

dFc

dρc
Gc −

dGc

dρc
Fc = 1 (2.29)

has been applied. See section A.1 in the appendix for details about the shift
and penetration functions. The logarithmic derivative of the incoming wave

function (equation 2.3) is the complex conjugate L∗c. The collision matrix can
now be found from equation 2.25 using the definition, equation 2.6, and chang-

ing to matrix form,

U = [(1 − RL0)ρ−1/2O]−1(1 − RL0)Iρ−1/2

= ρ1/2O−1[1 − RL0]−1(1 − RL0)Iρ−1/2, (2.30)
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where the following definitions have been introduced:

L0
= L − B, (2.31)

L0
= L − B, (2.32)

Lc = L∗c. (2.33)

The components of the collision matrix are

Uc′c = ρ
1/2
c′ O−1

c′

∑

c′′
[1 − RL0]−1

c′c′′(δc′′c − Rc′′cL
0
c )Icρ

−1/2
c (2.34)

To finally remove the last factor including directly the incoming and outgoing

waves one rewrites the factor,
(

ρc′

ρc

)1/2
Ic

Oc′
=













Pc′(F2
c′ + G2

c′)

Pc(F2
c + G2

c )













1/2
Gc − iFc

Gc′ + iFc′
ei(ωc+ωc′ ). (2.35)

The Coulomb functions can be rewritten in terms of an amplitude, Ac, and
the so-called hard-sphere scattering phase shift, φc, as Fc = Ac sinφc and Gc =

Ac cosφc, so that φc = tan−1(Fc/Gc) giving

Gc + iFc

(F2
c + G2

c )1/2
= eiφc (2.36)

to finally obtain
(

ρc′

ρc

)1/2
Ic

Oc′
=

(

Pc′

Pc

)1/2
ei(ωc+ωc′−φc−φc′ ) =

(

Pc′

Pc

)1/2
ΩcΩc′ , (2.37)

whereΩc = Ic/Oc = ei(ωc−φc). Inserting the result,

Uc′c = ei(ωc+ωc′−φc−φc′ )P1/2
c′

∑

c′′
[1 − RL0]−1

c′c′′(δc′′c − Rc′′cL
0
c )P−1/2

c , (2.38)

or in matrix form

U = ΩP1/2[1 − RL0]−1(1 − RL0)P−1/2
Ω (2.39)

= ΩWΩ, (2.40)

where

W = P1/2[1 − RL0]−1(1 − RL0)P−1/2 (2.41)

= 1 +P1/2[1 − RL0]−1RP1/2w. (2.42)

and Pc = Pc and wc = wc = 2i. The latter form of W is easily verified by

rewriting the unit matrix as P1/2[1 − RL0]−1(1 − RL0)P−1/2, and inserting into
equation 2.42.
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2.2.1 Level-matrix form of the collision matrix

For systems with many channels, c, the problem of inverting the channel-
matrix, 1 −RL0, may be replaced by the inversion of a level-matrix, A−1, with

the number of rows and columns equal to the number of levels. The level-
matrix form of the collision matrix is, in component form:

Uc′c = ei(wc′+wc−φc′−φc)

















δc′c + 2iP1/2
c′ P1/2

c

∑

λµ

γλc′γµcAλµ

















. (2.43)

To prove this, it is assumed that the channel-matrix form of the collision ma-

trix is equal to equation 2.43, and a solution for A−1 is found. Using the form
of W in equation 2.42 this requires that

∑

c′′
(1 − RL0)−1

c′c′′Rc′′c =

∑

λµ

γλc′γµcAλµ. (2.44)

First both sides are multiplied by [1 − RL0] from the left. The left hand side
becomes just Rc′c and the right hand side becomes

∑

c′′
(δc′c′′ − Rc′c′′L

0
c′′)

∑

λµ

γλc′′γµcAλµ

=

∑

λµ

γλc′γµcAλµ −
∑

νc′′

γνc′γνc′′

Eν − E
L0

c′′

∑

λµ

γλc′′γµcAλµ. (2.45)

Combining the two sides and rearranging the indices,

0 =
∑

λµ

γλc′γµc

Eλ − E















−δλµ + (Eλ − E)Aλµ −
∑

νc′′
γλc′′γνc′′L

0
c′′Aνµ















. (2.46)

For the equality to hold for all values of γλc the parenthesis must be zero,

0 = −δλµ + (Eλ − E)Aλµ −
∑

νc′′
γλc′′γνc′′L

0
c′′Aνµ

= −δλµ +
∑

ν















δλν(Eν − E)Aνµ −
∑

c′′
γλc′′γνc′′L

0
c′′Aνµ















= −δλµ +
∑

ν

Aνµ















δλν(Eν − E) −
∑

c′′
γλc′′γνc′′L

0
c′′















. (2.47)
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The equality becomes true if the parenthesis is A−1
λν

. The level-matrix form is
therefore equivalent to the channel-matrix form of the collision matrix with

A−1
λµ = δλµ(Eλ − E) −

∑

c

γλcγµcL
0
c (2.48)

= δλµ(Eλ − E) −
∑

c

γλcγµc(Sc − Bc + iPc). (2.49)

2.3 Cross sections

The collision matrix is not directly measurable. The quantity typically mea-

sured in reaction or scattering experiments is the differential or integrated
cross section. The integrated cross section for an incident particle of type α

with spin s, and outgoing type α′ and spin s′, is given in [Lane 1958, VIII
(3.2a)]:

σαs,α′s′ =
π

k2
α(2s + 1)

∑

Jll′
(2J + 1)|TJ

α′s′l′,αsl
|2, (2.50)

where T is defined below (2.3) in the same chapter,

Tα′s′l′,αsl = e2iωα′ l′δα′s′l′,αsl −UJ
α′s′l′,αsl

. (2.51)

To simplify the notation in the following, c denotes the channel αsl and super-
script, J, is omitted. The essential part of the cross section is then:

σcc′ ∝ |e2iωc′ δc′c −Uc′c|2. (2.52)

The second form of W (equation 2.42) is used in the collision matrix, denoting
the second term of W byW. Inserting this into the above,

σcc′ ∝ |e2iωc′δc′c −Ωc′(δc′c +Wc′c)Ωc|2 = |e2iωc′ δc′c −Ωc′Ωcδc′c +Ωc′ΩcWc′c|2.
(2.53)

First, the cross section for c , c′ is considered:

σcc′(c , c′) ∝ |Ωc′ΩcWc′c|2 = |Wc′c|2

= |[P1/2(1 − RL0)−1RP1/2w]c′c|2

= 4PcPc′ |
∑

c′′
(1 − RL0)−1

c′c′′Rc′′c|2. (2.54)
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To get the level-matrix form equation 2.44 is applied, which leads directly to:

σcc′(c , c′) ∝ 4PcPc′ |
∑

λµ

γλcγµc′Aλµ|2. (2.55)

For c = c′ the cross section is:

σcc ∝|e2iωc −Ω2
c +Ω

2
cWcc|2

=|1 − e−2iφc + e−2iφcWcc|2

=(1 − e−2iφc + e−2iφcWcc)(1 − e2iφc + e2iφcW∗cc)

=1 − e2iφc + e2iφcW∗cc − e−2iφc + 1 −W∗cc + e−2iφcWcc −Wcc + |Wcc|2

=2 − e2iφc − e−2iφc + (e−2iφc − 1)Wcc + (e2iφc − 1)W∗cc + |Wcc|2

=2(1 − cos 2φc) (2.56)

+ 2i(e−2iφc − 1)Pc

∑

c′
(1 − RL0)−1

cc′Rc′c

− 2i(e2iφc − 1)Pc

∑

c′
(1 − RL0)−1

cc′Rc′c

+ 4P2
c |
∑

c′
(1 − RL0)−1

cc′Rc′c|2.

This can be rewritten to

σcc ∝4 sin2 φc (2.57)

+ 4Pc















sin 2φcRe















∑

c′
(1 − RL0)−1

cc′Rc′c















+ (1 − cos 2φc)Im















∑

c′
(1 − RL0)−1

cc′Rc′c





























+ 4P2
c |
∑

c′
(1 − RL0)−1

cc′Rc′c|2.
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Using equation 2.44 the equivalent level-matrix form is

σcc ∝4 sin2 φc (2.58)

+ 4Pc

















sin 2φcRe

















∑

λµ

γλcγµcAλµ

















+ (1 − cos 2φc)Im

















∑

λµ

γλcγµcAλµ

































+ 4P2
c |
∑

λµ

γλcγµcAλµ|2.

For the single level case, this expression is equivalent to equation (1.14) in
[Lane 1958, XII].

In the case of a single level, λ, the level-matrix cross sections can be sim-
plified by substituting

∑

λλ′
γλcγλ′c′Aλλ′ =

γλcγλc′

Eλ − E −∑

c γ
2
λc

(Sc − Bc + iPc)
, (2.59)

and in the case of only one channel the following can be used:

∑

c′′
(1 − RL0)−1

cc′′Rc′′c′ =

∑

λ γλcγλc′/(Eλ − E)

1 − (Sc − Bc + iPc)
∑

λ γ
2
λc
/(Eλ − E)

. (2.60)

2.4 R-matrix formalism applied to β decay

The formalism for scattering and reactions can be applied to β-decay in a way
analogous to the inclusion of photon channels in [Lane 1958, XIII 3]. The level-

matrix form of the collision matrix can be written as

Ucc′(c , c′) = iΩcΩc′
∑

λµ

AλµΓ
1/2
λc
Γ

1/2
µc′ , (2.61)

where Γλc = 2Pcγ
2
λc

. According to [Lane 1958, XIII, (3.9)] the collision matrix

element for incoming channel, e, and outgoing photon channel, p, is

Uep = iΩeΩp

∑

λµ

AλµΓ
1/2
λe
Γ

1/2
µp , (2.62)
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whereΩp is the photon phase factor and Γλp the width amplitude. For β decay
the corresponding substitution is

(ΩcΓ
1/2
λc

)2
= fβg2

λx, (2.63)

where gλx is the beta strength parameter with x = F or G corresponding to
Fermi and Gamow-Teller transitions, and fβ is the integrated Fermi function

[Barker 1969, App. III] (see section A.3 in the appendix). The cross section is
thus replaced by a decay probability:

wc(E) = C2 fβPc

∑

x=F,GT

|
∑

λµ

gλxγµcAλµ|2, (2.64)

w(E) =
∑

c

wc(E), (2.65)

where C2 is a normalisation constant chosen to satisfy

w =

∫

w(E)dE =
ln 2
t1/2

. (2.66)

The single level and single channel approximations are similar to the ex-
pressions for scattering. For a single channel:

w(E) = C2 fβPc

∑

x=F,GT

∣

∣

∣

∣

∣

∣

∑

λ gλxγλc/(Eλ − E)

1 − (Sc − Bc + iPc)
∑

λ γ
2
λc
/(Eλ − E)

∣

∣

∣

∣

∣

∣

2

, (2.67)

and for a single level:

w(E) = C2 fβ
∑

x=F,GT

|gλx|2
∑

c Pcγ
2
λc

|Eλ − E −∑

c γ
2
λc

(Sc − Bc + iPc)|2
. (2.68)

2.5 The R-matrix parameters

The R-matrix parameters entering the cross section and decay rate formulas

are for each internal eigenstate or level, λ, the level energy, Eλ, the reduced
widths, γλc, for each of the channels, c, and for β decay also a β strength pa-

rameter, gλ. For each channel the size of the internal region is determined by
the channel radius, ac, and the boundary parameter, Bc, determines the loga-

rithmic derivative of the outgoing wave on the bounding sphere separating
the internal and external regions.
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To demonstrate how the R-matrix parameters are related to the physical
properties of the nuclear resonances, it will now be shown how the single level

approximation can be reduced to the well known Breit-Wigner formula for a
narrow resonance. Since the formalism is going to be applied to β decay the

single level formula for the β-decay rate will be discussed, but the derivation
is similar for cross sections.

First equation 2.68 is rewritten by substituting Γλ =
∑

c Γλc =
∑

c 2Pcγ
2
λc

and ∆λ = −
∑

c γ
2
λc

(Sc − Bc),

w(E) = C2 fβ
∑

x=F,GT

|gλx|2
1
2Γλ

|Eλ − E + ∆λ − i1
2Γλ|2

= C2 fβ
∑

x=F,GT

|gλx|2
1
2Γλ

(Eλ − E + ∆λ)2 + 1
4Γ

2
λ

. (2.69)

∆λ is energy dependent through Sc(E), and can be approximated by a Taylor

expansion to first order, if Sc(E) is linear over the resonance energy range,

∆λ(E) ≈ ∆λ(Eλ) + (E − Eλ)
δ∆λ
δE

∣

∣

∣

∣

∣

E=Eλ

= ∆λ(Eλ) + (Eλ − E)
∑

c

γ2
λc

δSc

δE

∣

∣

∣

∣

∣

E=Eλ

.

(2.70)

Inserting this,

= C2 fβ
∑

x=F,GT

|gλx|2
1
2Γλ

(

(Eλ − E)(1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ
) + ∆λ(Eλ)

)2
+

1
2Γ

2
λ

= C2 fβ
∑

x=F,GT

|Mλx|2
1
2Γ

o
λ

(

Eλ − E + ∆o
λ

)2
+

1
4 (Γo

λ
)2
. (2.71)

If the penetration function varies slowly over the resonance, Γλ is approxi-
mately constant, and this is the Breit-Wigner formula for a single resonance,

where the resonance energy is

Er = Eλ + ∆
o
λ = Eλ +

∆λ(Eλ)

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

= Eλ −
∑

c γ
2
λc

(Sc(Eλ) − Bc)

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

, (2.72)

the observed width of the state is

Γ
o
λ =

∑

c 2Pcγ
2
λc

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

, (2.73)
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and the β-decay matrix element is

Mλx =
gλx

(

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

)1/2
. (2.74)

The penetration function is generally not a slowly varying function, so the
Breit-Wigner formula is only correct for narrow resonances.

Equation 2.74 is only true for the specific normalisation constant, C2, which
fulfills,

fβt1/2,λ =
B

|Mλ,F|2 + |Mλ,GT|2
, (2.75)

where B = 6147(2) s [Hardy 2005] and this definition of Mλ,GT includes the
factor |gA/gV | = 1.2695(29) [Yao 2006]. Integrating equation 2.71,

ln 2
t1/2,λ

= C2 fβ
(

|Mλ,F|2 + |Mλ,GT|2
)

π, (2.76)

this leads to the normalisation constant,

C2
=

ln 2
πB
= 3.5893(12) · 10−5s−1. (2.77)

The single-level approximation for narrow states (equation 2.71), is also

valid for broad states as long as the shift function is linear over the resonance.
In that case the widths, Γo

λ
, become energy dependent functions. For both

narrow and broad states the observed widths are defined by equation 2.73
with Pc evaluated at the level energy. The equivalent definition is here used

for the β-decay matrix elements.

2.5.1 Boundary conditions

In R-matrix theory, the boundary condition, Bc, is a real constant which can
take any value. For a single resonance, the natural choice is seen from equa-

tion 2.72 to be Bc = Sc(Eλ), making the resonance energy, Er, equal to the R-
matrix parameter, Eλ. Typically one operates with more than one energy level

and in that case the R-matrix energy can only equal the resonance energy for
one of the resonances. Also the reduced width amplitudes will depend on

the boundary conditions for cases with more than one resonance because the
level matrix (equation 2.48) is non-diagonal. In practice one finds a set of
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R-matrix parameters giving the observables for one of the resonances, λ, by
choosing, Bc = Sc(Eλ), and then transforming the parameters to a different

boundary condition, B′c = Sc(E′b) to get the observables for the other reso-
nances [Barker 1972]. The transformation (Bc,Eλ, γλc, gλ,x)→ (B′c,E

′
λ
, γ′
λc
, g′
λ,x

)

is performed by diagonalising the matrix, C, with entries,

Cλµ = Eλδλµ −
∑

c

γλcγµc(B′c − Bc), (2.78)

such that D = KCKT, where Dλµ = Dλδλµ, and K is an orthogonal matrix. The
transformed parameters are:

E′λ = Dλ, (2.79)

γ′λc =

∑

µ

Kλµγµc, (2.80)

g′λx =

∑

µ

Kλµgµx. (2.81)

It can be shown that the transformation leaves the collision matrix invariant,
which is necessary to keep the cross section or decay rate unchanged. It is

an iterative process to transform the parameters from boundary conditions
calculated at the resonance energy for a level, λ, to the level, µ, because the

resonance energy for level µ is unknown. In each step of the iteration, instead
of using E′

b
= Eµ as in [Buchmann 2001], it can be an advantage to update the

boundary condition energy as E′
b
=

1
2

(

Eµ + Eb

)

for easier convergence, where
Eb was the boundary condition energy in the previous step.

In the alternative Kapur-Peierls framework the choice of boundary condi-
tion is a complex number, Bc = Lc = Sc + iPc. This has some advantages, es-

pecially computationally because the channel and level matrices are diagonal
and matrix inversion is avoided. The drawbacks are more significant though:

The level parameters are not directly connected to the observed values - the
level energies and reduced widths are complex numbers. Transforming the

parameters back to real values to obtain the observables leads back to the dif-
ficulty of matrix inversion [Lane 1958, IX, 2].
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2.5.2 Channel radius

The channel radius or interaction radius setting the size of the bounding sphere

dividing the internal and external regions of configuration space is given by

ac = r0(A1/3
1 + A1/3

2 ), (2.82)

where A1 and A2 are the mass numbers of the two nuclei interacting through
channel c. The value of r0 can formally be arbitrarily chosen as long as it is

sufficiently large to only include Coulomb interactions in the external region.
The choice of channel radius affects the R-matrix parameters γλ and gλ. These

quantities depend linearly on the wave function, which is normalised in the
internal region. The observable quantities, Γo

λ
and Mx,λ, depending on the

parameters squared, γ2
λ

and g2
λ
, therefore need to be renormalised to include

the tail of the wave function in the external region.

Γ
o
λ =

Γλ

1 +
∫ ∞

ac
|Ψ|2dτ

. (2.83)

The integral of the wave function in the external region is approximately pro-

portional to the derivative of the shift function on the boundary [Lane 1958,
Appendix] leading to the formula for the observed width and matrix element

(equations 2.73 and 2.74).

Conventionally the value of r0 has been chosen to be the radius obtained

in electron scattering experiments, typically in the range 1.40–1.50 fm (see the
discussion of (1.1) in [Lane 1958]). The rms radius from electron scattering

experiments is a measure of the charge distribution of the nucleus. For 12C
the rms charge radius is 2.4829(19) fm [Ruckstuhl 1984] corresponding to a

value for r0 of 1.4001(11) fm for a uniformly charged nucleus. The value of r0

from rms charge radii provides at least a minimum value for the appropriate

channel radius. For very loosely bound states with a smeared-out spatial dis-
tribution the assumption of a uniform nuclear distribution is far from valid
in the conversion from rms charge radius to the actual radius (not rms) of the

nucleus. In that case the channel radius should be chosen larger.

In practical applications of the R-matrix theory to fitting experimental

data, the basis of internal states is truncated to the minimal model giving the
best possible fit to the data. This can introduce an artificial dependency of
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the observables from the fit on the channel radius. The truncation of the basis
corresponds to neglecting the far-away levels - those levels with high energy

contributing only very little to the experimental spectra at low energy. When
increasing the channel radius the contribution from higher-energy states be-

comes larger, because their wave functions will naturally extend to larger dis-
tances, and the level parameters for the finite basis of low-energy states will

change to compensate for this effect. In applications it is common to introduce
so-called background levels to account for the high-energy levels which can
not be constrained further (see for example [Buchmann 2001] and [Bhattacha-

rya 2006]). For a good model the parameters for resonant states should not
vary with changing channel radii, only the high-energy effective background

levels will differ.

The level parameter dependencies on channel radius and boundary condi-
tion observed in some applications of R-matrix theory [Barker 1968] has led to

some criticism of the phenomenological use of the R-matrix theory by advo-
cates of the competing K-matrix [Humblet 1990]. The two parameterisations

are equally valid for an infinite number of levels, but share the difficulties of
truncating the basis, although the K-matrix theory does not introduce the un-

physical and rather arbitrary boundary and channel radius parameters. On
the other hand the K-matrix parameters are not always easy to interpret in

terms of physical quantities. For example some applications require the in-
clusion of echo poles below threshold (see [Humblet 1998] for a comparative

analysis using both K- and R-matrix).

2.5.3 Alternative form of the level matrix

An alternative set of R-matrix parameters can be found, where the energies,

Ẽi, reduced widths, γ̃2
ic

and beta strengths, g̃ix are the “observed” resonance
parameters (equal to the standard R-matrix parameters for which Bc = Sc(Eλ)).

The derivation will follow [Brune 2002] and lead to an alternative formula for
the level matrix.

First, the real and symmetric matrix E is defined:

E = e −
∑

c

γcγ
T
c (Sc(E) − Bc), (2.84)
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where e is a diagonal matrix with eλµ = Eλδλµ, and γc is the column-vector
with entries γλc. The eigenvalue equation for E is

Eiai = Ẽiai, (2.85)

where Ei denotes the matrix E evaluated for the energy Ẽi. The dependency
of Ei upon the eigenvalue makes this eigenvalue problem nonlinear. It is as-

sumed that the eigenvectors are normalized so that aT
i

ai = 1. The eigenvalues,
Ẽi, are invariant if the boundary conditions are changed, and if Bc = Sc(Eλ),

Eλ is an eigenvalue. The eigenvalues, Ẽi, therefore correspond to resonance
energies. The corresponding reduced width amplitudes,

γ̃ic = aT
i γc, (2.86)

are also invariant under changes in Bc, and for Bc = Sc(Eλ), γ̃λc = γλc.
The collision matrix must be invariant when changing to alternative pa-

rameters, requiring:
∑

λµ

γλcγµc′Aλµ = γ
T
c Aγc′ = γ̃

T
c Ãγ̃c′ . (2.87)

Using the definition, γ̃c = aTγc,

A = aÃaT ⇔ Ã−1
= aTA−1a. (2.88)

Inserting the matrix expression for A−1 this becomes,

Ã−1
= aTea − EaTa −

∑

c

γ̃cγ̃
T
c (Sc − Bc + iPc). (2.89)

The matrices, aTea and aTa, are derived in [Brune 2002] from equation 2.85

and 2.86 and will be denoted by M and N.

aT
j ai ≡Mi j =















1, i = j

−∑

c γ̃icγ̃ jc
Sic−S jc

Ẽi−Ẽ j
, i , j

, (2.90)

aT
j eai ≡ Ni j =



















Ẽi +
∑

c γ̃
2
ic

(Sic − Bc), i = j
∑

c γ̃icγ̃ jc

(

ẼiS jc−Ẽ jSic

Ẽi−Ẽ j
− Bc

)

, i , j
. (2.91)
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Inserting the results one obtains:

(Ã−1)i j = (Ẽi − E)δi j −
∑

c

γ̃icγ̃ jc(Sc + iPc) (2.92)

+

∑

c



















γ̃2
ic

Sic, i = j

γ̃icγ̃ jc
Sic(E−Ẽ j)−S jc(E−Ẽi)

Ẽi−Ẽ j
, i , j

where Sic = Sc(Ẽi). This level matrix can be used equivalently to the standard
level matrix in calculations of cross sections and decay rates. This parameteri-

sation is particularly useful when parameters for more than one level need to
be fixed in a fit.

The alternative parameters are transformed to standard R-matrix parame-

ters by solving the eigenvalue equation

Nbλ = EλMbλ, (2.93)

where N and M are determined by the parameters Ẽi, γ̃ic and Bc as given by
equations 2.90 and 2.91. The standard level-energy-parameters are the eigen-

values. The reduced widths and β strengths are found as

γc = bTγ̃c (2.94)

gx = bTg̃x. (2.95)

2.5.4 Threshold effects

For levels close to a threshold, the single-level spectrum differs significantly
from the Breit-Wigner shape (equation 2.71). The rapid increase of the pene-

tration function with energy, causes the high-energy tail of the state to increase
as well, giving a second local maximum at higher energy. This effect is well

known, and the anomalous peaks are often referred to as ghosts [Barker 1962].
Let us consider the β-decay rate corrected for the energy dependency in the

entrance channel from fβ. This will be the inverse f t value as a function of
energy. The area of the peak compared to the full energy range can be found

by integration of equation 2.71 for the peak area giving
∫

( f t)−1
λ,peak(E)dE = C2

∑

x=F,GT

|gλx|2
π

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

(2.96)
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and, comparing to the integral of equation 2.69 for the full state (see section
A.2 in the appendix),

∫

( f t)−1
λ (E)dE = C2

∑

x=F,GT

|gλx|2π. (2.97)

Note that equation 5 in [Barker 1996] for this integral only holds for the nar-
row state approximation and should be replaced by equation 4 in the same

reference. The peak ratio is therefore

Apeak

Atotal
=

1

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

, (2.98)

and because the derivative of the shift function is always positive and decreas-

ing with energy, the ghost effect is most significant close to the threshold.
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Figure 2.1: Levels with the same R-matrix parameters except the level energy. Inverse
f t values (a) and β-decay rates (b) are shown for a 3α compund breaking up to α
particles via 8Be in its ground state.

Figure 2.1 illustrates how the level shape changes with varying level en-
ergy. The width of the levels close to the threshold are much smaller than for

levels at higher energies and the tails of the levels are clearly altered from the
Breit-Wigner shape. The examples in figure 2.1(a) show the inverse f t value,

and figure 2.1(b) the β-decay rate, for decay of 12N. The phase space for the
β decay decreases with energy, and the contribution of the 9.5 MeV level is

given only by the low-energy tail, shaped by the penetration function and
phase space.
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2.5.5 Interference

Another effect, which alters the level shape from the simple Breit-Wigner
form, is interference. Overlapping levels with the same spin and parity can

interfere constructively or destructively, so the sum of the single-level distri-
butions differs from the distribution with interference. An example of the

interference between two levels is shown in figure 2.2. The dashed curves
show the Breit-Wigner distributions for two single levels and their sum. The

solid line is the total distribution including the full interference. The curves
in figures 2.2(a) and 2.2(b) are calculated using the standard and alternative

R-matrix parameterisations respectively, and the interference spectra are seen
to be identical. Due to interference, the sum of the single-level approxima-

tions is significantly different from the spectrum with interference, so it is a
bad approximation to separate the contributions from interfering levels us-

ing the single-level approximation. Alternatively the contribution from an
individual state, λ, can be calculated using the full R-matrix expression, but

assuming that only the level λ is fed [Barker 1988b]. The β-decay rate to the
level λ is then

wλc(E) = C2 fβPc

∑

x=F,GT

|
∑

µ

gλxγµcAλµ|2. (2.99)

This approximation includes part of the interference, and the dotted curves in

figure 2.2 show, that the agreement with the full interference curve is much
better than the single level approximation. The standard and alternative pa-

rameterisations yield different results as expected, since only the double sum,
|∑λµ gλxγµcAλµ|2, is invariant, not |∑µ gλxγµcAλµ|2.

Equation 2.99 can be used to calculate branching ratios to broad states as

BRλ =
wλt1/2

ln 2
=

t1/2

ln 2

∑

c

∫

wλc(E)dE (2.100)

under the condition that
∑

λ wλ ≈ w. For narrow states the branching ratio

and f t value are directly related as

fβt1/2,λ =
fβt1/2

BRλ
, (2.101)

and the relation to the matrix elements is given by equation 2.75. For broad
states, the meaning of the f t value is not well defined, because the phase
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(a) Standard parametrisation.
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(b) Alternative parametrisation.

Figure 2.2: Interference between two 0+ states populated in β decay of 12N. The two
states are only examples with level parameters put in by hand. E1 = 0.38 MeV and
E2 = 4.0 MeV above the 3α threshold. The dashed lines are the single-level approx-
imations, the dotted lines are the level contributions calculated using equation 2.99
and the solid line is the full interference spectrum.

space, fβ, is energy dependent. The f t value can be considered either as re-
lated to the matrix elements by equation 2.75 or to the branching ratios by

integration of equation 2.101. These two definitions differ due to fact, that the
definition of the matrix element used here derives from the narrow-level ap-
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proximation and does not depend on the effects on the high- and low-energy
tails of the level. A different definition of the matrix elements is to calculate

the f t value by integration of equation 2.101 and using equation 2.75, but this
would make the matrix element dependent on other levels, which seems to

be in contradiction with the matrix element being the overlap between initial
and final state. As an example a state close to the threshold is considered, such

as level 1 in figure 2.2. This state has a significant ghost, and if the narrow-
level approximation is applied, the branching ratio to the state is found to be
the branching ratio to the peak only. The matrix element is therefore smaller

than the value obtained by integrating the f t value over both peak and high-
energy ghost and using equation 2.75. In the following, f t values will not be

given to broad states to avoid misinterpretation.

2.6 Sequential decay via broad states

The formalism for reactions, scattering and β-delayed two-body breakup has
now been presented, and it will be applied to the analysis of β-delayed breakup

of 8Be in the next chapter. In chapter 4, β-delayed breakup of 12C will be anal-
ysed, and since this is a three-body process, the theory has to be extended.

Three-body decay is treated using R-matrix theory as a succession of two
two-body disintegrations [Lane 1958, XIII, 2]. The initial state breaks up to a

bound and an unbound component, and the treatment as a sequential decay
only makes sense if the unbound part is sufficiently long lived. This also

ensures that the wave function of the unbound part is sufficiently confined
and a finite value can be assigned to the channel radius.

First, the standard R-matrix formula for the β-decay rate, equation 2.64, is

considered. The differential rate for breakup of an initial state with energy, E,
via an intermediate state with energy, E′, can be written with explicit energy

dependencies as

wc(E,E′) = C2 fβPc(E − E′)
∑

x=F,GT

|
∑

λµ

gλxγµc(E′)Aλµ(E,E′)|2, (2.102)
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where the inverse level matrix is

A−1
λµ(E,E′) = δλµ(Eλ − E) −

∑

c

γλc(E′)γµc(E′)(Sc(E − E′) − Bc + iPc(E − E′)).

(2.103)

The reduced widths have become energy dependent and, if it is assumed that
the intermediate states are isolated levels, λ′, the single level approximation

can be used in the factorisation,

γ2
λc(E

′) = γ2
λλ′c′ρλ′c′(E

′) (2.104)

≈ γ2
λλ′c′

1
2π

Γλ′c′(E′)
(

E′
λ′ + ∆λ

′c′(E′) − E′
)2
+

1
4Γλ′c′(E

′)2
(2.105)

= γ2
λλ′c′

1
π

Pc′(E′)γ2
λ′c′

∣

∣

∣E′
λ′ − E′ − (Sc′(E′) − Bc′ + iPc′(E′))γ2

λ′c′

∣

∣

∣

2
, (2.106)

where c′ denotes the breakup channel of the intermediate state. The approxi-
mation for the reduced width can now be inserted into equation 2.102 and the

energy of the unbound part, E′, is contained in the terms Pc(E−E′)ρλ′c′(E′) and
Sc(E−E′)ρλ′c′(E′). The decay rate can be obtained as the integral

∫

λ′
wc(E,E′)dE′,

but this turns out to be too computationally demanding and instead it is
more convenient to approximate the shift functions and penetrabilities by the

weighted mean values:

Sc(E) =
∫

λ′
Sc(E − E′)ρλ′c′dE′, (2.107)

Pc(E) =
∫

λ′
Pc(E − E′)ρλ′c′dE′. (2.108)

In this way the integrals only depend on the intermediate state properties,
which are known for our purposes, and only have to be calculated once for

each energy bin. The decay rate formula with Sc(E) and Pc(E) defined by the
above now becomes

wc(E) = C2 fβPc(E)
∑

x=F,GT

|
∑

λµ

gλxγµλ′c′Aλµ|2, (2.109)

with

A−1
λµ = δλµ(Eλ − E) −

∑

c

γλλ′c′γµλ′c′(Sc(E) − Bc + iPc(E)). (2.110)
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In the treatment of 12N and 12B β decay the formalism is going to be ap-
plied to broad as well as narrow intermediate states. An effect of this is,

that the order of emission of the three identical α particles is not necessar-
ily known, and the decay rate expression should be symmetric with respect to

the order of emission. This symmetrisation is known to affect the single-alpha
spectrum [Balamuth 1974, Fynbo 2003], but will here be assumed to be of less

importance for the sum-energy spectrum. The good agreement between the
symmetrised, sequential R-matrix calculation and the data in [Fynbo 2003],
lends support to the application of R-matrix theory to sequential decay via

broad intermediate states, despite the fact that this in principle makes it im-
possible to define a finite channel radius because the wave function of the

unbound part spreads over all space.

2.7 Parameter constraints

2.7.1 The Wigner limit

The reduced width, γ2
λc

, is, for single-nucleon excitations, constrained to be
lower than the Wigner limit, γ2

W, given by,

γ2
W =

~2

µca
2
c

, (2.111)

where µc is the reduced mass and ac the channel radius. For α-particle ex-

citations the Wigner limit should not be taken too literally. For example the
0+2 state in 12C has a reduced width of γ2 ∼ 1.4γ2

W
. The Wigner limit is how-

ever a useful guideline for identifying unphysical resonances from a fit with
γ2 several times larger than γ2

W
.

For the 2α system the Wigner limit is

γ2
W(2α) =

(197.327 MeV fm)2

4·4
4+4 · 931.494 MeV · r2

0(41/3 + 41/3)2
= 2.074 MeV fm2 r−2

0 (2.112)

and for the α+8Be system it is

γ2
W(α +8 Be) =

(197.327 MeV fm)2

4·8
4+8 · 931.494 MeV · r2

0(41/3 + 81/3)2
= 1.218 MeV fm2 r−2

0

(2.113)
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The Wigner limit is also called the sum-rule limit, because it derives from
the sum-rule,

∑

λ

θ2
λc ∼ 1, (2.114)

where θλc are the dimensionless reduced widths,

θ2
λc =

(

~2

µca
2
c

)−1

γ2
λc, (2.115)

[Lane 1958, XII (3.13)]. The factor 3/2 in the original paper by Teichmann and
Wigner [Teichmann 1952, equation (29)] is not needed in γ2

W
, even though this

is still the limit quoted in many papers.
If scattering is considered as an example, the Wigner limit corresponds to

the situation with no coupling between the incident particle and the nucleons
inside the target nucleus. The incident particle only experiences a mean field

from the scattering nucleus. In such a scattering process reactions are not
possible, a compound nucleus can not be created. Instead the incident and
target nuclei remain in their ground states and only single-particle excitations

appear owing to the relative motion. For a mean field given by the square-
well potential, the single-particle resonances all have reduced widths given

by the Wigner limit. In a more realistic scenario the single-particle states are
mixed with the internal excitations of the target nucleus, and the single par-

ticle reduced width is spread among the fine-structure resonances. The sum
in equation 2.114 is therefore over all levels in any energy interval equal to

the spacing between single particle levels. In general a reduced width close to
the Wigner limit indicates cluster structure, that is, the colliding nuclei partly

conserve their identity within the resonance.

2.7.2 The Gamow-Teller sum rule

The Gamow-Teller strength, or BGT value, is the norm squared of the matrix

element for the transition, Bλ,GT = |Mλ,GT|2. The non-relativistic Gamow-Teller
operators are [Osterfeld 1992, Harakeh 2001]

β±(µ) =
A

∑

k=1

σµ(k)t±(k), (2.116)



2.7. Parameter constraints 37

where σµ denotes the spherical components of the Pauli spin matrices (µ =
−1, 0, 1), t± are isospin raising- and lowering-operators and k runs over all

nucleons of the nucleus. The isospin operations on neutron and proton states
are: tz|n〉 = 1

2 |n〉, tz|p〉 = − 1
2 |p〉, t−|n〉 = |p〉, t+|p〉 = |n〉, t+|n〉 = 0 and t−|p〉 = 0.

The Gamow-Teller strength function is the total GT strength summed over all
final states,

S±(GT) =
∑

f

B f,GT(β±) =
∑

f,µ

|〈 f |β±(µ)|i〉|2 =
∑

f,µ

〈 f |β±(µ)|i〉∗〈 f |β±(µ)|i〉

=

∑

µ

〈i|β†±(µ)β±(µ)|i〉. (2.117)

Using β†± = β∓, the difference of the strength functions is (omitting the µ de-

pendencies for readability)

S−(GT) − S+(GT) = 〈i|
∑

µ

(β†−β− − β†+β+)|i〉

= 〈i|
∑

µ

(β+β− − β−β+)|i〉. (2.118)

Applying the commutator relation

[β+(µ), β−(µ)] = 2Tz, µ = −1, 0, 1 (2.119)

where Tz =
∑A

k=1 tz, we obtain the so-called Ikeda sum rule [Ikeda 1963],

S−(GT) − S+(GT) = 3(N − Z). (2.120)

The sum rule applies to the β+ and β− strengths of a parent nucleus. For

example 12N has Z = 7 and N = 5 giving

S+(GT) = S−(GT) + 3(Z −N) = S−(GT) + 6. (2.121)

This puts a lower limit on the β+ strength function, S+(GT) > 6. In the anal-

ysis, using R-matrix formalism to fit β-decay spectra, it is more relevant to
know the upper limit on the beta strength, and typically S+(GT)≫ S−(GT) so

equation 2.121 becomes S+(GT) = 6. A very conservative estimate would be a
factor of two: S−(GT) < 1

2S+(GT), constraining S+(GT) between 6 and 12.
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2.8 Other applications of R-matrix formalism

Originally R-matrix theory was developed in nuclear physics as a phenomeno-

logical parametrisation of nuclear scattering data. During the last half cen-
tury since the publication of the standard R-matrix reference by Lane and

Thomas [Lane 1958] its range of applications has increased to encompass
also atomic and molecular physics [Allison 1972,Berrington 1974,Chang 1975,

Berrington 1995, Aymar 1996]. In this context, R-matrix theory is used as
a method for solving the Scrödinger equation rather than as a parametrisa-

tion of experimental data and exists in different variants as for example the
eigenchannel and Wigner-Eisenbud R-matrix methods [Aymar 1996]. This

use of the R-matrix theory also has applications in nuclear physics where it
is denoted the calculable R-matrix by Descouvemont and Baye [Descouve-

mont 2010b].

As in the standard or phenomenological use of the R-matrix method the
interaction region is separated in an internal and an external region when try-

ing to solve a given Schrödinger equation. The wave function in the internal
region is expanded in a finite basis and the solution is matched to the wave

function in the external region which is approximated by the exact asymp-
totic expression, equation 2.5. A toy example is shown in figure 2.3 taken

from [Descouvemont 2010b] showing the wave function for the 12C+p system
at 2 MeV with a channel radius of 8 fm and 15 basis functions. The matching

of the wave functions at the channel radius is seen to be poor for a basis of
sine functions and following the exact solution for Lagrange functions.

Calculations within the R-matrix framework have been applied to three-

body continuum states such as 6He (α+2n) and 12C (3α) [Thompson 2000,De-
scouvemont 2006,Descouvemont 2010b,Descouvemont 2010a]. These systems

are treated using the hyperspherical formalism, where the radial coordinate
for two-body systems is replaced by the hyperradius, ρ. For the three-α sys-

tem, ρ =
∑3

i=1 4r2
i
, where ri is the center-of-mass coordinate of the i’th α parti-

cle. The channel radius in hyperspherical coordinates will therefore naturally

be larger than in typical applications with radial coordinates. The potentials
are also slowly decreasing as ρ−3 and this leads to very large channel radii of

typically 200–300 fm for obtaining convergence. Such a large channel radius
requires a very large basis, and to avoid this, a solution for a lower chan-
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Figure 2.3: R-matrix calculations of the 12C+p system using Lagrange and sine basis
functions respectively [Descouvemont 2010b].

nel radius is found (ac ∼ 30 − 40 fm) and propagated to the larger channel
radius for which the wave functions have reached their proper assymptotic

behaviour [Light 1976, Baluja 1982, Burke 1995].





CHAPTER 3

Beta decay of 8B

In this chapter, results from a complete kinematics measurement of 8B β decay
will be presented. The experiment was performed in 2008 at the Jyväskylä

Accelerator Laboratory, Finland. The raw data has been analysed by O. S.
Kirsebom to obtain the 2α sum-energy spectra analysed within the R-matrix

framework in section 3.4. The preliminary analysis of the implications for an
updated 8B neutrino spectrum will be presented in section 3.8.

3.1 Motivation

3.1.1 0+ and 2+ intruder states in 8Be

The 8Be nucleus is one of the most well studied of all isotopes. Despite this,

controversy remains concerning the proposed existence of broad 0+ and 2+

states in 8Be around 6 and 9 MeV respectively. These states were first pro-

posed in 1968 and 1969 by Barker [Barker 1968, Barker 1969] who performed
simultaneous fits to scattering, reaction and decay data probing the 8Be nu-

cleus. Barker argued, that to give a consistent description of all types of
measurements feeding the same nucleus, the (R-matrix) parameters of the fit

model should only differ in the feeding parameters (see also [Barker 1988a]).
If only data from one type of measurement were considered, the results de-

pended on the choice of channel radius with reasonable fits for a range of
radii. Simultaneously fitting different data sets constrained the channel radius

to the optimum value and also constrained the energy and width parameters.
Barker also argued that similar excited 0+ states exist in other light even nu-

clei (see table 2 in [Barker 1988a]) with energies of about 6–8 MeV and large
reduced widths. These states can be interpreted as intruder states within the

shell model - states belonging to a higher shell configuration. That such states
exist in neighbouring even nuclei makes it probable that similar states could
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exist in 8Be with the same properties. One of the examples of neighbour nuclei
with intruder states is 12C with its 0+1 excitation (the Hoyle state). The 0+ state

found by Barker [Barker 1968] has the same dimensionless reduced width,
θ = 1.4, as the Hoyle state in 12C, although their respective observed widths

are 10 MeV compared to 7.65 eV. This is a good example of the threshold effect
(see figure 2.1).

Several critics have over the years disputed Barker’s results

[Warburton 1986, Fayache 1998, Humblet 1998, Bhattacharya 2002, Bhattacha-
rya 2006]. One of the major difficulties with the interpretation is that the broad

resonances are overlapping and unresolved. None of the proposed intruder
states are seen as peaks in the data spectra. Another point of criticism is the

size of the channel radius obtained by Barker. Warburton [Warburton 1986]
states that the natural choice is r0 = 1.4 fm from electron scattering giving

ac = 4.5 fm. However, as Barker replies in [Barker 1988a], the rms charge-
radius measured with electron scattering does not directly correspond to the

R-matrix channel radius as discussed in chapter 2.

Low-energy 0+ and 2+ intruder states have not been found theoretically

in shell-model calculations for 8Be [Navrátil 1998, Fayache 1998]. In the work
by Fayache et al., no low-lying intruder states were found in 8Be, while for
the neighbour nuclei, 10Be and 12C, they found the known 0+ intruder states

close to their experimental energies, 6.111 MeV and 7.654 MeV. Fayache et

al. claimed that this disproved Barker’s argument that similar intruder states

were likely to be found in 8Be. However these results differ from more so-
phisticated shell-model calculations, which do not find any intruder states in

either 8Be, 10Be or 12C [Navrátil 1998, Navrátil 2000, Navrátil 2003]. Such spa-
tially extended states are very difficult to accommodate in the finite harmonic-

oscillator model space and are characterised by slow convergence. In conse-
quence it is difficult to get the correct, low enough energies of these states

[Hyldegaard 2010]. Excited states in the 8Be nucleus have also been calcu-
lated with the Green’s function Monte Carlo approach, and this reproduces

the known 2+ states around 3, 16 and 20 MeV, but no state is seen between 3
and 16 MeV [Pieper 2004].

Barker’s 2+ intruder state is supported by a combined fit to data for 11 dif-
ferent reactions leading to the 8Be intermediate state [Page 2005]. Here the 2+
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state was found at 16.4 MeV with a 19.2 MeV width. The channel radii were
chosen rather arbitrarily based in earlier R-matrix analyses ranging from 3 fm

to 6.5 fm. In other works no need was found for intruder states [Warbur-
ton 1986,Bhattacharya 2006], but here fits were performed separately to α − α
scattering and β-decay data and, as will be discussed in section 3.4.1, the 16
MeV doublet was not treated correctly.

The β-delayed 2α breakup of 8Be will be analysed here within the R-matrix

formalism to test the different models of the 2α continuum supported by
Barker [Barker 1969,Barker 1989] and Warburton [Warburton 1986,Bhattacha-

rya 2006].

3.1.2 Solar neutrinos

The 8B β decay, 8B →8 Be + e+ + νe, takes place in the Sun as one step in the

hydrogen-burning processes. For a long time, the measured flux of neutrinos
from the Sun was found to be too small compared to predictions by the solar

models, and this became known as “the solar neutrino problem". It requires
very large underground detectors to detect the very weakly interacting neu-

trinos emitted from the Sun. Davis performed the first of such measurements
using the 37Cl(ν,e)37Ar reaction in a tank filled with 470 tons of C2Cl4 within

a cavity in the Homestake mine. The neutrino flux was extracted by counting
the number of argon atoms in the tank and less than half of the expected num-

ber predicted by the standard solar model was detected [Davis 1968]. This led
to a series of experiments measuring solar neutrinos, and it was not until the

beginning of this century, when the SNO collaboration performed an experi-
ment sensitive to other neutrino flavours than the electron neutrino, that the

problem was finally solved [Ahmad 2001]. It is now known that neutrinos
have mass, and due to flavour oscillations, an electron neutrino created in the

Sun has a probability of being detected as a muon or tau neutrino on Earth.

The large water and heavy-water Cerenkov detectors, Super-Kamiokande
[Fukuda 2001] and SNO, are sensitive to the high-energy end of the neutrino

spectrum and this is the part dominated by 8B neutrinos. The Homestake ex-
periment and gallium experiments such as SAGE [Abdurashitov 2002] and

GALLEX [Hampel 1999] were sensitive to lower energies as well, but these
experiments did not measure the neutrino energy. For precise calculations of
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the solar-neutrino spectrum, the 8B neutrino spectrum has to be measured in
the laboratory. This is done indirectly by measuring the positron from the β

decay or the α particles from the β-delayed breakup of 8Be and determining
the missing energy escaped with the neutrino. In the neutrino spectrum com-

pilation from 1996 Bahcall finds disagreement between the peak energy in
the single-alpha spectra existing in the literature at the time of ±80 keV [Bah-

call 1996]. The standard neutrino spectrum was therefore inferred from the
only measurement of the positron spectrum [Napolitano 1987]. A newer 2α
coincidence measurement by Ortiz et al. [Ortiz 2000] provides a more accu-

rate neutrino spectrum but is in disagreement with the sum spectrum from
an implantation experiment by Winter et al. [Winter 2006]. New single-alpha

measurements by Bhattacharya et al. [Bhattacharya 2006] agree with the re-
sults in [Winter 2006]. The measured energy spectra from Super-Kamiokande

reported in [Hosaka 2006] and [Cravens 2008] are compared to predictions
based on the neutrino spectra reported by Ortiz et al. This is also the case

for the SNO results in [Aharmim 2005], but newer publications use the neu-
trino spectra by Winter et al. for comparison [Aharmim 2008]. The measured

solar neutrino spectrum shape is distorted due to the energy dependence of
the flavour survival probability. Improving the accuracy of the neutrino spec-

trum, especially at high energy, will improve the determination of the precise
distortion and ultimately constrain the neutrino models.

3.2 2α coincidence experiment

The β decay of 8B provides a clean probe of 2+ states in 8Be. The decay scheme
for the 8B β decay is shown in figure 3.1. 8B has spin and parity 2+ so, accord-

ing to the Fermi and Gamow-Teller selection rules, only 1+, 2+ and 3+ states
can be populated. The known states in 8Be below the β+ Q-value are the 0+

ground state, which is unbound by 91.8 keV, the broad 2+ first excited state
at 3 MeV, a very broad (Γo = 3.5 MeV) 4+ state at 11.4 MeV and the isospin

doublet of 2+ states at 16.6–16.9 MeV. β-decay to the 0+ and 4+ states is second
forbidden so only the 2+ states in figure 3.1 are known to be populated. Since

only 2+ states are populated the analysis of the spectrum is simplified to a
single channel and the system serves as a relatively simple starting point for
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Figure 3.1: Decay scheme for β decay of 8B to known levels in 8Be [Tilley 2004]. En-
ergies are in MeV.

the application of R-matrix theory.

3.2.1 Experimental method

The experiment was performed in January 2008 at the IGISOL facility of the
Jyväskylä Accelerator Laboratory (JYFL), Finland. 8B was produced and sep-

arated using the IGISOL method. IGISOL is an abbreviation for Ion Guide
Separator On-Line and is a variant of the ISOL (Isotope Separator On-Line)

technique for separation of radioactive nuclei [Äystö 2001]. The 8B nuclei
were produced with a 6Li(3He,n)8B reaction using a 0.5 µA, 15 MeV 3He beam

impinging on a foil of 1.95 mg/cm2 LiF on a 3.2 mg/cm2 Al backing. The use
of thin target foils allows the produced ions to leave the target after which

they are thermalised in a helium buffer gas, accelerated to 20 keV and mass
separated before reaching the detector setup.

The detector setup is shown in figure 3.2. The 8B nuclei were stopped in a

25 µg/cm2 carbon foil. In the foil, the nuclei would β decay and subsequently
breakup to two α-particles. Surrounding the foil were placed four double

sided silicon strip detectors (DSSSDs) for α-particle detection. The detectors
were rotated 45◦ with respect to the beam direction as shown in figure 3.2.

Each DSSSD was a 60 µm thick 50 mm × 50 mm silicon wafer with 16 front
strips orthogonal to the 16 back strips. The strips were each 3.0 mm wide,
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separated by 0.1 mm. The inactive doped layer on the front side of the detector
results in a dead layer equivalent to 100 nm of silicon for all the DSSSDs. The

most energetic α particles (∼ 8.5 MeV) hitting a DSSSD are fully stopped in
the detector. The configuration of the DSSSDs seen in figure 3.2 provides a

large solid angle coverage of ∼ 30% of 4π with an angular resolution of ∼ 3
degrees. A 1.5 mm thick, unsegmented silicon detector is placed behind each

DSSSD for the detection of β particles.

Figure 3.2: Experimental setup. The beam comes in from the upper left through the
5 mm collimator. Clockwise from the top the DSSSDs are numbered as 1, 3, 4 and 2.

The energy calibration was performed using α lines for 20Na, taking into
account the effect of non-ionising stopping in the detector. The 20Na lines

were also used to extract the detector response distribution as a function of
energy for each detector. The resolution of the detectors was better at the

beginning of the experiment with a best resolution of σ ≈ 14 keV but deterio-
rating somewhat during the course of the experiment.

The spectra have been corrected for the energy loss in the carbon foil and
detector dead-layers and the 2α coincidences have also been corrected for the

geometric detection efficiency. Due to lepton recoil the two α particles are not
emitted exactly back-to-back, and this complicates the determination of the

coincidence efficiency. For this reason one must consider coincidences in a
pair of opposite detectors, including only the central 6 × 6 pixels in one of the
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two detectors. In the analysis presented here, only coincidences between one
detector pair is considered (DSSSDs 1 and 4). The details of the energy and

efficiency calibrations are given elsewhere [Kirsebom 2010a].

3.3 Data

The coincident measurement of the two individual α particles in the breakup
of 8Be makes it possible to obtain 8Be excitation energy spectra directly from

the 2α sum spectrum. At the same time the single α-energy spectra provides a
comparison to other single-αmeasurements and serves as a consistency check

of the 2α spectrum.

The measured coincidence spectrum is shown in figure 3.3, plotted as the

inverse f t value divided by the penetration function for the 2α break-up chan-
nel. The resulting spectrum is then essentially the resonant structure of 8Be

where the entrance channel and the energy dependency in the exit-channel
have been removed. The features seen in the spectrum are the 3 MeV peak,

the 16 MeV doublet and a large energy region in between with signs of con-
structive interference between the two states. One would expect the 3 MeV

state and the doublet to contribute significantly to the spectrum, but probably
something more is needed to describe much of the strength in between.

3.4 R-matrix analysis

The 8B β-decay probability is given by the many-level, single-channel expres-
sion (equation 2.67), where the single channel is 2α breakup with angular mo-

mentum L = 2. The measured 2α sum-energy spectrum, N(E), is related to
the decay probability as N(E) = (Nt1/2/ ln 2)w(E), where t1/2 = 770(3) ms is the

lifetime of 8B and N is the total number of β decays. The fit function within
the standard R-matrix formalism is therefore,

N(E) =
Nt1/2

πB
fβ(Q − E)Pc(E)
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∣
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Figure 3.3: The 8B β-decay spectrum corrected for the β-decay phase space and pen-
etration function for the 2α channel.

In this work, the alternative parametrisation has been used giving,

N(E) =
Nt1/2
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, (3.2)

which is a slightly more complicated expression than equation 3.1, but pro-

vides the observables directly from the fit.

3.4.1 The 16.6–16.9 MeV isospin doublet

The treatment of the isospin doublet will be explained in this section, follow-

ing Barker’s approach in [Barker 1969] and [Barker 1989]. The 2+ doublet
peaks at 16.626 MeV and 16.922 MeV can be described by the splitting of two

isospin-mixed states, | a〉 and | b〉. These states are linear combinations of the
T = 1 isospin analogue of the 8Li and 8B ground states and a T = 0 compo-

nent [Barker 1966, Barker 1975]:

| a〉 = α | T = 0〉 + β | T = 1〉, (3.3)

| b〉 = β | T = 0〉 − α | T = 1〉, (3.4)
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with α2 + β2 = 1. The states | λ〉 (λ = a, b) can be identified as the R-matrix
internal eigenfunctions Xλ. Omitting the subscript c in the following, the γλc

are linear in | λ〉 (equation 2.19) giving

γa = αγ0 + βγ1, (3.5)

γb = βγ0 − αγ1. (3.6)

The observed widths are T = 0 widths because ∆T = 1 α-decay is forbidden,
so the total decay width is Γ0 = Γa + Γb. The states are high above the α-

decay threshold so the denominator in equation 2.73 for the observed width
can be set equal to 1, and the penetration function is to a good approximation

constant over the doublet, leading to the following reduced widths:

γ2
a = α

2 Γ0

2P̄
= α2Γa + Γb

2P̄
, (3.7)

γ2
b = β

2 Γ0

2P̄
= β2Γa + Γb

2P̄
, (3.8)

where P̄ is the mean penetrability over the doublet. α and β are found as

α2
= Γa/Γ0 = Γa/(Γa + Γb), (3.9)

β2
= Γb/Γ0 = Γb/(Γa + Γb). (3.10)

The matrix elements Ma,x and Mb,x are

Ma,x = 〈a | Ox | i〉 = αM0,x + βM1,x, (3.11)

Mb,x = 〈b | Ox | i〉 = βM0,x − αM1,x. (3.12)

For Fermi decay M0,F = 0 and M2
1,F = T(T + 1) − T3(T3 + 1) = 2, so

Ma,F =
√

2β, Ma,GT = αM0,GT + βM1,GT, (3.13)

Mb,F = −
√

2α, Mb,GT = βM0,GT − αM1,GT. (3.14)

The T = 1 Gamow-Teller matrix element, M1,GT, is predicted in shell-model
calculations to be very small compared to M0,GT [Warburton 1986], so it is set

equal to zero.
R-matrix widths and energies for the doublet states were determined by

Hinterberger et al. [Hinterberger 1978] using elastic scattering of α particles
from 4He. In their analysis the 16 MeV region was analysed with R-matrix
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formalism in the single-channel, two-level approximation, without including
the effect of other 2+ states in 8Be. These levels will introduce a third term in

the sum in the denominator of equation 3.1, which to a good approximation
can be considered constant over the energy range of the doublet.

∑

λ

γ2
λ

Eλ − E
=

γ2
a

Ea − E
+

γ2
b

Eb − E
+

∑

λ,rest

γ2
λ

Eλ − E
(3.15)

≈ γ2
a

Ea − E
+

γ2
b

Eb − E
+ K.

The relations between energies and widths with K = 0 and K , 0 are provided

in [Barker 1969], with superscript zero indicating parameters for K = 0:

Ea,b =
1
2

{

E0
a + E0

b
− 1

2
K′(Γ0

a + Γ
0
b
) (3.16)

±
[

(

E0
a − E0

b −
1
2

K′(Γ0
a − Γ0

b)
)2
+ K′2Γ0

aΓ
0
b

]1/2}

,

Γa = (1 + (K′)2)
Γ0

a(E0
b
− Ea) + Γ0

b
(E0

a − Ea)

Eb − Ea
, (3.17)

Γb = (1 + (K′)2)
Γ0

a(Eb − E0
b
) + Γ0

b
(Eb − E0

a)

Eb − Ea
, (3.18)

where K′ = K/P̄. The energies and widths from [Hinterberger 1978] are: E0
a =

16.715(3) MeV, Γ0
a = 0.1077(5) MeV, E0

b
= 17.017(3) MeV and Γ0

b
= 0.0744(4)

MeV (R-matrix energies relative to the alpha threshold). Following Barker

[Barker 1989], K and P̄ are evaluated in the weighted mean energy

EM =
Γ0

aE0
a + Γ

0
b
E0

b

Γ
0
a + Γ

0
b

= 16.838MeV. (3.19)

The alternative R-matrix parametrisation (equation 3.2) has been used in

a fit to the data to obtain observables directly as fit parameters and, equally
important, to allow for fixing both the doublet and other level energies. To cal-

culate the value of K used for finding the correct doublet R-matrix parameters
it is necessary to transform the parameters to standard R-matrix parameters

with boundary condition at the doublet energy (see section 2.5.3). The param-
eters for the doublet levels are approximated to their previous values when

doing the transformation, but are updated using Eqs. 3.16, 3.17 and 3.18 after
calculating K. This procedure is repeated until K has sufficiently converged.
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3.4.2 Analysis

The minimisation tool used in both this analysis and that described in sec-
tion 4.6 is the Minuit2 package [Minuit2 2010] implemented within the ROOT

framework [ROOT 2010]. The function to minimise is a log-likelihood func-
tion

χ2
= 2

∑

i

(

ni, f it − ni,data + ni,data ln
(

ni,data

ni, f it

))

. (3.20)

The detected α energy is given by an asymmetric response function, which

broadens the energy distribution and shifts it to lower energy. To take this
into account the calculated spectrum is folded by the normalised response

function before comparing to the measured spectrum. The fits were restricted
to the range from 1.5 MeV to 17 MeV excitation energy, because of the uncer-

tainty in the efficiency calibration at lower energy.
The number of free parameters in the fit depends on the number of levels

included. Each level is defined by a level energy, Eλ, a β strength, gλ, and a
reduced width, γλ , for the L = 2 channel. For the isospin doublet only the β

stength is varied.
The analysis proceeds by fitting the data to increasingly more complex

models of the 2α continuum. It has been well known since the 1960’s that a
model representing only the first excited 2+ state at 3 MeV fails in describing

the data above 5 MeV where the transition probability is much too high to be
explained by this state alone [Griffy 1960, Alburger 1963]. This is as expected

judging from figure 3.3. In Table 3.1 the 5 different models considered in this
analysis are listed. Each of these will be discussed here.

• The 3 MeV state and the 16 MeV isospin doublet.

The first model to consider will be one including the 3 MeV state and
the isospin doublet. A fit to this model is shown in Fig. 3.4, from which

it is seen that the main components of the spectrum can be explained by
these known states, although the residuals show that there are regions

where this model does not fit so well. For example the 3 MeV peak be-
comes too broad in the fit as seen from the residuals in the peak region,

to compensate for the missing strength above the peak. The width of
the 3 MeV state is 2 MeV in this fit, 3.4 times the Wigner limit (equation
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Model χ2/df r0 (fm) ac (fm) Figure

1: 3 MeV + doublet 1.47 1.14 3.61 3.4

2: Model 1 + 37 MeV 0.97 1.35 4.28 3.5

3: Model 1 + Eλ > doublet 0.97 1.5 4.8 3.6

4: Model 1 + Eλ < doublet 0.98 2.1 6.7 3.7

5: Model 4 + 45 MeV(gλ = 0) 0.97 2.0 6.4 3.8

Table 3.1: The applied R-matrix models (Different combinations of 2+ states) and
their reduced χ2 values. The number of degrees of freedom is 775 minus the number
of free parameters (see text).

2.112). The poor fit quality is evident from the reduced χ2 value of 1.47,

where the number of degrees of freedom is the number of energy bins
(775) minus the number of free parameters, which is 3 for the 3 MeV

state (E1, g1, γ1) and 1 for the doublet (g2+3) plus the channel radius,
which was optimised to r0 = 1.14 fm (see Table 3.1).

• An additional level fixed at 37 MeV.

Fits were performed in [Warburton 1986], [Winter 2006] and [Bhatta-
charya 2006] to a model including the 3 MeV state, the isospin doublet

and a high-energy level which was fixed at 37 MeV. Their approach is
slightly flawed in its treatment of the isospin doublet, as discussed by

Barker in [Barker 1989], because Hinterberger’s R-matrix parameters for
the doublet [Hinterberger 1978] have not been corrected to allow for in-

terference with other 2+ states (see Section 3.4.1). In the fits presented
here, the doublet parameters have been corrected following Barker’s ap-

proach.

If the channel radius is varied a best fit is found for r0 = 1.35 fm with
χ2/df = 0.97 and this is the fit shown in figure 3.5. The 37 MeV level

obtains a very large width: Γo ≈ 130 MeV, 7.5 times the Wigner limit,
indicating that it is not a physical level. The fit parameters for this model

are given in the first column of table 3.2.

• Variable energy level above the isospin doublet.

An adequate fit was already obtained for an energy level fixed at 37
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Figure 3.4: Fit to Model 1 in Table 3.1. The solid line is the data spectrum, the dashed
line is the fit and the dotted and dot-dashed lines are fit components for the 3 MeV
state and 16 MeV doublet respectively. Below, the fit residuals are shown.

MeV, but to explore the parameter space further, the high energy level is

now allowed to have a variable energy. The best fit is found for a level
energy of 22.7(6) MeV with χ2/df = 0.97. The fit quality is unchanged

compared to a fixed level energy at 37 MeV, in agreement with Warbur-
ton’s statement that the fit is insensitive to the energy of this level [War-

burton 1986]. Changing the channel radius between 1.35 and 1.6 fm does
not affect the fit quality either. It affects the parameter values however -

when the channel radius is increased the energy of the high-energy level
decreases. Fits for r0 = 1.4 and 1.5 fm are given in the second and third

column of table 3.2.

• Variable energy level below the isospin doublet.
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Figure 3.5: Fit to Model 2 in Table 3.1. An extra component corresponding to the 37
MeV level is added compared to the model in figure 3.4.

If the channel radius is further increased a good fit can be obtained with

a level below the isospin doublet. The interference with the 3 MeV state
and the doublet now has opposite sign. The fit quality of this model

does not change significantly from r0 = 2.0 fm to 2.4 fm. The level energy
is in the range 13.5–15 MeV and the width of the order 20 MeV. The
parameterisation for r0 = 2.0 fm is given in the last column of table 3.2.

• Model 4 plus a broad 45 MeV level with zero beta strength.

The model used in Barker’s R-matrix fits [Barker 1989] includes the 3

MeV state, the isospin doublet and a level between the two, as in our
Model 4, but with an additional high-energy background level with zero

Gamow-Teller strength, well above the fitted energy region. The energy
used for the background level is not given in [Barker 1989], and in fact it
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Parameter Model 2 Model 3 Model 3 Model 4

r0 (fm) 1.35 1.4 1.5 2.0

2+1 E (MeV) 3.054(5) 3.0306(15) 2.985(2) 2.787(2)

θ 1.043(18) 1.0224(13) 1.004(2) 1.1264(8)

Γo (MeV) 1.47(2) 1.4154(13) 1.332(2) 1.1317(7)

MGT −0.1544(12) −0.1476(4) −0.1374(3) 0.11114(13)

BGT 1.02(2) · 10−2 9.84(3) · 10−3 9.23(5) · 10−3 7.05(2) · 10−3

2+2+3 M0,GT 1.84(2) 1.84(2) 1.84(2) 1.842(5)

2+2 E (MeV) 16.544 16.517 16.441 16.756

θ 0.173 0.223 0.376 0.345

Γo (MeV) 0.355 0.537 1.25 0.475

2+3 E (MeV) 16.887 16.879 16.863 17.288

θ 0.0996 0.116 0.155 1.13

Γo (MeV) 0.120 0.148 0.216 5.19

2+4 E (MeV) 37.0 28.7(2) 22.7(6) 14.560(7)

θ 2.56(7) 2.218(13) 2.02(3) 2.398(6)

Γo (MeV) 126(3) 73.6(4) 43.7(7) 20.97(5)

MGT −0.23(2) −0.26(3) −0.40(4) −0.906(3)

BGT 0.032(6) 0.042(2) 0.10(2) 0.504(3)

γ2
W (MeV) 1.139 1.058 0.922 0.518

K 1.28 1.67 2.68 −5.45

χ2/df 0.97 0.97 0.97 0.97

Table 3.2: Level parameters for Models 2–4 in table 3.1. Energies are 8Be excitation
energies. The matrix elements given here include the factor |gA/gV| = 1.2695(29). This
factor is not included in the BGT values.
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Figure 3.6: Fit to Model 3 in Table 3.1.

was not kept constant in [Barker 1989], only the R-matrix energy of the

background level with boundary condition determined at the 3 MeV
state energy was fixed, so its observable energy varied in the fit. In this

work its observable energy is fixed at 45 MeV, a value similar to the
background level energy for ac = 6.5 fm in [Barker 1969]. The energy of

the level between the 3 MeV state and the doublet lies between 12 and
14 MeV in fits from r0 = 1.8 fm (ac = 5.7 fm) to r0 = 2.4 fm (ac = 7.6 fm)

and χ2 does not vary significantly for different channel radii. The width
of the state is between 13 and 16 MeV, ∼ 2 times the Wigner limit. An

example fit is shown in figure 3.8 and the parameters for this fit are given
in the second column of table 3.3. The 45 MeV level has a very large

width, Γo ≈ 50 MeV, in all the fits. If the energy of the intruder state is
fixed at 9 MeV a good fit can be obtained with a very small change in
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Figure 3.7: Fit to Model 4 in Table 3.1.

χ2. The width of the intruder state then becomes smaller (Γo = 9 MeV)
and the width of the background level increases (Γo = 78 MeV) (see table

3.3).

The systematic uncertainty of the fits was tested by comparing fits to dif-
ferent energy ranges, and it was found that fits to the energy range 1.5–17

MeV are consistent with fits for 2–17 MeV. The results are also consistent if
one changes from a data set with coincidences between detector 1 and the

central 6× 6 pixels in detector 4 to the data set with coincidences between de-
tector 4 and the central 6 × 6 in detector 1. Data for detector 2 and 3 was not

used for fitting, but the fit results are in excellent agreement with the spectra
for these detectors above the 3 MeV peak. Below the peak, small deviations

are seen, probably because of a small calibration error of a few keV, which
will only be visible in this energy region, where the spectrum changes most
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Parameter Model 5 Model 5

r0 (fm) 2.047 2.0

2+1 E (MeV) 2.711(2) 2.782(2)

θ 1.1438(10) 1.1283(8)

Γo (MeV) 1.0832(8) 1.1324(8)

MGT 0.1041(2) 0.11092(15)

BGT 6.20(2) · 10−3 7.02(2) · 10−3

2+2 E (MeV) 9.0 12.87(2)

θ 1.857(6) 2.079(12)

Γo (MeV) 8.68(3) 14.64(9)

MGT −0.2131(6) −0.456(2)

BGT 0.0278(2) 0.1281(14)

2+3+4 M0,GT 1.75(2) 1.809(10)

2+3 E (MeV) 16.635 16.703

θ 0.169 0.261

Γo (MeV) 0.106 0.272

2+4 E (MeV) 16.934 17.025

θ 0.151 0.393

Γo (MeV) 0.0857 0.622

2+5 E (MeV) 45 45

θ 3.48(4) 2.55(5)

Γo (MeV) 77.6(8) 44.8(9)

MGT 0 0

BGT 0 0

γ2
W (MeV) 0.495 0.518

K −0.238 −1.97

χ2/df 0.98 0.97

Table 3.3: Level parameters for Models 5 in table 3.1. See table 3.2 for explanation.
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Figure 3.8: Fit to Model 5 in Table 3.1.

rapidly. The fits in tables 3.2 and 3.3 are compared in figure 3.9, where the

relative difference between the parameterisations for each of the fits and the
fit to Model 3 with r0 = 1.5 fm is shown. The statistical uncertainty from the fit

is indicated with the solid lines. The first three models with a 2+ level above
the doublet peaks are consistent within the statistical uncertainty from 0 to

16 MeV, so changing the channel radius does not affect the extrapolation be-
low 1.5 MeV significantly. Above 16 MeV the deviations increase because the

strength to the doublet is not very well constrained due to the low amount of
counts in this energy region. The models with a 2+ state below the doublet

are seen to differ systematically from the first three models throughout the
fit region, but also to be consistent within the statistical uncertainty. Below

1.5 MeV it is evident from the fits that different models will lead to different
extrapolations. It is somewhat surprising to see that adding a level with zero
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Figure 3.9: The relative difference between each of the fits in tables 3.2 and 3.3 and
the fit to Model 3 with r0 = 1.5 fm (the third model listed). Statistical uncertainty
limits on the fit are shown as solid lines.

feeding at 45 MeV changes the extrapolation as much as is seen between the

two models for r0 = 2.0 fm.

In tables 3.2 and 3.3 the doublet parameters are seen to differ very much
depending on the model. For models 2–4 with a 2+ level above the doublet,

the term, K, approximating the contribution from interference with other 2+

states (see equation 3.15), becomes large and positive. This causes the energy

parameters to decrease below the peak energies and the width parameters to
increase, most significantly for the low-energy doublet state. For the fit to

Model 3 with r0 = 1.5 fm the observed width becomes very large for the low-
energy state, Γo = 1.25 MeV. The inverse f t value for this fit is shown in figure

3.10 to illustrate that the calculated observed width does not correspond to the
width of the peak in this case. The measured spectrum shown for comparison

is the sum of coincidences between detector 1 and 4 and detector 2 and 3 in the
maximum 14 × 14 strips in both detectors of the pair (the energy dependence

of the coincidence efficiency can be neglected in this narrow energy region).
The fit is seen to reproduce the experimental data for the low-energy peak.
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curve (F + GT) shows the total fit to the data and the finely dashed curve (GT) only
the Gamow-Teller contribution. For comparison the measured spectrum is plotted as
well. A two-level fit has been performed to the GT strength between 16.4 and 17.2
MeV and the parameters are given in the text.

The Gamow-Teller strength of the parameterisation can be reproduced by a
two-level fit (solid line), and the parameters are Ea = 16.7196(5) MeV, Γa =

0.1090(14) MeV and Eb = 17.0158(3) MeV, Γb = 0.0681(10) MeV (2α energy),
confirming the validity of the transformation of the K = 0 parameters for the

doublet, E0
a = 16.715(3) MeV, Γ0

a = 0.1077(5) MeV, E0
b
= 17.017(3) MeV and

Γ0
b
= 0.0744(4) MeV, described in section 3.4.1. The transformation is not exact

so small systematic deviations are to be expected. The large effects on the
doublet parameters due to interference are consistent with the results in table

6 of [Barker 1969].

The tendency of a decreasing level energy with increasing channel radius

is also seen in [Barker 1989] and [Warburton 1986]. It should be noted that
Warburton’s figure 4 in [Warburton 1986], which shows the level energy de-

pendency on channel radius, actually compares two different R-matrix mod-
els. The three points for lowest channel radius are obtained using Model 3 in

Table 3.1 and the remaining points for higher channel radius are from Barker’s
analysis [Barker 1969] using Model 5 in Table 3.1. Figure 3.11 shows the level-
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Figure 3.11: R-matrix energies for the levels included in Models 3 and 4 in table 3.1
for fits to different channel radii.

energy dependency with channel radius for Models 3 and 4 in Table 3.1. The

fit qualities of all the fits used in the figure are almost identical. This confirms
the essence of Warburton’s similar figure for α-α scattering.

Except for Model 1, all of the above fit models give a very good fit to the

data. However, all of the models require levels with very large widths which
can not be interpreted as physical resonances. The known 2+ levels above

the isospin doublet at 20.1 and 22.2 MeV do not have large enough widths to
affect the spectrum below the doublet significantly. The interpretation of the

fit results is discussed in chapter 5. For now, we have a good parametrisation
of the final-state distribution, which can be used for the internal consistency

check with the single-α spectra, for comparison to other works and finally for
the calculation of the 8B neutrino spectrum. The parameterisation used is for

Model 3 in table 3.1 given in table 3.2 column 3.

3.5 Internal consistency

The single-α and coincidence spectra are affected differently by the detector

response, so to compare the two spectra, a parameterisation from a fit to the
coincidence spectrum is used to calculate the single-α spectrum, which is then



3.6. 8B β decay in the literature 63

folded with the single-α response function before comparison to the measured
spectrum.

The single-α spectrum cannot be directly converted to a 8Be excitation
spectrum, due to the effect of lepton recoil. A simple and general approxi-

mation of this broadening effect is given in [Bhattacharya 2002]:

dN

dE
(x) =

15
16Tmax

(1 − 2x2
+ x4), −1 ≤ x ≤ 1 (3.21)

where x = δE/Tmax and δE is the α-energy difference between the measured
energy and the energy for no recoil broadening. The maximum α-energy shift

due to recoil is

Tmax(Ex) =
√

W2
0 − 1

me

M

√

2Qmc2 M −m −Q

M −Q
, (3.22)

where Ex is the 8Be excitation energy, me, m and M are the electron, α-particle
and 8Be masses, W0(Ex) = (Qβ−Ex+mec

2)/mec
2 is the β end point total energy in

units of mec
2, Qβ = 17.9798 MeV−2mec

2 and Q = Ex+91.8 keV. The parametri-
sation of the sum spectrum from the R-matrix analysis has been folded with

the recoil distribution (equation 3.21) to reproduce the single-α spectrum. The
result is shown in figure 3.12. The top graph shows the measured single-α

spectrum compared to the spectrum reproduced from the parameterisation of
the excitation energy spectrum from fit model 3 in table 3.1. A small shift in

the residuals is seen at 1.5 MeV corresponding to a shift in the peak position
in the two spectra of ∼ 1.5 keV. Allowing for this small error in the calibra-

tion, the 2α and single α spectra are seen to be mutually consistent down
to a single-α energy of ∼ 0.6 MeV, corresponding to an excitation energy of

∼ 1.1 MeV.

3.6 8B β decay in the literature

The β decay of 8B and subsequent 8Be(2α) breakup has been measured in sev-

eral experiments with different techniques. The 8Be excitation energy spec-
trum from this work is compared to other works in figure 3.13. The spectra

are scaled to show the number of counts in 20 keV energy bins. It is clearly
seen that the statistics in this work is far superior to previous coincidence
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Figure 3.12: Top: The 3 MeV peak region of the measured single-α spectrum (black
markers with error bars) compared to the single-α spectrum reproduced by recoil
broadening of the 8Be(2α) final-state distribution from fit model 3, folded by the
single-α response function (red, dashed line). Bottom: Residuals between the re-
constructed and measured spectra.

measurements. The spectra measured by Wilkinson and Alburger [Wilkin-
son 1971] and by Bhattacharya et al. [Bhattacharya 2006] are single-α mea-

surements, which need to be corrected for recoil broadening. The data spec-
trum shown here from [Wilkinson 1971] has not been corrected, while the

spectrum from [Bhattacharya 2006] is the parametrisation from an R-matrix
fit and therefore corrected for recoil broadening. The spectrum by Ortiz et

al. [Ortiz 2000] is from a coincident measurement of the 2α breakup and the
spectrum from Winter et al. [Winter 2006] is an R-matrix parametrisation to

data from an implantation measurement, affected by a small amount of β en-
ergy deposited in the detector.
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Figure 3.13: Comparison of 8Be(2α) decay spectra from 8B β-decay measurements.
From the top are shown spectra from Wilkinson and Alburger (single-α data) [Wilkin-
son 1971], this work (JYFL 2008, 2α coincidence data), Bhattacharya et al. (fit to single-
α data) [Bhattacharya 2006], Ortiz et al. (2α coincidence data) [Ortiz 2000] and Winter
et al. (fit to 2α sum spectrum) [Winter 2006].

The single-α spectrum from this work is inconsistent with the spectrum
measured by Wilkinson and Alburger provided in [Barker 1989], both for the

original calibration (equation 1 in [Barker 1989]) and Barker’s alternative cal-
ibration (equation 15 in [Barker 1989]).

In figure 3.14 the spectra have been normalised to compare the shape of the
3 MeV peak. Wilkinson and Alburger’s spectrum have been omitted, because

it has not been corrected for lepton recoil broadening. The final-state distri-
bution from this work lies in between the data spectrum from [Ortiz 2000]

and the internally consistent distributions from [Winter 2006] and [Bhatta-
charya 2006]. If the parametrisation from [Bhattacharya 2006] is shifted by

∼ 25 keV to lower energy it agrees with the final-state distribution from this
work, except at high energy, where the isospin doublet was not treated cor-

rectly as discussed in section 3.4.1. The 3 MeV peak is narrower in the fit to
the JYFL data than was the case in [Winter 2006] and [Bhattacharya 2006] as

is also seen by comparison of the reduced width for the fit to Model 2 in table
3.2. The width of the 37 MeV level is consistent with [Winter 2006] and the
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Figure 3.14: 8Be(2α) decay spectra normalized to 1000 with 20 keV energy bins. This
work is compared to the final-state distributions from R-matrix fits in [Bhattacha-
rya 2006] and [Winter 2006] and to the data spectrum from [Ortiz 2000]. The maxi-
mum in the fit to this work is shifted by 15 keV relative to the measured spectrum
due to the asymmetric detector response.

β strength with the result in [Bhattacharya 2006]. The R-matrix energy of the

3 MeV level is larger in the fit presented here because of the smaller channel
radius used. The Gamow-Teller matrix element for the doublet peak is here

0.6 times the value in [Bhattacharya 2006] and 0.8 times the value from [Win-
ter 2006] because of the value of K = 1.28 significantly changing the doublet

parameters from their literature values.

3.7 Energy of the 2+1 state in 8Be

The 2+1 state at about 3 MeV in 8Be is very broad and its shape is modified

by the interference with other 2+ states in 8Be. The level energy of the state
therefore depends on the specific model chosen to parameterise the data. For

example Barker’s model with an intruder state between the 3 MeV state and
the isospin doublet will give a lower level energy of the 3 MeV state than

models with only high-energy background states because of interference be-
tween the 3 MeV state and the intruder. Furthermore, the level energy will
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Definition Symbol Energy (MeV)

8B β-decay fsd. peak pos. E
β

peak 2.9185(9)

Resonance dist. peak pos. Eres
peak 2.8688(9)

R-matrix level energy Eλ 2.985(2)

Table 3.4: Different definitions for the level energy of a broad resonance with precise
values given for the 8Be 2+1 state from the present data. Statistical uncertainties are
given in parenthesis, the systematic uncertainty is ∼ 6 keV.

depend on the choice of channel radius, since the level energy of the intruder
state is lowered for higher channel radii, pushing the 3 MeV state to lower

level energies. When recommending a particular energy as the level energy
of a broad resonance it should therefore be made clear from which context the

figure was obtained. This issue was discussed in the compilation of energy
levels for A = 5–7 nuclei [Tilley 2002] (page 12).

In table 3.4 the energy of the 2+1 state is given very precisely for three differ-

ent definitions. The uncertainties given are statistical uncertainties. The sys-
tematic uncertainty in the calibrations is estimated to ∼ 6 keV at 3 MeV [Kirse-

bom 2010a]. The first energy was obtained as the peak energy in the final-state
distribution for 8B β decay. This energy is directly obtained from the spectrum

in figure 3.13 but is only relevant in the context of 8B β decay since the distri-
bution is modified by the β-decay phase space and penetration function for

the α channel. A definition less dependent on the entrance and exit channels
is the peak position in the resonance distribution in figure 3.3. In this plot the

phase space and penetration function dependencies have been removed. This
definition will typically not coincide with the level energy from an R-matrix

parametrisation due to interference. Different types of experiments will also
not feed the involved states with the same strength and this will shift the peak

position of interfering states. The last definition in table 3.4 is based on the R-
matrix level energy. The tabulated energy in table 3.4 is from Model 3 in table

3.1 with only a background contribution from above the isospin doublet. For
such a model the level energy of the 3 MeV state is less affected by the back-

ground, which will be a slowly varying contribution at the 3 MeV peak and
does not push the 2+1 level far below the peak energy.
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3.8 Neutrino spectrum

The neutrino spectrum for 8B β decay can be deduced from the measured 2α
energy distribution. This was done in the work by Winter et al. [Winter 2006]

including recoil order effects. In this section we shall investigate how our
slightly different 2α spectrum will affect the neutrino spectrum.

The positron spectrum for β+ decay is given by [Winter 2006]

dN

dEβ
= pβEβ(E0 − Eβ)2F(Z,Eβ)R(Eβ,E0)C(Eβ,E0), (3.23)

where pβ and Eβ are the momentum and total energy of the positron, and
E0 is the positron end point energy, E0(Ex) = Qβ − Ex + mec

2. F(Z,Eβ) is the

Fermi factor. Radiative corrections are contained in R(Eβ,E0) and the recoil
corrections are contained in C(Eβ,E0). If kinetic recoil of the daughter nucleus

is neglected the positron spectrum is obtained by integration of equation 3.23
over all excitation energies weighted by the final-state distribution from the

fit. The neutrino energy is the remaining energy in the decay: Eν = E0 − Eβ.

Neglecting recoil and radiative corrections we obtain the neutrino spec-
trum shown in figure 3.15 (JYFL simple). This spectrum is shifted slightly to

lower energy compared to the spectrum tabulated in [Winter 2006] includ-
ing recoil order effects. To separate out the effect of the 2α spectrum on the
neutrino spectrum we compare the neutrino spectra calculated without recoil

order effects using the 2α spectra from this work and [Winter 2006] respec-
tively. The ratio between this work and [Winter 2006] is shown in figure 3.16.

From Fig. 3.16 it is evident that our 2α spectrum gives a significant difference
in the neutrino spectrum. Because the errors on the extracted 2α final-state

ditribution are so small, the uncertainties in the neutrino spectrum will be de-
termined by the uncertainties in the recoil correction factor. Winter et al. state

in [Winter 2006] that the uncertainties in the neutrino spectrum from recoil or-
der effects are roughly half as large as the uncertainties from the α-spectrum

measurements, so with the new α data we can obtain a neutrino spectrum
with roughly half as large error bars.

The effect of correcting for recoil order effects is shown in figure 12 of [Win-

ter 2006]. To obtain an approximate neutrino spectrum corrected for recoil
order effects from this work, one can multiply the simple neutrino spectrum
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Figure 3.15: The neutrino spectrum calculated without recoil corrections (JYFL sim-
ple) compared to the spectrum tabulated in [Winter 2006] (Winter et al. 2006).

in figure 3.15 by this factor. The correction is not exact, since the 2α strength
is used for calculating the recoil effect. Work is in progress to perform a full

calculation of the neutrino spectrum from the present work.
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Figure 3.16: The ratio between the neutrino spectra calculated without recoil correc-
tions using 8Be(2α) decay spectra from this work and [Winter 2006] respectively.





CHAPTER 4

Beta decay of 12N and 12B

In this chapter, two complementary experiments utilising β decay of 12B and
12N to study unbound states in 12C will be presented. The first was a com-
plete kinematics experiment performed in 2004 at the Jyväskylä Accelerator

Laboratory, Finland. The analysis of the 3α coincidence data from this exper-
iment constituted a major part of the PhD work by C. Aa. Diget [Diget 2006].

The work presented in section 4.2 is a parallel analysis of the single-α data
as a consistency check of the 3α analysis and for a more direct comparison

to previous single-α measurements. The second experiment was an implan-
tation experiment performed in 2006 at KVI in Groningen, The Netherlands.

In section 4.5, model independent branching ratios will be extracted from the
two experiments, and both data sets will be used for a simultaneous R-matrix

analysis in section 4.6.

4.1 Motivation

The Hoyle state at 7.65 MeV in 12C, just above the threshold for breakup
to three α particles, is famous for its anthropic prediction by Hoyle in 1953

[Hoyle 1953] and subsequent discovery [Dunbar 1953]. The existence of the
Hoyle state is today well verified, and is known to have spin and parity

0+ [Cook 1957], but its structure remains to be understood. Depending on
the structure of the Hoyle state the first, 2+, collective excitation of the Hoyle

state will be located at different energies [Freer 2009]. Morinaga first pro-
posed the existence of such a 2+ excitation based on a linear 3α-chain model

of the Hoyle state [Morinaga 1956]. The energy of the 2+ state would be
9.70 MeV, and an additional 4+ excitation was predicted at 14.18 MeV. In the

1950s not much was known about the spin-parity of states in the 3α con-
tinuum, but a known state existed at 9.6 MeV, which Morinaga assumed to
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be his 2+ state. Later the spin-parity of this state has been assigned to 3−

(Ex = 9.641 MeV). The first beta-decay experiments studying the 3α contin-

uum in 12C in the late 1950s and 1960s saw a broad resonance at ∼ 10 MeV
with a 3 MeV width [Cook 1958, Wilkinson 1963, Schwalm 1966], and subse-

quently it was adopted as the 2+ state by Morinaga [Morinaga 1966]. The
spin-parity of the 10 MeV state has remained uncertain up till the last decade

due to experimental difficulties such as its short lifetime and the overlap-
ping 9.641 MeV 3− and 10.84 MeV 1− states. The correct assignment is now
known to be 0+ [Diget 2005, Itoh 2004]. Up to this date several experimental

indications of 2+ states in the low-energy 3α continuum have been presented
[John 2003, Itoh 2004, Freer 2007b, Freer 2009], but a consistent picture has not

yet emerged.

The unbound 2+ state could possibly contribute to the triple-α reaction at

high temperatures depending on its energy and radiative width. A 2+ state
at 9 MeV with Γ = 0.56 MeV suggested by Descouvemont and Baye [Descou-

vemont 1987] has been included in the NACRE compilation of astrophysical
reaction rates [Angulo 1999].

β decay of 12N and 12B populate only 0+, 1+ and 2+ states in 12C due to the

selection rules, and apart from the three narrow states at 7.65 MeV (0+ Hoyle
state), 12.71 MeV (1+) and 15.11 MeV (1+), the spectrum consists of broad

components which are overlapping and interfering 0+ and 2+ states (see fig-
ure 4.1). This makes β decay the ideal tool to search for a second 2+ excited

state. In reaction experiments the spectrum will also consist of the strong
peaks at 9.64 MeV (3−), 10.84 MeV (1−), 11.83 MeV (2−) and 14.08 MeV (4+) in

the energy window for β decay (see figure 1.5). The same will be the case for
scattering experiments such as proton scattering, 12C(p, p′), [Freer 2009] and α-

particle scattering, 12C(α, α′), [Itoh 2004]. The reported 2+2 state in [Freer 2009]
at 9.6(1) MeV overlaps with the 3− state at 9.64 MeV, and if this state is popu-

lated in β decay its peak profile should be clearly visible. The β-decay method
is limited to low excitation energies by the decreasing phase space in the decay

going to zero at the Q-value. Furthermore only states with a non-negligible
overlap with the ground states of the parent nuclei can be populated.
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Figure 4.1: Level diagram for 12C populated in β decay of 12N and 12B. 3α breakup
via intermediate states in 8Be is illustrated.

4.2 3α coincidence experiment

The 12N and 12B β-decay experiments in the 1950s and 1960s measured spec-
tra of individual α particles from the triple-α breakup of 12C [Cook 1958,

Wilkinson 1963, Schwalm 1966]. Today, the experimental techniques allow
for complete kinematics measurements of the breakup, and β-decay studies

have achieved information about the 12C states and their breakup mechanism
with an unprecedented level of detail [Fynbo 2005, Diget 2005]. The experi-

ment presented in this section is the latest in a series of complete kinematics
measurements of β-delayed breakup of 12C. It was performed in 2004 at the

IGISOL facility of the Jyväskylä Accelerator Laboratory (JYFL), Finland.

4.2.1 Experimental method

The experimental method is very similar to the one described in section 3.2.

The 12N and 12B isotopes were produced and separated using the IGISOL
method. The 12N nuclei were produced with a 12C(p, n)12N reaction using a

25 µA, 28 MeV proton beam impinging on a 1400 µg/cm2 carbon foil. 12B
was produced using a 11B(d, p)12B reaction with a 10 µA, 10 MeV deuteron
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Figure 4.2: Experimental setup.

beam on a 500 µg/cm2 natural boron target. After extraction from the target
the nuclei are accelerated to 25 keV and mass separated before reaching the

detector setup.

The detector setup is shown in figure 4.2. The 12B and 12N nuclei were

stopped in a thin, 2 cm diameter carbon foil of thickness 33 µg/cm2 rotated 45◦

with respect to the beam direction. In the foil, the nuclei would β decay and

subsequently break up to three α particles. Surrounding the foil were placed
three double sided silicon strip detectors (DSSSDs) for α-particle detection.

DSSSD1 and DSSSD3 were of the same design as described in section 3.2.
DSSSD2 was of an older design and its larger contact grid yielded a detector

dead layer equivalent to 630 nm silicon. All α particles hitting a DSSSD are
fully stopped in the detector. The horseshoe configuration of the DSSSDs seen

in figure 4.2 was chosen to obtain a large solid angle coverage and a high
sensitivity to decays via the ground state of 8Be [Diget 2006].

Positrons and electrons from the decays deposit only a small amount of en-

ergy in the DSSSDs and pass through them easily. Instead they are stopped in
the thick, unsegmented silicon detectors behind each DSSSD. The γ-rays from
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the α-stable 4.44 MeV state were detected in a 70% high purity germanium
(HPGe) detector placed with its end cap into a tube going into the detector

chamber, about 6.5 cm from the implantation point.

The calibration of the detectors was performed using offline sources of
148Gd and 241Am. An online source of 20Na was used for testing the en-

ergy calibration as well as the setup geometry and the dead layer and foil
energy losses derived from this geometry. The calibration was performed by

C. Aa. Diget and has been described in detail elsewhere [Diget 2006].

4.2.2 Gamma efficiency

The HPGe detector was calibrated after the experiment using two off-line
sources: A 133Ba and 152Eu source (JYFL 14) and a 228Th source (JYFL 50).

The maximum γ-ray energy emitted by these sources is 1.4 MeV, but the en-
ergy, we are interested in, is 4.44 MeV from γ-decay of the first excited state

in 12C, so to obtain the efficiency at higher energy we compare to a refer-
ence calibration for energies up to 7 MeV performed for another detector

setup [Kankainen 2006]. The reference calibration was performed using of-
fline sources of 60Co, 134Cs and 228Th and an online high-energy source of
24Al.

The efficiency calibration for the full energy range is shown in figure 4.3 as
open-circle markers. The black line is a fit of the data points to the function:

log ε = a1 + a2 log E + a3(log E)2, (4.1)

which has been shown to be a valid approximation for energies from∼ 200 keV
to ∼ 2500 keV [B. Jäckel 1987], but is used for the entire energy range and is

seen to reproduce the trend in the data nicely. The fit-parameter values are
a1 = −3.13(13), a2 = 1.60(3) and a3 = −0.183(3), giving the efficiency in percent

at an energy in keV. Inserting E = 4439 keV gives the efficiency ε = 0.074(3)%.
The systematic uncertainty in the validity of the parametrisation up to high

energies is estimated by performing a fit including only the data points above
1.37 MeV. The resulting efficiency at 4.44 MeV is ε = 0.069(5)%. This leads to

a revised uncertainty of the efficiency: ε = 0.074(5)%.

The scaling factor between the reference calibration and the absolute effi-
ciencies for sources at the foil position was found as a weighted average of the
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Figure 4.3: Efficiency of the HPGe γ-detector. The solid curve is a fit to the data
points with open circle markers from an efficiency measurement for a different de-
tector setup.

ratios between the absolute efficiencies shown with filled circles and squares

in figure 4.3 and the black curve. The 4 lowest data points for JYFL 14 were
omitted as they are seen to bend off at low energies, which is not the case for

the other data. The scaling factor was found to be:

εabs

εcal
= 1.30(10). (4.2)

Multiplying by this factor the efficiency at 4.4 MeV becomes:

εabs(4439keV) = 0.096(10)%. (4.3)

The efficiency was also measured with the sources directly on the detector,

and these measurements are shown as the triangular markers in figure 4.3.
These efficiencies are seen to be much below the efficiencies for sources at the

foil position, which is the opposite of what you would expect, since a much
larger solid angle is covered when the source is directly on the detector. An

explanation for the lower efficiency is, that the activities of the sources are too
high for the data acquisition system to register all the gammas.

Although the measured efficiencies for sources directly on the detector are
wrong, we do trust that the efficiency measurements are correct when the
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sources are at the foil position. This is supported by the ratio between the
absolute and calibration efficiencies, which seems reasonable, judging from

the source-detector distances used in the two measurements. Furthermore
the efficiency calibration is tested by calculating absolute branching ratios for

β-decay of 20Na.

4.3 Relative branching ratios

In this section the JYFL data will be analysed to obtain relative branching ra-

tios. Both triple-α and single-α spectra will be analysed to obtain an internal
consistency check, and the single-α analysis also provides a link to the early β-

decay studies, where only single-α spectra were obtainable [Cook 1958,Wilkin-
son 1963, Schwalm 1966].

4.3.1 Triple-α sum-energy spectra

The three α particles in the breakup can be detected in coincidence in the

DSSSDs with an energy dependent efficiency between 1 and 4% (see figures
6.2.8 and 7.4.1 in [Diget 2006]). Breakups via the ground state in 8Be, 92 keV

above the 2α threshold, can be separated from the remaining events, owing
to the fact that the 8Be energy is identified as the relative kinetic energy of

the two low-energy α particles [Diget 2009]. The 3α coincidence efficiency
depends on the decay channel and for each channel the efficiency has been

determined with a Monte Carlo simulation. For the 8Be ground state channel
the uncertainties on the efficiency are determined by uncertainties in the ge-

ometry of the detector setup and are of the order 5-10%. For the remaining
events the decay channel is unknown, and the efficiency varies depending

on the initial spin of 12C, the 8Be spin and the angular momentum. The fact
that the decay channel is unknown leads to an uncertainty in efficiency of the

order 20%.

The efficiency corrected 3α sum-energy spectra for 12N and 12B are shown

in figure 4.4. Due to the energy deposition in the stopping foil and detector
dead layers there is a low-energy cut-off and the Hoyle state at 0.3794 MeV

is not detected. The most prominent feature in the spectra is the peak cor-
responding to a 1+ state at 12.71 MeV excitation energy. At lower energies
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Figure 4.4: Efficiency corrected 3α sum-energy spectra.

a broad distribution is seen, assigned as the 10.3 MeV state in the literature.

The low-energy part of this feature is not seen due to the cut-off. Above and
overlapping with the 1+ state another broad distribution is apparent in the
12N data.

From the sum spectra in figure 4.4 one can determine the relative branch-
ing ratios to excitation energies above 9 MeV in 12C. The branching ratios are

given relative to the sum spectrum from 9 to 16.3 MeV in table 4.1.

4.3.2 Single-α spectra

The total single-α spectra for 12N and 12B are shown in figure 4.5. The de-

tection efficiency for single α particles is energy independent as opposed to
the 3α coincidence efficiency, but the relative branching ratios can not be de-

termined as directly from the spectra as was the case in the triple-α analysis
because single-α spectra for different 12C excitation energies overlap. Because

of the three-particle final state each excitation energy in 12C produces a contin-
uous single-α spectrum ranging from close to zero energy up to a maximum
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Figure 4.5: Total single-α spectra for 12N and 12B β decay.

value of 2
3 (Ex − S3α), where S3α is the 3α separation energy in 12C equal to

7.275 MeV. The maximum single-α energy for 12N decay is therefore 6.03 MeV
and for 12B decay it is 4.06 MeV.

In each breakup, the individual α energies are determined by the break-

up mechanism, so to understand the composition of the single-α spectra the
break-up mechanism of each contributing state must be understood. In earlier

works the breakup of the 12.71 MeV state was not well understood [Wilkin-
son 1963, Schwalm 1966], but this has now been clarified somewhat and the

data is well reproduced with a sequential model of the decay via the first ex-
cited state in 8Be [Fynbo 2003,Balamuth 1974]. The physical break-up mecha-

nism is however not perfectly sequential as shown in [Kirsebom 2010b] in the
sense that the Coulomb interaction with the first α particle is non-negligible

in the secondary breakup of the 8Be compound. The breakups of the broad
components in the spectra have been analysed using the 3α coincidence data

from the present experiment and it has been shown that they consist of 0+

and 2+ states which breakup via both the ground state and higher energies in
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8Be [Diget 2009]. In earlier works the broad single-α spectrum was interpreted
as a single 10.3 MeV state breaking up via the ground state of 8Be [Cook 1958,

Wilkinson 1963, Schwalm 1966].

In figure 4.5 the spectra have been decomposed into contributions from
the 12.71 MeV, 1+ state and the broad, 0+ and 2+ components respectively. The

single-α distribution from breakup of the 12.71 MeV state is taken from [Di-
get 2006], where a Monte Carlo simulation of the breakup was performed.

The broad 0+ and 2+ components are treated as decaying sequentially via
the ground state of 8Be in this analysis. Although higher energies in 8Be

are known to contribute (see figure 4.4), they contribute less than 10% be-
low 12 MeV, so the simple description of the breakup is used for the purpose

of comparison. The decay process is illustrated in figure 4.6, showing the ve-
locities of the α particles. The Q-value is denoted ε1 for the first decay step,

v
1

v2

v3
v'3

v'2

θvBe

Figure 4.6: Triple-α breakup via an intermediate state in 8Be.

12C∗ →8 Be + α1, and ε2 for the second, 8Be → α2 + α3. The energies of the
three emitted α particles can be calculated from energy and momentum con-

servation using the relations shown in figure 4.6 between the velocities in the
center of mass system and the 8Be rest frame.

E1 =
2
3
ε1, (4.4)

E2 =
ε2

2
+
ε1

6
+

√

ε1ε2

3
cosθ, (4.5)

E3 =
ε2

2
+
ε1

6
−

√

ε1ε2

3
cosθ. (4.6)

The ground state of 8Be has spin-parity 0+, so α2 and α3 are emitted isotropi-

cally in the 8Be rest frame. Therefore the energies of the last emitted α particles

are distributed uniformly from Emin =
ε2
2 +

ε1
6 −

√

ε1ε2
3 to Emax =

ε2
2 +

ε1
6 +

√

ε1ε2
3 .
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A three-level R-matrix model has been used to parameterise the 8Be ground-
state component of the 3α sum-spectrum in figure 4.4. One 0+ and one 2+ state

were included in the model apart from the 0+ Hoyle state. From this the en-
ergy spectra for the first and last two emitted α particles shown in figure 4.5

were calculated.

In the combined fit to the 12N and 12B data only data above 1.2 MeV were
included to avoid the low-energy cutoff and the β background. The ratio be-

tween the 12.71 MeV 1+ component and the energy distribution of the first
emitted α particles from the broad states was found in the fit, and also the

reduced width, energy and β strength parameter for the broad 0+ state were
varied in the fit. R-matrix parameters for the Hoyle state and 2+ state were

taken from [Diget 2006]. The energy distributions of the last emitted α parti-
cles were calculated after the fit had converged.

For 12N there is a deviation between the data and the fit around 3.5 MeV,
which is caused by a deficiency in the simulated spectrum for decay via the

1+ state. As discussed in [Diget 2006] and [Kirsebom 2010b] the Coulomb
repulsion between the first emitted α particle and the two α particles from 8Be,

which is neglected in the simulation, causes a small distortion of the spectrum.
The small peak at 5.3 MeV is due to background from a 223Ra source in the
beam-line used for beam tuning.

Relative branching ratios from the single-α spectra are found by integrat-
ing the curves. The integral of the dashed curve equals the number of decays

to the broad components, and this distribution is integrated from 1.2 MeV to
3.2 MeV and from 3.2 MeV to 6.1 MeV to give the relative branching ratios in

table 4.1. One third of the area under the dotted curve equals the contribu-
tion from the 1+ state, since all three α particles from the decay contribute to

the distribution. Also the small γ width of the 1+ state is taken into account.
The assumption that the broad states break up via the ground state in 8Be is

known to be wrong, and to allow for this a systematic uncertainty is added to
the relative branching ratios in table 4.1 estimated from the now known ratios

between breakup through higher energies in 8Be vs. the ground state from
the triple-α analysis. It is gratifying that the single-α and triple-α results are

consistent, and since this is the case, combined values of the two methods are
given in table 4.1.
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12C 12N 12B

Energy Single Triple Comb. Single Triple Comb.
(MeV) alpha alpha alpha alpha

9 − 12 0.772(14) 0.75(2) 0.765(12) 0.995(2) 0.9940(10) 0.9940(10)

12.7 0.207(15) 0.21(2) 0.209(12) 0.0054(11) 0.0058(10) 0.0056(8)

12 − 16.3 0.017(20
3 )∗ 0.042(10) 0.042(10) 0.0011(5) 0.0011(5)

Table 4.1: Relative branching ratios for the decays of 12N and 12B to the triple-α con-
tinuum. The branching ratios are given relative to the sum spectrum from 9 to 16.3
MeV. The branching ratio to the 12− 16.3 MeV region does not include the 12.71 MeV
state [Hyldegaard 2009a]. * It is estimated that the single-α determination in this
branch is less reliable than the triple-α determination. Therefore the combined result
is only from the latter.

4.4 Implantation experiment

The Hoyle state was not measured in the complete kinematics experiment
at JYFL. This was due to energy loss in the stopping foil and detector dead

layers. Another experiment has been performed at the KVI (Kernfysisch Ver-
sneller Instituut) in Groningen, The Netherlands, using implantation of the
12N and 12B nuclei inside a detector to avoid the energy losses and allow for
detection of the Hoyle state. This also provides a direct measurement of the

3α sum spectrum independent of the geometry of the experimental setup and
an independent measurement of the branching ratios.

4.4.1 Experimental method

Beams of 12N and 12B were produced using the same reactions as at JYFL,
but in inverse kinematics. Primary beams of 12C(11B) were produced and ac-

celerated to 22.7 MeV/u (18.3 MeV/u) before impinging on a gas target of
hydrogen(deuterium). The secondary beams of 12N and 12B would then leave

the target with energies of 16.8 MeV/u and 16.0 MeV/u respectively. The re-
action products were separated using the fragment separator for the TRIµP fa-

cility [Berg 2006] (TRIµP is an abbreviation for Trapped Radioactive Isotopes:
microlaboratories for fundamental Physics). This dual magnetic separator is
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Figure 4.7: The TRIµP dual magnetic separator

shown schematically in figure 4.7. The magnet system consists of 4 bending
dipoles (B1-B4), 8 quadrupole magnets (Q1-Q9)1 and a hexapole for second

order corrections. The beams are produced in the target T1 in the figure and
the dispersion created by the dipoles B1 and B2 allows for the separation of

isotopes with different rigidities, Bρ = p/q, where B is the magnetic field, ρ is
the gyroradius of the particle due to this field, p is the particle momentum and

q is its charge. Slit systems (SH2-SH4) stop the beam at various positions de-
pending on its momentum dispersion, which is 3.9cm/% at T2. Different iso-

topes with the same rigidity can not be separated magnetically, so a degrader
is inserted at T2. In this experiment the degrader was a 85 µm Si detector.

Energy loss in the degrader depends on the charge and velocity (∆E ∝ Z2/v2)
so after the degrader different isotopes will have different rigidity. The beam

is therefore efficiently separated after the last dipole, B4. Before reaching the
detector setup after Q9 the beams were defocused to match the surface area

of the detector.

The detector setup is shown in figure 4.8(a). The primary detector is a seg-
mented 48× 48 double-sided silicon strip detector (DSSSD) with a total active

area of 16 × 16 mm2. The strip pitch is 335 µm while the strip width is 300
µm [Smirnov 2005, Sellin 1992]. With a thickness of 78 µm, α particles from

the decay of a nucleus implanted in the centre of the detector will deposit all
of their energy inside the detector. β-particles from the decay will, on the con-

1Q3 was positioned between B1 and B2 in the first designs, but was finally omitted
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Figure 4.8: (a) A diagram of the detector setup shown from above. (b) The primary
detector is a 48 × 48 double-sided silicon strip detector (DSSSD).

trary only deposit a small amount of energy in the detector (see section 4.4.4).

The beam is defocused before reaching the detector setup to utilise the en-
tire detector area and to avoid pile-up of events. Two different amplifications

were used for the detection of implantation and decay events respectively.
The high gain amplification for detection of decay events was sensitive to the
0-10 MeV energy region and the low gain amplification made it possible to

detect implantations with energies up to 80 MeV. Calibration of the detector
was performed using an offline source of 239Pu, 241Am and 244Cm. These ra-

dioactive isotopes emit α particles in the 5-6 MeV energy region and the three
strongest peaks in the spectrum have been used for the calibration. The reso-

lution of the detector has been determined from the width of the calibration
peaks to σ = 12 keV or FWHM = 28 keV for high-gain amplification.

The thick silicon detector in front of the DSSSD (detector 2 in figure 4.8(a))

and the aluminium foils work as degraders lowering the beam energy to im-
plant it as close to the center of the DSSSD as possible. The 12B beam is pro-

duced in a reaction with positive Q-value so more energy is available for ki-
netic energy of the 12B beam than for the 12N beam which is produced in a
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reaction with negative Q-value. 12B also has a smaller charge than 12N and
therefore lose less energy by ionisation in the degraders. More degraders are

therefore needed to stop 12B and the 250 µm Al foil was not used with the
12N beam. The detector behind the DSSSD (Back detector in figure 4.8(a)) is

used during tuning of the beam to see if it is stopped in the DSSSD and for the
experiment it is used to detect β particles as identification of β-decay events in

the DSSSD.

The production and separation of 12N was first demonstrated in Novem-

ber 2005 using a simple setup with a 100 µm thick, unsegmented detector at
the DSSSD position in figure 4.8(a). The purity of 12N implanted in the de-

tector was verified using a pulsed beam (50 ms beam on, 50 ms beam off) so
only decay events were detected during beam off. The timing of the events

relative to the start of beam on was registered and the decay time spectrum
was consistent with the known half-life of 12N. Evidence for the production of
12N was also seen in the decay-energy spectrum showing the peak from the
12.71 MeV, 1+ state at 5.4 MeV.

4.4.2 Electronics chain

The signals from the DSSSD strips and the thick Si detectors (detector 2 and
the back detector), were sent to an electronics chain consisting of 2 × 2 × 48 =

192 channels for the two different amplifications of each strip in the DSSSD
plus three channels for the thick Si detectors. The signal from the DSSSD

was sent to two 64-channel charge-sensitive preamplifiers (MPR-64) for the
front and back strips respectively [mesytec 2010]. From the preamplifiers the

signals were split for the DSSSD strips into two amplifier modules for amplifi-
cation ranges relevant for implantation and decay identification respectively

(see next section). The amplifiers were 16-channel amplifiers, STM-16, with
channel shaper, timing filter and a discriminator, 6 amplifiers for high- and

low-gain amplification respectively [mesytec 2010]. The amplifiers both am-
plify the signal from the preamplifier and also shape the signal to minimise

tails of the pulse shape and optimise the signal-to-noise ratio. The discrimina-
tor in the module only accepts signals above a predefined voltage threshold

to reduce low-energy electronic noise. The trigger is a logic OR between all 96
strip channels. Because the discriminator is of the leading-edge type the pulse
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triggers an event when rising above the threshold level. When an event has
triggered, the amplified energy signal is send to an Analog-to-Digital Con-

verter (ADC). The ADCs are 32-channel V785 modules [CAEN 2010] convert-
ing the analog signal to a digital output which can be read out by the data ac-

quisition system. These ADCs are of the peak-sensing type, determining the
energy-proportional output as the amplitude of the pulse. The ADCs have a

resolution of 12 bits corresponding to 212 = 4096 channels. A delayed trig-
ger signal is send from the amplifier to a V1190A Time-to-Digital Converter
(TDC) [CAEN 2010]. Once the TDC receives the trigger signal it reads out its

output buffer with delayed timing output from the amplifier giving the time
from the start of the event to the arrival of each detector pulse.

4.4.3 Implantation and decay data

A charged particle will produce a signal in a pixel of the detector correspond-

ing to one front strip and one back strip. Energy matching between the front
and back strips is applied as a condition for a physical signal to eliminate low

energy noise. The energy matching condition depends on the resolution of the
detector, but should not be too restrictive since all implantations and decays

need to be detected to obtain the correct branching ratios. For the low-gain
amplification (implantation events) the condition is |Efront − Eback| < 4 MeV
and for the high-gain amplification (decay events) it is |Efront−Eback| < 150 keV.

These are conservative values. For α particles the energy difference is within
50 keV for ∼ 90% of the events.

Implanted 12N and 12B nuclei are identified by a signal in detector 2 in
front of the DSSSD. To avoid any α particles from the breakups escaping the

detector, it is a requirement that the nuclei are implanted in the center of the
detector. Figure 4.9 shows the implantation spectra with the implantation

depth corresponding to the deposited energy on the upper axes. The energy
loss per range in the Si detector is calculated using SRIM for 12B5+ and 12N7+

ions respectively [SRIM 2006]. For both beams the majority of the ions are
implanted close to the center of the detector as required, but the 12B spectrum

is seen to have a low-energy tail of nuclei deposited close to the surface, so a
lower limit of 7 MeV is imposed on the implantation energy.

The halflives of 12N and 12B are 11.000(16) ms and 20.20(2) ms respectively.
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Figure 4.9: Implantation spectra showing the energy on the lower axis and the range
calculated using SRIM on the upper axis.

For both isotopes 99% of the decays will have taken place within 200 ms after

the implantation, and decay events are restricted by this time window.

The beam purity is essential for the interpretation of the data, and figure
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Figure 4.10: Implantation (top) and decay (bottom) profiles on the DSSSD.

4.10 supports this assumption. The upper graphs show the profiles of implan-
tation events over the detector area, and the decay profiles below are seen to

have the same shape, except for a few strips with lower efficiency at these
energies. If there were more than one component in the beam, the implanta-

tions of the different components would not hit the same spot on the detector,
and since their branching ratios would be different, the decay profile on the
detector would be different from that for implantations.

To identify the implanted ions as 12N and 12B, one can fit the decay time

spectra in figure 4.11 to deduce the half-lives. Fits within the ranges 0-100 ms
for 12B and 0-60 ms for 12N give half-lives of 20.20(3) ms and 10.994(10) ms

respectively, consistent with the literature values. The decay time spectra in
figure 4.11 also show a slower component above 200 ms. The energy spectra
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for times greater than 200 ms after an implantation reveal that this compo-
nent is low energy noise, and as such, it will have an exponential distribution

in the decay-time spectrum falling off depending on the implantation rate.
The random noise event will on average come at half the time between two

implantations, so the rate parameter is expected to be twice the implantation
rate. The decay-time spectra have been fit to the sum of two exponential func-

tions, as shown in figure 4.11, and the rate of the slow component is found to
be 1.4(3) Hz and 0.85(8) Hz for 12N and 12B respectively. With 48 × 48 = 2304
pixels this corresponds to average implantation rates of 1.6(3) kHz (12N) and

0.98(10) kHz (12B). This can be compared to the average rates of registered
implantations determined from the total number of implantations and the

measurement time, giving 2 kHz (12N) and 0.9 Hz (12B). The good agreement
between the average rates supports the interpretation of the slow component

as random (noise) events uncorrelated with the implantations.

4.4.4 Beta response

The β-decay sum-energy spectra measured with implantation (KVI) and com-
plete kinematics (JYFL) are compared in figure 4.12. The same features are

seen in the spectra in the common energy region, but the KVI spectra hold
more information due to the larger number of counts, especially above the

12.71 MeV peak for 12N, and because it is sensitive to low energies, where the
Hoyle peak is seen at 7.7 MeV. This comparison of the statistics in the two mea-

surements is only approximate, because the JYFL spectra have been efficiency
corrected, and the number of counts for the low-energy points is smaller than

the value read off the axis, which is also reflected by the large spread in the
data points. The KVI spectra differ from the JYFL 3α sum-spectra because of

the small amount of energy deposited by electrons or positrons. For decays to
bound states in 12C this leads to the deposition of only β energy contributing

to the low-energy peak below the Hoyle peak. For decays to states unstable
to 3α breakup the β energy is added to the 3α sum energy, and this is seen as

a shift of the spectra compared to the JYFL spectra, especially visible in the
position of the 12.71 MeV peak. This peak is broader and has a low-energy

tail in the JYFL spectra, which is caused by incomplete reconstruction of the
energy loss in foil and detector dead layers for some events.
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Figure 4.11: Decay time spectra for particle hits with E > 0.33 MeV. The sum of two
decaying exponential functions fit the spectra.

The beta response has been simulated using a simple model assuming the

β-particles travel in straight lines through a specified detector geometry. This
assumption is in fact not valid, because the particles are scattered in the detec-

tor, but, imposing some variability in the range, it is possible to find a model
which reproduces the shift of both the Hoyle peak and 12.71 MeV peak and

the position of the low-energy beta peak.

For each excitation energy bin the beta response energy distribution is cal-



4.4. Implantation experiment 91

0 2 4 6 8

C
ou

nt
s 

/ 1
0 

ke
V

1

10

210

310

410

510

C energy (MeV)12

8 9 10 11 12 13 14 15 16

N decay12

KVI
JYFL

 energy (MeV)α3
0 2 4 6 8

C
ou

nt
s 

/ 1
0 

ke
V

1

10

210

310

410

510
B decay12

KVI
JYFL

Figure 4.12: Sum-energy spectra for β decay of 12N (top) and 12B (bottom). The JYFL
spectra are efficiency corrected.

culated. The implantations are assumed to be uniform over the detector area,
and the depths are distributed according to figure 4.9. The β particles are

emitted uniformly in 4π and travel through a rectangular box with thickness
equal to the detector thickness and widths wx and wy. The β energy- distribu-
tion is given by formula 3.23, neglecting the recoil and radiative corrections,

and the energy deposited in the detector is calculated using the Bethe-Bloch
formula for energy loss by inelastic collision with atomic electrons. Radiation

energy loss by Bremsstrahlung can be neglected at these energies, since the
characteristic energy for (dE/dx)rad = (dE/dx)coll is 58 MeV for silicon.

The simulated beta response distributions for decay to the 3α continuum

are shown in figure 4.13. For each 3α energy bin, 10000 events are simulated.
Up to a few MeV from the maximum 3α energy the distributions are almost

unchanged with 3α energy, peaking at about 20 keV. Upon close inspection
two peaks are actually seen, somewhat broader for 12B than 12N. This arte-

fact is caused by the range distribution of the beta particles having two peaks,
corresponding to particles escaping via the front and back side of the detector
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Figure 4.13: Beta response as a function of 3α energy for 12N β+ decay (top) and 12B
β− decay (bottom).

respectively, and the peaks are broader for 12B due to the larger spread in im-

plantation depth (see figure 4.9). Close to the maximum 3α energy the lepton
energy decreases and because the stopping power is larger for slow charged

particles, more energy is deposited in the detector.

To test if the beta response can explain the energy shift in the implanta-

tion data, the decay spectrum has been simulated by adding the beta energy
to a theoretical 3α energy distribution, where the broad components in the

spectrum are given by a parametrisation and the Hoyle and 12.71 MeV peaks
are delta functions at their respective energies broadened by the detector res-

olution. Both the 3α and β energies are generated by Monte Carlo sampling.
The simulations are shown in figure 4.14, where they are seen to reproduce

the main features, such as the position of the two narrow states and the low
energy beta peak. The two peaks in the β energy-distribution are hidden in

the spectra by the detector resolution. The agreement is not complete as seen
from the tails of the peaks, but it is acceptable for our purpose.
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Figure 4.14: 12N (top) and 12B (bottom) decay spectra from the implantation experi-
ment (KVI) compared to a simulated spectrum with beta response.

4.4.5 Low energy efficiency

For each DSSSD strip the trigger efficiency at low energy is reduced due to
the low-energy thresholds of the dicriminator and ADC. The energy depen-

dent efficiency below 1 MeV was determined using a pulser signal on each
of the 96 high-gain electronics channels, 16 channels at a time. Seven differ-

ent settings on the pulser were used and measured for one minute each. To
obtain the efficiency of a certain channel it is required that the channel itself

triggered the event. Figure 4.15(a) shows the efficiency of each of the 96 chan-
nels determined from the ADC spectra coincident with a signal in the TDC.

A parametrisation of the trigger efficiency has been obtained from the pulser
peak area as a function of energy.

Due to a problem with the trigger to the TDC, some events are shifted in

the TDC compared to the ADC, so signals from the same event are not seen
in coincidence. The TDC output buffer is large enough to store 32000 events
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Figure 4.15: Trigger efficiency calibrations from ADC spectra with a trigger in the
TDC (a) and TDC triggers only (b).

before writing them to the data acquisition system, so reconstruction of events

should in principle be possible. This has not been possible though, because
in some parts of the files, more than 1000 TDC events appear between true

events with an ADC signal, and these can not be attributed to just a shift
between the ADC and TDC signals. It is not clear what causes this effect.

The problem with the TDC implies that it is unknown which channel
triggered the event, and the realiability of the efficiency calibration in figure

4.15(a) is questionable. Figure 4.15(b) shows an alternative efficiency calibra-
tion using only the TDC signals. The number of signals for one pulser set-

ting has been determined by integrating the TDC signals in the corresponding
time interval. Simultaneous with the pulser signals, α sources were measured

for the energy calibration, and this gives a small background contribution to
the integrated pulser signal, but this bachground is approximately constant.

The two efficiency calibrations in figure 4.15 are very similar, even though
100% efficiency in figure 4.15(b) corresponds to twice the number of counts

as in figure 4.15(a). The average efficiencies are shown in figure 4.16, and for
both calibrations the efficiency is better than 99% above 0.38 MeV.

Figure 4.17 shows the effect of efficiency correction on the 12N spectrum.
Events where the efficiency is below 1% in either front or back strip have not

been corrected. The efficiency correction does not affect the Hoyle peak at
0.4 MeV 3α energy.
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Figure 4.16: Average efficiency of all 96 strips from the calibrations in figure 4.15(a)
(solid line) and 4.15(b) (dashed line).

A pulser signal is not identical to a physical signal from particle detec-
tion, so an alternative efficiency calibration has been performed using a Gd

α source with air in the detector chamber at pressures between ∼ 100 mbar
to atmospheric pressure providing α peaks between zero and one MeV. The

α peaks are broadened due to straggling up to a FWHM of 0.15 MeV, so the
deduced efficiencies vary more slowly. The α efficiency of each strip is illus-

trated in figure 4.18(a). These measurements were performed during a later
run in december 2007 with the same setup, and true coincidences between

ADC and TDC channels were obtained. A pulser calibration was also per-
formed during the same run and it is shown in figure 4.18(b). The average

efficiencies are shown in figure 4.19, and both calibrations confirm, that the
Hoyle peak energy region is not affected.

The threshold settings in the 2006 and 2007 experiments were not exactly

the same giving the slightly larger efficiency at low energies in the 2007 run.
Decay of 12N was also measured in 2007 to see the effect on the Hoyle peak,

and the spectra are compared in figure 4.20. The dashed line is the 2006 spec-
trum and the filled area the spectrum from 2007. To compare the shapes the

2007 data have been scaled to the amount of counts in the 2006 spectrum and
shown as the graph with statistical error bars. The two data sets are seen to

be consistent within the uncertainty. The 2007 data contain more low-energy
noise due to the lower thresholds.
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Figure 4.18: Trigger efficiency calibrations from the 2007 run using α-particle (a) and
pulser (b) signals.

4.5 Branching ratios

In this section, model independent branching ratios for β decay of 12N and
12B will be presented. The branching ratios to the broad components will be
determined simply by integrating different energy regions, and this will fa-

cilitate comparison to previous branching ratio measurements. The precise
composition of the broad components is still uncertain after the full R-matrix
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Figure 4.19: Average efficiency of all 96 strips from the calibrations in figure 4.18(a)
(dashed line) and 4.18(b) (solid line).
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Figure 4.20: 12N decay spectrum from implantation experiments at KVI in 2006
(dashed red line) and 2007 (filled spectrum). The 2007 data has been scaled to the
same number of counts as the 2006 measurement for comparison (graph with error
bars).

analysis presented in section 4.6, and for interfering broad states it is not ob-

vious how to determine the branching ratios to the individual states. For such
states the branching ratio is not a useful quantity, instead it is recommended

to refer to matrix elements or BGT values.

The relative branching ratios from the analysis of the triple-α and single-α
JYFL data are brought to an absolute scale using the measured γ data and well
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known decay branch to the 4.44 MeV particle-bound state in 12C. The branch-
ing ratios to this state are 1.898(32)% for 12N and 1.283(40)% for 12B [Ajzenberg-

Selove 1990]. An alternative value of 1.182(19)% for 12B is given in [Ajzenberg-
Selove 1990] but it has not been used in this evaluation. During most of the ex-

periment only the DSSSDs were included in the trigger, providing the α data
shown in figures 4.4 and 4.5. For the absolute normalisation, the thick back

detectors behind the DSSSDs, registering only β particles from the decays, are
used as trigger. The total number of detected γ-rays from the 4.44 MeV state
is then

Nγ = BRγN(12N/12B)εγεβ, (4.7)

where BRγ is the branching ratio to the 4.44 MeV state, N is the number of
decaying nuclei, εγ is the γ efficiency (see section 4.2.2) and εβ the back detec-

tor efficiency. The total number of 3α breakups from an excited state in 12C
detected in the DSSSDs and triggered by the back detector is

Nα = BRα
Γα

Γ
N(12N/12B)εαεβ, (4.8)

where BRα is the branching ratio, Γα/Γ the relative α width and εα the as-

sumed constant detection efficiency of the DSSSD. The absolute branching
ratio to the α-emitting state can be found by combining equations 4.7 and 4.8:

BRα = BRγ
Nα

Nγ

εγ

εα

Γ

Γα
. (4.9)

The γ-energy spectra are shown in figure 4.21. In both spectra the 4.44 MeV
γ peak is seen as well as the single- and double-escape peaks. Other dominant

peaks are the 511 keV annihilation peak and the 1460 keV peak from 40K back-
ground radiation. Also visible are the Compton continuum and a significant

background of bremsstrahlung, especially prominent in the 12B spectrum.
The branching ratio to the 9 − 16.3 MeV region is used for normalisa-

tion and Nα is extracted from the single-α spectra for events triggered by a
back detector. The results are BRα(12B) = 0.060(7)% and BRα(12N) = 0.50(6)%

(9 − 16.3 MeV region). From this the relative branching ratios in table 4.1 are
brought to an absolute scale and are presented in table 4.2.

The KVI spectra are easily brought to an absolute scale by division with the
number of implantations. The KVI and JYFL spectra normalised to branching
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Figure 4.21: γ-ray spectra for 12B and 12N decay.

ratio per energy bin are shown in figure 4.22. Also shown are simulated JYFL
spectra modified by the beta response in the KVI experiment. The two data

sets are in good agreement within the uncertainties, and the energy shift due
to beta response is nicely reproduced. The KVI branching ratios are found by

integrating the spectra in figure 4.22. The small exponential tail of the beta
peak is subtracted from the Hoyle peak and a linear background is subtracted

from the 12.71 MeV peak.

Branching ratios from the two experiments are given in table 4.2, where

they are also compared to literature values. Several of the literature values
have been updated from the values tabulated in [Ajzenberg-Selove 1990] by

renormalising to the 4.44 MeV state using updated values for the branching
ratio to this state. In this work the value BR(4.44) = 1.283(40)% has been used

of the two alternative values given in [Ajzenberg-Selove 1990]. The branching
ratios to the ground state are found as one minus the sum of branching ratios

to all excited states. The branching ratios for the KVI experiment in table 4.2
are a few percent smaller for the unbound states in [Hyldegaard 2009b] due

to the erroneous interpretation of the slow component in figure 4.11 as decay
events following an implantation event which was not detected.

Comparing the JYFL and KVI branching ratios, the results agree within

the uncertainty as one would also expect from figure 4.22.

The branching ratios to the Hoyle state are only from the KVI experiment,
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Figure 4.22: Spectra for 12N decay (top) and 12B decay (bottom) scaled to absolute
branching ratios per energy bin with error bars. The black markers with solid line,
statistical error bars are KVI data, the blue squares with dotted error bars (both sta-
tistical and from efficiency uncertainty) are the JYFL data, and the red, dashed curves
are simulations of the JYFL data with beta response.

and they are only half the literature values, but are determined to much bet-

ter precision. The 12B branching ratio in [Ajzenberg-Selove 1990] is the com-
bination of two experimental values, 1.3(4)% [Cook 1957] and 1.5(7)% [Al-

burger 1963]. The latter can be updated by renormalisation using the updated
BR(4.44) and Γγ(3.22)/Γ = 4.13(11) · 10−4 to 1.2(4)%. In the first measurement,

single α particles were measured with a magnetic spectrometer, and the ob-
tained branching ratio of 1.3(4)% depends on the assumption that the absolute

normalisation is correct [Cook 1957]. The number of created 12B nuclei were
not directly measured. The second measurement by Alburger [Alburger 1963]

was a β-γ-γ coincidence measurement detecting electrons from 12B β decay
in coincidence with 3.22 MeV and 4.44 MeV γ rays from the sequential de-
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12C 12N 12B

Energy Lit. JYFL KVI Lit. JYFL KVI
(MeV) % % % % % %

g.s. 94.6(6)∗ - 95.96(5) 97.4(3)∗ - 98.02(4)

4.44 1.90(3) - - 1.28(4) - -
7.65 2.7(4) - 1.44(3) 1.2(3)∗ - 0.59(2)

7.9 − 12 - - 0.548(2) - - 0.108(3)

9 − 12 0.46(15) 0.38(5) 0.416(9) 0.08(2) 0.060(7) 0.070(3)

12.7 0.28(8)∗ 0.11(2) 0.123(3) - 3.5(7) ·10−4 2.8(2) ·10−4

12 − 16.3 - 0.021(6) 0.020(3) - - -

15.11 3.8(8) ·10−3∗ - 3.2(10) ·10−5
Γ/Γα - - -

7.3 − 16.3 3.4(4) - 2.11(3) 1.3(3) - 0.69(2)

Table 4.2: Branching ratios to 12C from complete kinematics (JYFL) and implan-
tation (KVI) experiments. Literature values for comparison are from [Ajzenberg-
Selove 1990]. * Updated literature value (see the text).

excitation of the 7.65 MeV state. The detector setup consisted of two NaI γ

detectors and a scintillator β detector. The resolution in the NaI detectors is
very low and the peak to Compton ratio is rather small. Furthermore, the β-

γ-γ coincidence spectrum is significantly affected by bremsstrahlung, and the
branching ratio relies on correct background subtraction. It is of interest to

perform a similar experiment using Ge-detectors with a much better resolu-
tion and peak to Compton ratio.

For 12N decay the branching ratio to the Hoyle state derives from Kurie-

plot analyses of two experimental measurements of the β spectrum [Mayer-
Kuckuk 1962, Glass 1963]. In the first experiment the absolute β spectrum

was measured and the Hoyle-state branch determined after first extracting
the ground state and 4.44 MeV state β spectra from their end points [Mayer-

Kuckuk 1962]. The Hoyle-state branch of 3.0(4)% therefore depends on as-
sumptions on the β spectrum shape and the branching ratio to the 4.44 MeV

state, which was known to be 2.4(2)% at the time. Due to the extrapolation er-
rors inherent in the method, the claimed 13% uncertainty on the third branch
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seems underestimated. In the second experiment the relative β spectra nor-
malised to the same end point were measured [Glass 1963]. The resulting 12N

branching ratios were determined by constraining the previously measured
12B branching ratios to 1.3(4)% for the 7.65 MeV state and 0.13(4)% for the

10.1 MeV state. For both the analysis in [Mayer-Kuckuk 1962] and [Glass 1963]
it is assumed that the next excited state above the 7.65 MeV state is at 10.1 MeV

giving an end point energy 2.5 MeV below the end point for the 7.65 MeV
state. From figure 4.22 this assumption is now known to be invalid, since the
broad component is significant already at 0.5 MeV above the peak, and this

will lead to overestimated branching ratios to the 7.65 MeV state from the
Kurie plot analyses.

In the literature, the broad component between the 7.65 and 12.71 MeV

peaks is denoted a 10.3 MeV state with Γo = 3 MeV. These assignments are
questionable [Diget 2005] and the structure of this component will be anal-

ysed in detail in section 4.6. When the branching ratios to this state were first
measured, the 12.71 MeV state was not known, and the branching ratio for 12N

decay, determined from the single-α spectrum, is overestimated in [Wilkin-
son 1963]. For both 12N and 12B the values from the evaluation in [Ajzenberg-

Selove 1990] are dominated by the same work [Wilkinson 1963]. The given
branching ratios of 0.44(15)% for 12N and 0.07(2)% for 12B corresponds to in-

tegrated single-α spectra from 9 to 12 MeV excitation energy, comparable to
branching ratios from 3α spectra to the same region plus about two times the

branching ratio to the 12.71 MeV peak (see figure 4.5). The branching ratio for
12B agrees well with the new results and the value for 12N is also consistent

within 2σ, but somewhat underestimated when accounting for the contribu-
tion from the 12.71 MeV state. An other measurement of the branching ratio

for 12B found the value 0.13(4)% [Cook 1958]. The larger value is reasonable
because it includes the energy region below 9 MeV, in good agreement with

the branching ratio for the 7.9 to 12 MeV region from the KVI data.

The 12.71 MeV peak was measured with 12B decay for the first time in the

JYFL experment. In [Schwalm 1966] an upper limit for the ratio between β de-
cays to the 12.71 MeV peak and the 10.3 MeV state is given as 3 · 10−2, slightly

smaller than the JYFL and KVI values. The evaluated branching ratios to the
12.71 MeV state and 15.11 MeV state for 12N are dominated by the same ex-
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periment [Alburger 1967], and these are updated using BR(4.44) = 1.898(32)%,
Γγ(12.71)/Γ = 1.93(12) · 10−2 and Γγ(15.11)/Γ = 0.88(3). The new result for the

12.71 MeV branching ratio for 12N is marginally consistent with this updated
value, but is a factor of ten more precise. Support for a lower value comes

from the value of 0.20(5) for the ratio of the 12N branching ratios to the 12.71
MeV state and the 10.3 MeV strength [Schwalm 1966]. A larger branching ra-

tio to the 12.71 MeV peak would also be inconsistent with the branching ratio
to the 9-12 MeV region from [Wilkinson 1963] discussed above.

The branching ratio to the broad region at high energies in the excitation

energy spectrum (with the 12.71 MeV peak subtracted) has not previously
been measured. The isobaric analogue state at 15.11 MeV has a small α branch,

Γα/Γ = 0.041(9) [Balamuth 1974], and is seen as a small peak in the 12N decay
spectrum with 29(9) counts. Assuming a negligible GT strength (BGT value)

to this state, the corresponding branching ratio leads to a Fermi strength of
0.6(2), which is inconsistent with the expected value BF = 2. Accepting the

theoretical Fermi strength leads to a revised value for the α width, Γα/Γ =
0.011(3), which is consistent with the value 0.012(7) in [Reisman 1970].

4.5.1 BGT values to narrow states

For narrow states, λ, BGT values are determined from the branching ratios,

BRλ, as

BGT =
g2

V

g2
A

B

fβt1/2;λ
=

g2
V

g2
A

B

fβt1/2
BRλ. (4.10)

Values are given in table 4.3. For the broad regions BGT values can not be
found from the branching ratios in table 4.2, since fβ is energy dependent.
The BGT values to the broad states will instead be extracted from R-matrix

parameters obtained by fitting the data (see the discussion in section 2.5.5 on
f t and BGT values to broad states).

The isospin asymmetry is defined as δ = f t(β+)/ f t(β−) − 1 and values are
given in table 4.3. Isospin is a good quantum number if δ = 0 corresponding to

equal strengths for β+ and β− transitions. The isospin asymmetry per energy
bin is given in figure 4.23 along with the inverse f t values for the β+ and β−

decays respectively. δ is seen to vary most in areas where the spectra change
rapidly. These variations are mainly caused by differences in the amount of
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12C BGT δ

Energy (MeV) 12N 12B =
BGT(12B)
BGT(12N) − 1

g.s. 0.2950(14) 0.331(2) 0.121(2)
4.44 0.0270(4) 0.0297(9) 0.10(4)

7.65 0.093(2) 0.110(3) 0.19(4)
12.7 0.462(12) 0.51(3) 0.10(8)

Table 4.3: BGT values to narrow states in 12C from the implantation experiment at
KVI. Values for the 4.44 MeV state are from the literature, but are included here for
completeness.

β summing in the two decays due to different Q-values in the two decays. A
small constant positive shift is seen in favor of β− decay in figure 4.23 as well as

for the narrow peaks in table 4.3. The energy independence confirms that the
origin of the asymmetry is mainly nuclear structure [Wilkinson 2000, Wilkin-

son 1971] as a second-class-currents explanation infers an energy dependent
asymmetry [Wilkinson 2000].
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4.6 R-matrix analysis

The β-decay data has been analysed by performing a simultaneous R-matrix

fit to the KVI data for 12N and 12B and the sum-energy spectra from JYFL for
decay via the ground-state peak in 8Be and excited states respectively, also

for both 12N and 12B [Hyldegaard 2010]. The formalism for sequential decay
via broad states, presented in section 2.6, has been applied. Results from a

separate R-matrix analysis of the breakup kinematics in the JYFL data are used
to constrain the fit model [Diget 2009].

4.6.1 Implementation

The function to minimise is the sum of a log-likelihood function for the KVI
data,

χ2
= 2

∑

i

(

ni, f it − ni,data + ni,data ln
(

ni,data

ni, f it

))

, (4.11)

and a least-squares minimisation for the efficiency-corrected JYFL data, as the

JYFL data are not Poisson distributed after efficiency correction,

χ2
=

(

ni, f it − ni,data

σi

)2

. (4.12)

The uncertainty, σ, is the combination of the uncertainty of the efficiency cor-
rection and the statistical uncertainty from the number of counts in the spec-

trum. The 1+ peak at 12.71 MeV is excluded and the upper fit limit is just
below the 15.11 MeV peak. The Hoyle peak is included with its area only,

as its shape is strongly affected by the β response. The area is calculated us-
ing the single-level, narrow-state approximation of equation 2.96. The width

and energy of the Hoyle state are kept fixed at ΓH = 7.65 · 10−6 MeV and
EH = S3α + 0.3794 MeV [Ajzenberg-Selove 1990], respectively.

The R-matrix parameters for the 8Be ground state are found from the en-
ergy and observed width tabulated in [Tilley 2004]. The 2+ excited-state pa-

rameters are from [Bhattacharya 2006] (Table II, column 3), and the channel
radius used is 4.5 fm. Using these parameters the resonance forms, ρλ′c′ , for

the ground state and first excited states are calculated. These are shown in fig-
ure 4.24, where it is clearly seen, that the 8Be ground state, only 91.8 keV above
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Figure 4.24: The 8Be ground state and lowest 2+ state in the single-level R-matrix
model.

the 2α threshold, has a prominent ghost. The integration ranges used for the
shift and penetration functions (equations 2.107 and 2.108) are 0 - 5 MeV for

the ground state and 0 - 10 MeV for the 2+ state, chosen so that the 0+1 and
2+1 states are the dominating states in their respective integration intervals.

Infinity is not chosen as the upper integration limit because other 0+ and 2+

channels dominate at higher energy.

The alternative R-matrix parametrisation has been used in this work, pro-
viding the observables directly from the fit. To save computation time, the

shift and penetration functions are calculated once for each energy bin, and
only the shift functions Sc(Ẽi) have to be re-calculated when the resonance

energies, Ẽi are varied.

The β response in the KVI data is taken into account by folding the cal-
culated spectra with the simulated β-response functions before comparison to

the KVI data. This has to be done at each step in the fitting routine before
calculating χ2. The uncertainty in the simulated β response is not taken into

account, but in a reasonable assumption it is energy independent and the only
effect of this neglect is to weight the KVI data slightly higher than appropriate

in the fit.

The number of free parameters in the fit depends on the number of levels

included. Each level is defined by a level energy, Eλ, β strengths, g(12N/12B),
and reduced widths, γλ jbl, where jb is the spin of the 8Be state and l the angular
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momentum in the breakup of 12C. The only 1+ states below the 12N Q-value
are the narrow 12.71- and 15.11-MeV states, so the levels entering the fits must

be either 0+ or 2+. This was verified by the separate analysis of the JYFL data,
showing no evidence for additional 1+ components [Diget 2009], which is as

expected since a 1+ state would be narrow [Fedorov 2003]. For the 0+ states
there are two possible breakup channels: l = 0, jb = 0 and l = 2, jb = 2. For 2+

states in 12C there are four possibilities: jb = 0, l = 2 and jb = 2, l = 0, 2, 4. The
l = 4 channel is not considered here, because its only appreciable contribution
would be at the very high-energy end of the 12N spectrum [Diget 2009]. The

channel radius is kept fixed in the fits at a value common for all states, a =

r0(81/3 + 41/3). A first choice for r0 is 1.71 fm, as in [Diget 2006]. This is a large

value compared to typical applications of R-matrix theory but is physically
motivated by the large extension of the Hoyle state.

4.6.2 Analysis

The analysis proceeds by testing increasingly more complex models of the
triple-α continuum. The starting point is what is already known to be there:

The Hoyle state at 7.654 MeV in 12C or just 0.3794 MeV above the 3α thresh-
old. It is also known from the separate analysis of the JYFL data presented

in [Diget 2009], that the broad components in the spectrum arise from some
combination of 0+ and 2+ states and are dominated by 0+ below the 12.71 MeV

peak and by 2+ above it.
It is relevant at this point to look at the spectra for a qualitative assess-

ment of their expected composition. From figure 4.23 it is seen that the broad
components increase in strength with increasing energy. The broad compo-

nent above the Hoyle peak has its maximum at 10.5 MeV, and it is evident
that it consists of more than the Hoyle state ghost, as was already shown

in [Wilkinson 1963]. Above the 12.71 MeV peak the 12N spectrum continu-
ously increases up to the Q-value. One would expect at least one resonance in

this region or at higher energy.
In table 4.4 the nine different models considered are listed with their com-

bination of 0+ and 2+ states, reduced χ2 value, channel radius and the figures
illustrating the respective fits. A discussion of each of these will follow next.
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Model χ2/df r0 (fm) Fig. no.(s.)

1: 0+ 281 1.71 4.25, 4.26
2: 0+, 0+ 15.9 1.71 4.25, 4.26

3: 0+, 2+ 44.8 1.71 4.25, 4.26
4: 0+, 0+, 0+ 3.24 1.71 4.25, 4.26

5: 0+, 0+, 2+ 6.06 2.09 4.25, 4.26
6: 0+, 2+, 2+ 18.4 1.71 4.25, 4.26

7: 0+, 0+, 0+, 2+ 1.24 2.47 4.27
8: 0+, 0+, 2+, 2+ 1.65 2.47 4.28

9: 0+, 0+, 0+, 2+, 2+ 1.21 2.47 4.31

Table 4.4: Applied R-matrix models (different combinations of 0+ and 2+ states) and
their reduced χ2 values. The number of degrees of freedom (df) is 1251 minus the
number of free parameters (see text).

• The Hoyle state

In Model 1, only the Hoyle state is included in the fit. This model is al-

ready known to be insufficient as argued above, but the simplest mod-
els are included here for completeness, and to illustrate their properties.

The fit spectra are shown in figure 4.25 compared to the 12N and 12B KVI
sum spectra. The Hoyle state energy and width are kept fixed, so there

are three free parameters in the fit. The only feature of the spectra, which
is reproduced is the narrow Hoyle peak just above threshold. Above the

peak, the Hoyle state ghost is seen as a small increase in the spectra,
explaining part of the structure of the spectrum in this energy region.

Looking at the value of χ2/d.f. = 281 in table 4.4, it is much larger than
unity, as expected. The spectra for decay through the 8Be ground-state

peak and excited states are separated in figure 4.26. Only breakup via
the ground state contributes due to the low energy of the Hoyle state,

and the component for decay via excited energies arises due to the 8Be
ground-state ghost seen in figure 4.24. In a fit with variable energy and

width of the Hoyle state the energy goes to its lower limit and the width
to its upper limit. Both serve to increase the ghost as shown in section
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Figure 4.25: 3α energy spectra from the KVI experiment for 12N (top) and 12B (bottom)
decay. Fits to Models 1 to 6 in Table 4.4 are shown.

2.5.4 and thus compensate for the missing strength at higher energies in

the spectra.

• The Hoyle state plus one additional state

The next step is the addition of a 0+ state (Model 2). The resulting χ2 is

still much larger than the number of degrees of freedom, but it is a large
improvement from Model 1. It is interesting to note that the energy

region from 1 to 4 MeV is adequately described in figures 4.25 and 4.26.
For the 12B case, with the smaller beta-decay energy window, this model

is sufficient and shows that 0+ interference is an important ingredient for
the understanding of the spectrum in this region.
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Figure 4.26: 12N decay spectra from the JYFL experiment. 3α energy spectra for the
8Be ground state peak (top) and excited states (bottom) channels are shown. The
excited states channels are the 8Be ground state ghost and the 2+ contribution. Fits to
Models 1 to 6 in Table 4.4 are shown.

Model 3 includes the Hoyle state and a 2+ state. This fit is several times
worse than the fit to the Hoyle state and a 0+ state. A 2+ component is

known to contribute to the spectrum from [Diget 2009], but this analysis
shows that a single 2+ state above the Hoyle state is insufficient. This

model is not able to explain the flat, broad structure from 8.8 to 10.5 MeV.

• The Hoyle state plus two additional states

Model 4 and 5 shows that the addition of a 0+ or a 2+ state to Model 2
gives almost a factor 5 improvement in χ2. Model 6 with two 2+ states
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above the Hoyle state fails to do this and the χ2 fall in-between the re-
sults for Model 2 and 3. Model 6 also fails in describing the flat region at

8.8 - 10.5 MeV excitation energy as shown in figure 4.25. Also the upper
2+-state energy and β strengths go to their upper limits.

The fit with three 0+ states (Model 4) is the best fit so far. The only
visible discrepancy in the spectra is a dip below the measured spectra at
11.8 MeV.

Model 5 (two 0+ and one 2+) fails at describing the data from breakup
via the 8Be ground state and has also problems in areas where the KVI

spectra change rapidly (at 8.5 MeV and 11-12 MeV.). This model was
found to be sufficient at describing the JYFL data in [Diget 2006], but the

KVI data adds information about the low energy region below 8.5 MeV
and the fit from [Diget 2006] overestimates the spectrum in this region.

• The Hoyle state plus three additional states

At this point it seems clear that the addition of at least one more state

is needed to describe the data. With four unbound states in the fit, the
number of free parameters becomes high, and the fit program converges

more slowly. For this reason it is worth excluding the two models with
respectively three 0+ states and three 2+ states above the Hoyle state

right away, because the first does not fulfill the requirement of at least
one 2+ state and for the second, the Hoyle state is not sufficient as the

dominating broad 0+ component below the 1+ peak. This leaves us with
Models 7 and 8 as the only realistic models with four unbound states.

Figures 4.27 and 4.28 show the fits found to these two models. Both re-
produce the spectra very well except for a small systematic deviation at

high energy in the 8Be peak channel. The χ2 value reveals that three 0+

and one 2+ states is in fact the better model with χ2/df = 1.24 compared

to χ2/df = 1.65. We can not argue for a more complex model from the
data used in the fit since the R-matrix model used is only an approxima-

tion and the uncertainty in the beta response is not taken into account,
so an improvement in reduced chi squared of 0.2 would be comparable

to the systematic uncertainty. However both models are inconsistent
with the results from angular correlations in the JYFL data [Diget 2009]
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Figure 4.27: Fit to Model 7 in Table 4.4 (three 0+ and one 2+ states). Only the 12N
spectra are shown. The KVI 3α energy spectra are shown in both plots compared to
the solid line showing the total fit spectrum summed over all channels. JYFL 3α en-
ergy spectra for the 8Be peak (top) and excited states (bottom) channels are compared
to the dashed curves which are the fit components for the respective channels. The
dotted and dot-dashed lines are contributions to each decay channel from 0+ and 2+

states in 12C respectively.

since the 8Be excited states spectrum both below and above the 1+ peak

is dominated by 0+ in Fig. 4.27 and 2+ in Fig. 4.28.

The two fits are also shown in a different type of plot in figures 4.29 and
4.30. The component for each channel in the fits have been corrected for

the phase space in the incoming β-decay channel and for the penetrabil-
ity in the break-up channel. The measured spectrum has been corrected
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Figure 4.28: Fit to Model 8 in Table 4.4 (two 0+ and two 2+ states). See the caption of
figure 4.27 for explanation.

using the weighted average penetrability from the fit, so it depends on
the fit model. By removing the dependency on the entrance channel and

some of the dependency on the exit channels, the spectra have come to
illustrate the resonance structures in 12C more clearly, in the same way as

was done for 8Be in figure 3.3. The Hoyle state ghost is no longer seen as
an increase in the spectrum between 8 and 9 MeV, because the penetra-

bility correction increases the weight of the peak. The structure at 10–11
MeV now looks more like a broad resonance peak with an asymmetric

shape due to interference with the Hoyle state. Single levels without in-
terference will have a less asymmetric shape in these plots, but due to
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Figure 4.29: Fit to Model 7 in Table 4.4 (three 0+ and one 2+ states). The spectrum
for 12N is shown as inverse f t value divided by the penetrability to illustrate the
resonance shapes. The total fit is shown as the solid line (not corrected for β summing)
and the dotted and dot-dashed lines are the components for 0+ and 2+ states in 12C
respectively.
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Figure 4.30: Fit to Model 8 in Table 4.4 (two 0+ and two 2+ states). See the caption of
figure 4.29 for explanation.

the energy dependence of the width in the denominator of equation 2.69
for example the 2+ level shape in figure 4.29 is slightly asymmetric.

• The Hoyle state plus four additional states

The models with four unbound states have been shown to be insuffi-
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cient. All models with five unbound states will not be tested, because
the parameter space becomes very large, but a good guess at a model

which might explain the data is Model 9 in table 4.4 where the upper 2+

state from Model 8 is added to Model 7. A fit to this model is shown

in figure 4.31, and the spectrum is consistent with both the data and the
separate analysis of the JYFL data.
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Figure 4.31: Example fit to Model 9 in Table 4.4 (three 0+ and two 2+ states). See the
caption of figure 4.27 for explanation.

In all fit models the 12.71 MeV peak has been excluded. To test whether
its tails has any effect on the spectrum, it is included with its known R-matrix

parameters in the best fit model as shown in figure 4.33. It is clear from this
graph that the state is so narrow, that the tails have no effect on the spectrum
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Figure 4.32: Fit to Model 9 in Table 4.4 (three 0+ and two 2+ states). See the caption of
figure 4.29 for explanation.

in the fit ranges.
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Figure 4.33: The 1+ state added to the best fit (Model 9), here shown for 12N decay.
All R-matrix parameters are kept fixed. It is a good approximation to exclude the
peak from the fit because of its small width.

The r0 parameters used in the fits are shown in Table 4.4. For the simple

models the value r0 = 1.71 fm has been used and is generally not the opti-
mized value since the models are easily rejected. Larger values were tested in

the fit to Model 1 (Hoyle state only) but this gave a worse χ2.

R-matrix parameters and observables from fits to Models 7–9 are shown
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Parameter Alt. Alt. Alt. Std.

r0 (fm) 1.71 2.09 2.47 2.47

0+2 E (MeV) 7.65 7.65 7.65 7.65

θ00 2.84 0.809 0.544 0.708

θ22 −3.66 0.511 1.14 2.58

Γo (eV) 7.65 7.65 7.65 7.65

gGT(12N) 0.799 0.346 0.347 −0.386

gGT(12B) 0.869 0.377 0.377 −0.686

BGT(12N) 0.093 0.093 0.093 0.093

BGT(12B) 0.110 0.110 0.110 0.110

0+3 E (MeV) 12.2 11.2 11.6 11.1

θ00 2.60 1.21 2.65 1.08

θ22 3.11 1.99 4.48 0.939

Γo (MeV) 4.62 1.33 2.68 1.61

gGT(12N) 0.357 −0.246 −0.423 0.228

gGT(12B) 0.504 −0.281 −0.398 0.422

BGT(12N) 0.027 0.026 0.027 0.053

BGT(12B) 0.053 0.033 0.024 0.068

2+2 E (MeV) 11.7 11.3 10.8 11.4

θ02 −0.670 −1.04 −2.97 2.16

θ20 3.11 · 10−6 2.16 4.48 −4.22

θ22 1.71 · 10−6 −2.03 −2.99 · 10−4 −0.0415

Γ
o (MeV) 0.83 1.11 1.77 2.06

gGT(12N) −0.0856 −0.376 −0.645 0.650

gGT(12B) −0.100 −0.401 −0.752 1.10

BGT(12N) 0.007 0.053 0.053 0.092

BGT(12B) 0.010 0.060 0.072 0.099

0+4 E (MeV) 67.5 45.3 24.1 26.2

θ00 2.73 1.68 3.93 −0.961

θ22 0.659 2.44 4.47 −1.36

Γo (MeV) 109 74.8 154 13.2

gGT(12N) −18.4 −21.5 −7.49 −9.35

gGT(12B) −22.7 −23.9 −8.15 −16.2

BGT(12N) 337 461 55 116

BGT(12B) 513 568 65 129

χ2/df 2.10 1.35 1.25 1.24

Table 4.5: Level parameters for Model 7.
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Parameter Alt. Alt. Alt.

r0 (fm) 1.71 2.09 2.47

0+2 E (MeV) 7.65 7.65 7.65

θ00 2.46 1.52 1.11

θ22 2.95 4.06 5.19

Γo (eV) 7.65 7.65 7.65

gGT(12N) 0.691 0.650 0.699

gGT(12B) 0.752 0.707 0.760

BGT(12N) 0.093 0.093 0.093

BGT(12B) 0.110 0.110 0.110

0+3 E (MeV) 13.4 96.3 107

θ00 9.70 18.9 19.9

θ22 4.48 −2.20 −1.83

Γo (MeV) 44.9 5030 5000

gGT(12N) −1.24 −2.95 −3.16

gGT(12B) −1.78 −3.73 −3.62

BGT(12N) 0.20 8.63 9.95

BGT(12B) 0.41 13.8 13.1

2+2 E (MeV) 10.9 10.9 10.9

θ02 −3.00 −1.23 −1.44

θ20 4.41 0.732 −0.844

θ22 −4.47 −1.10 −1.40

Γ
o (MeV) 0.88 1.36 1.67

gGT(12N) −0.647 −0.331 −0.445

gGT(12B) −0.651 −0.370 −0.497

BGT(12N) 0.024 0.064 0.103

BGT(12B) 0.025 0.080 0.129

2+3 E (MeV) 15.7 16.2 17.5

θ02 0.682 1.17 1.59

θ20 −2.77 −0.651 0.835

θ22 −1.51 −0.640 −0.413

Γo (MeV) 5.63 6.65 10.9

gGT(12N) 0.830 0.949 1.36

gGT(12B) 0.577 1.04 1.52

BGT(12N) 0.55 0.86 1.81

BGT(12B) 0.26 1.04 2.25

χ2/df 6.37 2.80 1.65

Table 4.6: Level parameters for Model 8.
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Parameter Alt. Std. Parameter Alt. Std.

r0 (fm) 2.47 2.47 r0 (fm) 2.47 2.47

0+2 E (MeV) 7.65 7.65 2+3 E (MeV) 16.5 16.7

θ00 0.947 0.966 θ02 −0.488 −0.0491

θ22 −4.18 −4.30 θ20 0.419 −0.629

Γ
o (eV) 7.65 7.65 θ22 9.78 · 10−6 −0.0753

gGT(12N) 0.653 0.666 Γo (MeV) 0.58 0.97

gGT(12B) 0.588 0.600 gGT(12N) 2.47 −2.24

BGT(12N) 0.093 0.093 gGT(12B) −1.77 2.18

BGT(12B) 0.110 0.110 BGT(12N) 5.1 4.1

0+3 E (MeV) 11.0 11.0 BGT(12B) 3.8 5.7

θ00 1.14 0.919 0+4 E (MeV) 61.0 65.8

θ22 1.64 0.433 θ00 7.68 −4.58

Γo (MeV) 1.31 1.33 θ22 8.13 0.277

gGT(12N) 0.653 0.666 Γo (MeV) 1109 200

gGT(12B) −0.414 −0.326 gGT(12N) −8.18 4.87

BGT(12N) 0.078 0.081 gGT(12B) −7.35 4.34

BGT(12B) 0.095 0.10 BGT(12N) 55 20

2+2 E (MeV) 11.3 11.4 BGT(12B) 65 22

θ02 −0.747 −1.46

θ20 0.360 1.78

θ22 2.03 · 10−5 −2.51

Γo (MeV) 0.87 1.44

gGT(12N) 0.179 0.461

gGT(12B) −0.157 −0.384

BGT(12N) 0.025 0.047

BGT(12B) 0.028 0.047

χ2/df 1.21 1.22 1.21 1.22

Table 4.7: Level parameters for Model 9.



120 Chapter 4. Beta decay of 12N and 12B

 (fm)0r

E
ne

rg
y 

(M
eV

)
10

210

1.71 2.09 2.47

+0
+0
+2
+0

Model 7

 (fm)0r

E
ne

rg
y 

(M
eV

)

10

210

1.71 2.09 2.47

+0
+2
+2
+0

Model 8

Figure 4.34: Level energies in R-matrix fits to different channel radii. Note the sys-
tematic uncertainty on the extracted energies (see the text).

in tables 4.5, 4.6 and 4.7. The fit spectra are uniquely defined by the energies,

reduced widths and beta strengths and these are given here for future refer-
ence. It should be noted that the 8Be intermediate states are integrated from

0–5 MeV for the ground state and 0–10 MeV for the first excited state. Other
conventions will lead to different reduced widths. The reduced widths are

given by the dimensionless, θλc (equation 2.115), relative to the Wigner limit
(equation 2.113). The beta strengths are normalised to the equality

BGT =
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∣

∣
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(4.13)

and the BGT-value for the Hoyle state shown in table 4.3, found from the peak
branching ratio, defines the scale.

For the more complex models different r0 values have been tested and for
Models 7–9 the optimum value is r0 = 2.47 fm (out of the discrete set: 1.71,

2.09, 2.47 and 2.85 fm). For Model 7 and 8 the level energy dependency on
r0 is illustrated in figure 4.34. For the three lowest energy states the level

energy is largely independent of channel radius lending further support to
these resonances being physical. The energy of the upper 0+ state in Model 7

decreases with increasing r0. This effect was also seen for 8B decay (see figure
3.11 in chapter 3 and figure 4 in [Warburton 1986]), and indicates that this is
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Figure 4.35: Level energies for the fits in table 4.4. Note the systematic uncertainty
on the extracted energies (see the text). Dotted lines are not error bars but indicate
observed widths. For clarity these are omitted for the upper 0+ states which have
extremely large widths. The triple-α threshold is indicated with a dashed line.

not a physical resonance. The physical effect responsible for this component
might be the sum of contributions from several high-energy resonances, or

decay directly via the continuum. This will be discussed in the next chapter.
The upper 0+ state of Model 8 does not show the same monotonous decrease

in energy, but this is probably because an additional 0+ state is needed in the
10–11 MeV energy region and the fit is trying to compensate for this.

All fits in table 4.4 were performed using the alternative R-matrix parametri-
sation. Fits within the standard parametrisation are shown for comparison in

tables 4.5 and 4.7 to values from the two best models. Energies and χ2 are
similar in the two pairs of fits but widths and BGT values differ substantially.

These are the same tendencies as seen in fits within the same formalism but
with different limits on the parameters or different initial parameters. This

gives an indication of the systematic uncertainty of the formalism.

Figure 4.35 shows the level energies in the different fit models in table 4.4.
The Hoyle state is fixed at its known energy of 7.654 MeV in all models. Due

to its high-energy tail or ghost the Hoyle state contributes to the spectrum
also at higher energies, and this leads to the interesting possibility of trying to

measure the width of this state from the present data [Diget 2006]. However,
due to the uncertainty in the contribution of other states it is not possible at
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Level Parameter Recommended value

0+3 E (MeV) 11.2 ± 0.3
Γo (MeV) 1.5 ± 0.6

BGT(12N) 0.06 ± 0.02
BGT(12B) 0.07 ± 0.03

2+2 E (MeV) 11.1 ± 0.3

Γo (MeV) 1.4 ± 0.4
BGT(12N) 0.05 ± 0.03

BGT(12B) 0.06 ± 0.04

Table 4.8: Recommended observable values for the 0+3 and 2+2 states from this work.

the present stage to improve on the literature value using this idea. The width

as well as the energy of the Hoyle state is therefore kept fixed in the fits. Both
the L = 0 and L = 2 channels are included for the Hoyle state although the

L = 2 channel only affects the very high-energy tail of the ghost. Only one of
the reduced widths is varied while the other is defined by the total observed

width. The dimensionless reduced width, θ00, is ∼ 1 for the fits in tables 4.5,
4.6 and 4.7 corresponding to a reduced width close to the Wigner limit.

At higher energy a 0+ and 2+ state are seen below the 12.71 MeV peak.
Both have energies which do not vary much in fits to different models (Fig.
4.35) or different r0 values (Fig. 4.34). The widths and BGT values differ, how-

ever, by at least a factor of two in different fits, but the states are both known
to be broad with reduced widths often surpassing the Wigner limit. Recom-

mended observable values for these states are given in Table 4.8. The values
and errors are found by comparing results from fits to Models 7–9 (except

Model 8 for the 0+3 state) and fits for different r0 values.

The next resonance in the fits is a 2+ state with energy varying somewhat

more than the low-energy 0+ and 2+ states, but remaining close to the 12N
Q-value. Its width and BGT values can not be determined.

The upper 0+ state has an energy above the Q-value, but otherwise it can
not be determined. The reduced widths and beta strengths often go to the

upper limits allowed in the fit so the width and BGT values can not be deter-
mined, we can only see that they have to be very large. Especially the BGT
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values are much larger than the sum-rule limit.

4.7 Comparison to theory

In this section the BGT values for the narrow states (table 4.3) and the proper-
ties for the 0+3 and 2+2 states found in this work are compared to predictions

from theory. Different conventions are used in the literature for the front fac-
tors on the BGT values, so the theoretical calculations are tabulated here for

the definition used in this work (equation 4.10).

BGT values calculated within the antisymmetrised molecular dynamics
(AMD) approach are shown in table 4.9 in comparison to experimental val-

ues for transitions from 12N [Kanada-En’yo 1998, Kanada-En’yo 2007]. The
BGT values for the narrow states are seen to be consistent within a factor two,

except the older value for the Hoyle state from [Kanada-En’yo 1998]. Calcula-
tions for the third 0+ state are in good agreement with the result from R-matrix

fits, and the AMD energy of 11.7 MeV (3 MeV above the Hoyle state) is con-
sistent with the level energy found in the fits. For the 2+2 state the energy,

which is about the same as for the 0+3 state, is consistent with our experimen-
tal result, but the predicted feeding is very small. A 2+3 state was found in

the same calculation around 13 MeV and the BGT value for this state is also
small considering that the β strength rises at higher energy. A 2+4 state was

also found between 13 and 15 MeV in the same calculation as well as two 4+

states between 10 and 13 MeV and a 6+ state around 15 MeV.

In table 4.11 the experimental BGT values are compared to the results from

no-core shell model (NCSM) calculations [Hyldegaard 2009b]. The calcula-
tions were performed using high-precision nuclear Hamiltonians from chiral

perturbation theory (ChPT) as in [Navrátil 2007]. This was done for a nucleon-
nucleon (NN) interaction both with and without a three-nucleon force (3NF).

Table 4.10 shows an earlier calculation of the strength to the ground state us-
ing the Argonne V8 nucleon-nucleon potential by itself and combined with

the Tuscon-Melbourne TM(99) three-nucleon interaction respectively [Navrá-
til 2003]. The calculation from [Navrátil 2003] does not include the isospin

breaking due to the Coulomb and the strong force as was the case for the
ChPT nucleon-nucleon interaction in [Navrátil 2007], so the results are identi-
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Ex
Jπ

Experiment AMD

(MeV) 12N [Kanada-En’yo 1998] [Kanada-En’yo 2007]

0 0+1 0.2950(14) 0.605 0.605

4.44 2+1 0.0270(4) 0.060 0.060

7.65 0+2 0.093(2) 0.381 0.191

11.2(3) 0+3 0.06(2) 0.076 0.076

12.71 1+1 0.462(12) 0.605 0.761

11.1(3) 2+2 0.05(3) 0.002(2+2 )

0.038(2+3 )

Table 4.9: BGT values calculated using AMD compared to experimental values from
the present work.

cal for 12B and 12N transitions. For the ground state transition strength it is ev-
ident that a three-nucleon force is needed to describe the state, and the result

from [Navrátil 2003] is in reasonable agreement with the experimental val-
ues but even better consistency is obtained for the newer calculations [Hylde-

gaard 2009b]. The calculated transition to the 1+ 12.71 MeV state is in much
better agreement with the present data that reduce the branching ratio by a

factor of 2.5 compared to earlier measurements. The current NCSM calcula-
tions do not properly describe the Hoyle state, because of its dilute cluster

structure. The NCSM 0+2 state is at about twice the excitation energy of the
7.654 MeV state and the BGT values are strongly overestimated in table 4.11.

A second 2+ state was found around 15–16 MeV with a large GT strength.
This could possibly correspond to the third 2+ strength in Model 9 for which

the strength could not be determined in the fits. Instead an estimate is given
in table 4.11 obtained by integrating the inverse f t value in figure 4.23. These

values are consistent with the calculations including the 3NF. The experimen-
tally observed asymmetries are not reproduced in the calculations as no cou-

pling to the continuum is included and the employed ChPT 3NF is isospin
invariant.

The Gamow-Teller strength in the β-decays of 12N and 12B has also been
studied with phenomenological approaches. Using a derived effective inter-



4.7. Comparison to theory 125

Ex AV8 + TM AV8

(MeV) 4~ω 4~ω

0 0.222 0.0850

Table 4.10: No-core shell model calculations of the Gamow-Teller strength to the
ground state both with and without the Tuscon-Melbourne TM(99) three-nucleon in-
teraction [Navrátil 2003].

Ex
Jπ

12N 12B

(MeV) Exp. NN NN + 3NF Exp. NN NN + 3NF

0 0+ 0.2950(14) 0.081(20) 0.337(79) 0.331(2) 0.082(20) 0.341(81)

4.44 2+ 0.0270(4) 0.0050(9) 0.0054(13) 0.0297(9) 0.0044(6) 0.0044(11)

7.65 0+ 0.093(2) 1.18(23) 0.85(11) 0.110(3) 0.98(15) 0.88(13)

12.71 1+ 0.462(12) 0.710(8) 0.662(26) 0.51(3) 0.837(12) 0.687(26)

15 − 16 2+ 0.6(2) 1.50(16) 0.80(8)

Table 4.11: BGT values from no-core shell model calculations compared to experi-
mental values from the present work. Isospin breaking is included in the nucleon-
nucleon (NN) interaction. The three-nucleon force (3NF) is isospin invariant [Hylde-
gaard 2009b].

action [Warburton 1992] for the 0p1sd shell-model space the GT strengths to

the states listed in table 4.12 were calculated in [Chou 1993]. Their BGT-values
are very similar to the NCSM NN + 3NF results. The 7.654 MeV (0+2 ) state was

considered to be outside the 0p1sd model space, but in contrast to NCSM a
0+ state in the 9–12 MeV range was found in the model space. Note, however,

that the experimental 10.3 MeV state was included in the list of states used to
derive the effective interaction [Warburton 1992].

The shell-model calculations by [Suzuki 2003] and [Smirnova 2003] are
only for the ground state and the 4.44 MeV state. The calculations are consis-

tent within 10% to this work.

The broad 0+3 and 2+2 states are not explained by the NCSM indicating
that these are strongly clustered states in 12C. 3α cluster calculations give a
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Ex
Jπ

Experiment [Chou 1993] [Suzuki 2003]
(MeV) 12N 12B free eff. 0~ω 2~ω

0 0+ 0.2950(14) 0.331(2) 0.502 0.341 0.3867 0.3228

4.44 2+ 0.0270(4) 0.0297(9) 0.039 0.033 0.0352 0.0299

11.2(3) 0+ 0.06(2) 0.07(3) 0.943 0.641

12.7 1+ 0.462(12) 0.51(3) 0.887 0.638

15.11 1+ 0.0346 0.0214

Table 4.12: Shell-model calculations of BGT values from [Chou 1993] and
[Suzuki 2003].

Ex
Jπ INC +HO I : INC +WS II : INC +WS II : (INC +WS)∗

(MeV)

12B
0 0+ 0.315 0.264(0.281) 0.292(0.291) 0.264

4.44 2+ 0.0644 0.0607(0.0620) 0.0614(0.0611) 0.0592

12N
0 0+ 0.313 0.225(0.243) 0.265(0.263) 0.216

4.44 2+ 0.0648 0.0543(0.0557) 0.0569(0.0564) 0.0532

Table 4.13: Shell-model calculations of the Gamow-Teller strength to the ground state
and first excited state. [Smirnova 2003].

11.3 MeV, Γo = 1, 0+ state consistent with the experimental value found in this

work [Álvarez Rodriguez 2007]. The coexistence of a 2+2 and a 0+3 state in the 9
to 12 MeV energy region is also consistent with results in the complex-scaling

method [Kurokawa 2004].



CHAPTER 5

Direct decay

Common for the analysis of the A = 8 and 12 β-decay experiments is the need
for one or more levels in the R-matrix model with unphysically large widths

and or beta strengths. In the R-matrix framework the reason for this is that
the basis has been truncated to a final size and the unphysical levels merely

compensate for the lacking, and in principle infinitely many continuum lev-
els. In this chapter the possibility will be explored whether the unphysical

levels account for direct decay via the continuum rather than for higher lying
resonances that can not be constrained further with the present data.

R-matrix formalism is specifically well suited for analysing resonant pro-
cesses. Direct reactions or decay are not as easily treated. As noted in

[Lane 1958, II 4 p. 265], “..the only factor in R-matrix theory that could possibly

correspond to direct mechanisms are the sums over the far-away levels”. This short

remark is consistent with the fact that not all R-matrix levels are resonances.
Lane and Thomas discuss in XI 6 p. 318 how direct processes can be treated

quantitatively within R-matrix. The principle is that direct decay must be as-
sociated with single-particle motion and to account for very short lifetimes

(large widths) one must sum over many, longer-lived levels with long-range
correlations between the levels in the sum.

A simple model of the direct decay component is a series of single-particle
levels for the square-well potential with constant potential, V0, in the internal

region. The solutions for the level energies are [Lane 1958, IV 3 p. 275]

Eλ = V0 +
π2~2

2µca
2
c

(

λ − 1
2

)2

, λ = 1, 2, 3, · · · (5.1)

and the reduced width amplitudes are equal to the Wigner limit with alter-
nating signs,

γλ = (−1)λ+1
(

~2

µca
2
c

)

. (5.2)
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Even if V0 = 0 there will be an infinite number of solutions, and such levels
can not be interpreted as resonances in the sense that a compound nucleus

has to be formed for a resonant process to take place, and that is not possible
with no interaction between the particles. The solutions to the square-well

potential with zero interaction sum to a total cross section at all energies of
zero (in the case of scattering) as was already realised by Wigner and Eisenbud

in 1947 [Wigner 1947]. The example was used as an illustration to show that
the result can become very wrong if only the first few levels are included and
that an energy level not always corresponds to an increase in the cross section

at the level energy. Direct reactions were not seen experimentally before a few
years after the paper by Wigner and Eisenbud.

The square-well energy levels depend on the channel radius. When the

channel radius is increased the level energies decrease and this is exactly the
tendency both seen in β decay of 8B for the energy of the intruder state (figure

3.11) and in β decay of 12N and 12B for the energy of the upper 0+ state (figure
4.34). Both the spectra for A = 8 and A = 12 are adequately described by a
model where the high-energy levels are replaced by a series of e.g. 3–5 square-

well levels with fixed level spacing and reduced widths. The only variable
parameters are the offset V0 and common β strength, gλ.

The interpretation of Barker’s intruder state in 8Be as a resonance is diffi-

cult because no peak or other feature is seen in the spectrum. Barker’s crucial
argument for why a 2+ state should exist between the 3 MeV state and the

doublet is that the model fits both reaction, decay and scattering data simul-
taneously. This requirement is very reasonable, but looking at the results from
Barkers’ most recent analysis [Barker 1989], the agreement between the fits to

the d-wave scattering phase shift and β-decay α spectrum is not impressive.
Barker finds that the scattering phase shift suggests a 3 MeV peak that is more

narrow than indicated by the β-decay α spectra and the simultaneous fits give
reduced χ2 values of about 2.5 1. In both β decay and α-α scattering a contri-

bution from direct decay could reasonably contribute to the spectra, but not
necessarily in the same way, and that might explain the deviations.

In the β decays to 12C the unphysical upper 0+ and 2+ states appear when

1The values of χ2/d f ∼ 2.5 were obtained by re-calibrating the α-spectra measured by
Wilkinson and Alburger [Wilkinson 1971]. Using the original calibration Barker obtains
χ2/d f ∼ 3.5 in the best fits.
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trying to fit the component above the 12.71 MeV peak in the spectrum for 12N
decay. From figures 4.29, 4.30 and 4.32 it is evident that the strength increases

above the 12.71 MeV peak but otherwise the only structure seen is the 15.11
MeV peak. The strength between 15 and 16 MeV of 0.6(2) is a large fraction

of the allowed strength, which was estimated to between 2 and 4 according
to the sum rule in section 2.7.2, where ∼ 1 has to be subtracted for the known

strength to bound and unbound states. The spectrum is very slowly increas-
ing between 13 and 15 MeV, and if this is due to the low-energy tail of a res-
onance it would either have to be very broad or lie above the Q-value with a

very large strength as found in Models 8 and 9 (see tables 4.6 and 4.7). States
with close to a reasonable strength were found below or close to the Q-value

for Model 8, but those solutions were aided by the interference with a 2+ state
dominating below the 12.71 MeV peak, and the 15–16 MeV region, which is

excluded from the fit, becomes somewhat underestimated.

For both 8B- and 12N-/12B-decay the spectra are constructed of a few res-

onance peaks plus regions with virtually no structure. Of the two possible
interpretations of the broad regions, either in terms of decay directly via the

continuum or several broad, interfering states, the direct decay model seems
the most adequate.

It is not possible to obtain further information about the break-up mech-

anism from R-matrix theory. Theories which can distinguish resonant from
direct decay contributions are required for this purpose. One such candidate

is the shell model in the continuum [Okolowicz 2003].

β decay directly to the continuum is a probable decay mechanism for sys-

tems with a dilute structure in the initial state providing a larger overlap
with the continuum wave functions. A good example is halo nuclei such

as 6He and 11Li. The 6He nucleus decays predominantly to the 6Li ground
state but has a very small branch for decay directly to the α + d continuum,

BR = 1.65(10) · 10−6 [Raabe 2009]. Measurements of the β decay of 11Li indi-
cate a direct decay component to 9Li+d [Raabe 2008]. Another nucleus which

might possess a direct decay channel is 9Li. The β-delayed breakup of 9Li has
been analysed in terms of resonant breakup via 9Be [Prezado 2005], and be-

cause these resonances are all very broad, it is possible that direct decay could
account for some of the β strength. For both 8Be, 12C and 6He, direct decay is
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observed close to the Q-value, and if this is a general aspect of direct decay, the
experimental observation of the effect requires high-statistics measurements.



CHAPTER 6

Summary

In this work β-decay to light nuclei breaking up into α particles has been

studied with different experimental techniques. The data has been analysed
within the R-matrix formalism for multiple levels and many break-up chan-
nels.

The β decay of 8B has been investigated using the IGISOL method and
coincident detection of the two β-delayed α particles with a detector setup

of large solid-angle coverage. The experiment has provided a high-quality
spectrum of 2α coincidences and the accuracy of the measurement is further

supported by the consistency between the coincidence and single-α spectra.
Previous measurements of the β decay of 8B did not provide this internal con-

sistency check, and the amount of data in other coincidence measurements
was significantly less. The spectrum presented here disagrees with the spec-

tra in [Winter 2006] and [Bhattacharya 2006]. The 3 MeV peak energy in our
data is 25 keV lower.

The 2α energy distribution has been fitted using R-matrix models for a sin-

gle break-up channel (L = 2) serving as the simpler example of application of
the formalism in the context of this thesis. Good fits were obtained for four

unbound 2+ levels in the model: The 2+1 state at 3 MeV, the two states forming
the isospin doublet at 16.6 MeV and an additional level either below or above

the doublet. This confirms the results in [Warburton 1986] and [Bhattacha-
rya 2006], that no state below the doublet is needed to describe the data, but

at the same time, Barker’s model with a state below the doublet fits the data
equally well [Barker 1969, Barker 1989]. In either case the contribution from

the third level is small and very broad and the interpretation of such a level
below the doublet as a resonance is questionable. A more likely explanation

is probably in terms of direct decay.

The 8Be(2α) final state distribution presented here is the most accurate
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measurement to date, with a thorough understanding of the experimental ef-
fects and an excellent R-matrix parameterisation. It will be used to calculate

a revised neutrino spectrum for 8B β decay. A preliminary spectrum was pre-
sented here in comparison to the standard reference [Winter 2006], and the

disagreement in the 8Be energy spectra is seen to also give differences in the
neutrino spectra.

A complementary measurement to the one presented here has been per-

formed at KVI with the implantation technique described in section 4.4. The
analysis of this experiment is currently being performed and the result will

provide an interesting comparison with the final state distribution from JYFL.

Unbound states in the triple-α continuum of 12C have been studied with

β decay of the mirror isotopes 12B and 12N. This was done using the same
method as for 8B decay with a similar setup to obtain 3α coinidence data.

As for 8B the method provides an internal consistency check by comparing
single-α and 3α spectra. The comparison is less straight forward for three

α particles and some assumptions on the breakup are required. Results for
the relative branching ratios from single and 3α data are in good agreement.

The full kinematics of the breakup was measured and this has provided new
insight in the breakup mechanism as a function of the excitation energy [Di-
get 2009].

A complementary experiment for studying β decay to 12C was performed
using inverse kinematics for production of 12B and 12N, which were implanted

inside the detector. This allowed for studies of the low-energy region of the
3α continuum including the Hoyle state. High precision branching ratios and

BGT values for the narrow states was obtained model-independently from the
data. The 12N and 12B spectra from this experiment have been analysed simul-

tanously with spectra separated into the individual break-up channels from
the IGISOL experiment within the R-matrix formalism adapted to sequential

three-body breakup via broad intermediate states. It was possible to obtain
good fits to models with four unbound states: The Hoyle state, a 0+ state, a 2+

state and an additional 0+ or 2+ state. To obtain consistency with the require-
ments from the separate analysis of the IGISOL data that 0+ dominates below

the 12.71 MeV peak and 2+ above it, in the break-up channel to excited states
in 8Be, a fifth level was included in the parametrisation. The analysis shows
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evidence for a 0+ and a 2+ state between 10.5 and 12 MeV confirming the result
from [Diget 2005] that the 10.3 MeV state in the literature with Γ = 3 MeV and

possible 0+ assignment has been misinterpreted as a very broad state due to
its interference with the Hoyle state and the threshold effect giving rise to the

Hoyle state ghost between 8 and 9 MeV. That the resonance is located closer
to 11 MeV is seen by plotting the spectra divided by the phase space and pen-

etration function for the breakup channel as in figure 4.32. In general this type
of plot is a better illustration of the resonance distribution than the measured
spectra. The 2+2 state found in this work is broad and with its high energy it is

not expected to contribute significantly to the triple-α process. The data pre-
sented here shows no evidence for an unbound 2+ state at lower energies as

suggested by other experiments [Itoh 2004,Freer 2009]. The two additional 0+

and 2+ levels above the Q-value are characterised by unphysical parameters

and can not be interpreted as physical resonances. As discussed in chapter
5 the most adequate interpretation of the increase in strength above the 1+

peak is in terms of direct decay. With the analysis of the 3α continuum in 12C
presented here, the applicability of R-matrix theory has reached its limits, and

a better understanding of these processes can only be obtained by dedicated
theoretical work.

Other experimental studies which might shed more light on the existence

of a low-lying 2+2 state in 12C are e.g. the reaction studies mentioned in the in-
troduction performed at the Centro de Microanálisis de Materiales in Madrid

[Kirsebom 2009]. The precise 2+ contribution to the spectra in figure 1.5 is not
expected to be determined unambiguously, but an assessment of the contri-

bution of a 2+ component between the peaks should be possible from a Dalitz
plot analysis similar to that performed for the 3α coincidence experiment pre-

sented here [Diget 2009]. Such an analysis could determine if the suggested
2+ states around 9 MeV are not seen in β decay studies merely because the

state has a vanishing overlap with the 12N and 12B ground states.

New experimental studies of the β-delayed 3α breakup are planned at

JYFL to repeat the 2004 experiment with increased statistics. This could im-
prove our understanding of the high-energy region of the 3α spectrum, where

the amount of events in the preceding experiment was too low to reject or
confirm the shape of the spectrum measured at KVI. It will also constrain the
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breakup mechanism of the high-energy components further.



APPENDIX A

Details of the formalism

A.1 The shift and penetration functions

The shift and penetration functions are given in equations 2.27 and 2.28. The

negtive energy solution for the shift function was not given, so for complete-
ness the full solutions are

Sc(ηc, ρc) =



























ρRe
(

Fc·F′c+Gc·G′c
|F2

c |+|G2
c |

)

, E > 0

0, E = 0

ρRe
(

i
H′c
Hc

)

, E < 0

(A.1)

Pc(ηc, ρc) =















ρ

|F2
c |+|G2

c |
, E > 0

0, E ≤ 0,
(A.2)

where Re(x) denotes the real part. ηc and ρc are defined as [Lane 1958]:

ηc = αZ1Z2

√

µcc2

2|E| (A.3)

ρc =

√

2µc|E|
~2 ac (A.4)

where α is the fine structure constant, µc is the reduced mass and ac the chan-
nel radius ac = r0(A1/3

1 + A1/3
2 ).

The Coulomb and Hankel functions are calculated using the C++ imple-
mentation cwfcomplex [Michel 2007]. This program has been tested and found

to be consistent with a similar program in fortran using the CERNLIB routine
WCLBES [Thompson 1985, Thompson 1986]. The Gnu Scientific Library rou-

tine gsl_sf_coulomb_wave_FGp_array can also be used to calculate Coulomb
wave-functions, but only for positive energies [GSL 2010].

The shift and penetration functions for the α-α system with L = 2 are
shown in figure A.1. Both are monotonically increasing functions.
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Figure A.1: Shift and penetration functions for the L = 2, α-α system.

A.2 Integral of the single-level energy profile

In this section the integrals of equations 2.69 and 2.71 will be shown to be
given by the results in equations 2.97 and 2.96 respectively.

Considering first the narrow level approximation and choosing Sc(Eλ) =
Bc,

wλ(E) = C2 fβ
∑

x=F,GT

|gλx|2
(

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

)

1
2Γ

o
λ

|Eλ − E + i1
2Γ

o
λ
|2
, (A.5)

the integral over all energies is

∫ ∞

0
wλ(E)dE = C2 fβ

∑

x=F,GT

|gλx|2
(

1 +
∑

c γ
2
λc

δSc

δE

∣

∣

∣

E=Eλ

)

∫ ∞

0

1
2Γ

o
λ

|Eλ − E + i1
2Γ

o
λ
|2

dE.

(A.6)

The integrant will now be denoted f (E) and has complex poles for E = E± =

Eλ± i
2Γ

o
λ
. The integral can be evaluated by performing the path integral along

the contour shown in figure A.2 in the anticlockwise direction around the pole

in the upper half-plane. The path integral along the contour, c, is given by
Cauchy’s residue theorem,

∮

c

f (E)dE = 2πi Res( f,Eλ +
i

2
Γλ), (A.7)
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Figure A.2: Poles and contour in the complex plane.

where the residue at the pole is found using the formula for a pole of first

order,

Res( f,E+) = lim
E→E+

(E − E+) f (E) =
−Γλ/2

E− − E+
=

1
2i
. (A.8)

The path integral along the arc of the contour vanishes as the radius goes to

infinity, leaving
∮

c
f (E)dE =

∫ ∞
−∞ f (E)dE. Because Eλ is positive and the level

narrow, the integral over the negative energies can be neglected and equation

A.7 gives,

∫ ∞

0

1
2Γ

o
λ

|Eλ − E + i1
2Γ

o
λ
|2

dE = π, (A.9)

leading to the result in equation 2.96.

For broad states the integral reads

∫ ∞

0
wλ(E)dE ≈ C2 fβ

∑

x=F,GT

|gλx|2
∫ ∞

0

1
2Γλ

|Eλ − E + ∆λ + i1
2Γλ|2

dE, (A.10)

which is valid when the variation of the phase space factor can be neglected
over the energy range of the level. This is a valid assumption for levels far

from the Q-value. For the inverse f t value the integral is given by the exact
expression,

∫ ∞

0
( f t)−1

λ (E)dE = C2
∑

x=F,GT

|gλx|2
∫ ∞

0

1
2Γλ

|Eλ − E + ∆λ + i1
2Γλ|2

dE. (A.11)
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In the single-level cross section formula an additional penetrability is added
from the reaction channel,

σλ(E) = C2γ2
λcPc(E)

1
2Γλ

|Eλ − E + ∆λ + i1
2Γλ|2

, (A.12)

so, similar to β decay, one has to correct for this energy dependency in the
entrance channel for comparison of the level energy profile.

Γλ and ∆λ vary with energy via the penetration and shift functions. The

integrant has poles at E± = Eλ ± i
2Γλ(Eλ). As for the narrow level case, the

path integral along the contour, c, in figure A.2 is performed. The Coulomb

functions in the shift and penetration functions are now replaced by the so-
lutions for a complex energy. The asymptotic behaviour of F and G for large

ρ are given for real energy solutions in [Lane 1958] III, equations 2.11a and
2.11b. The asymptotic behaviour of the penetration function is therefore de-

termined by ρ ∝
√

E. It seems reasonable that the asymptotic behaviour of
complex Coulomb functions is not much different, so f (E) falls off as

√

(E)/E2

for E → ∞ and the integral along the arc goes to zero as the radius goes to
infinity.

∫ ∞
−∞ f (E)dE =

∫ ∞
0 f (E)dE because P(E) = 0 for E < 0. The residue is

equal to 1
2i , using formula A.8, and the residue theorem leads to the result,

∫ ∞

0

1
2Γλ

|Eλ − E + ∆λ + i1
2Γλ|2

dE = π, Eλ > 0. (A.13)

This result has been verified numerically, for example for the single-level ap-

proximations of the ground and first-excited states in 8Be.

The result is only valid for positive level energies. For negative Eλ the
integrant has a pole of second order on the negative real axis, because Γλ = 0

for E < 0.

A.3 β-decay phase space

The β particle energy distribution in equation 3.23 is modified by the function
F(Z,E), which is the Coulomb correction or Fermi function, which corrects for

the modification of the β-particle wave function by the Coulomb field of the
nucleus. The Fermi function for a nucleus approximated by a point charge is
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given by [Blatt 1952]:

F(Z,E) =
2(1 + s)
[(2s)!]2

(2pρ)2s−2eπη
[

(s − 1 + iη)!
]2 , (A.14)

where s =

√

1 −
(

Ze2

~c

)2
; ρ = R

~/mc , R is the nuclear radius and p the electron or

positron momentum in units mec. η is defined as:

η =















+
Ze2

~v β−−decay
−Ze2

~v β+−decay,

where v is the electron or positron speed and ZD is the charge of the daughter

nucleus.
The β-decay phase space factor, fβ, provides the phase space available for

the β particle and neutrino in the decay. It is calculated by integration of equa-
tion 3.23 over all β energies. In this work, the parametrisation in [Wilkin-

son 1974] has been used, which includes the finite size of the nucleus, screen-
ing by atomic electrons and an outer radiative correction:

f = S fz=0 (A.15)

fz=0 =
1
60

(

2W4
0 − 9W2

0 − 8
)

p0 +
1
4

W0 ln
(

W0 + p0
)

(A.16)

ln S = a0 + a1 ln E0 + a2(ln E0)2
+ a3(ln E0)3, (A.17)

where E0 is the electron kinetic energy end point, Qβ−E, in keV, W0 is the total

electron energy end point in units me ,W0 = (E0 +me)/me, and p0 = (W2
0 − 1)1/2.

The ai are tabulated in [Wilkinson 1974].
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