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Outline

The dissertation is divided into two parts. Part I deals with the measurement of the
β decay of 8B performed in January 2008 at the IGISOL facility of the University of
Jyväskylä, Finland. Part II deals with the 3He+ 10,11B reaction experiments performed
in March 2008 at the CMAM facility in Madrid, Spain.

The aim of the IGISOL experiment was to determine the energy spectrum of the
neutrinos emitted in the β decay of 8B with an improved accuracy compared to exist-
ing measurements. The experimental approach consisted in measuring the energies
of the two α particles resulting from the breakup of the daughter nucleus, 8Be. The
neutrino spectrum of 8B plays an important role for the physical interpretation of
the solar neutrino measurements which, over the past 40 years or so, have deepened
our understanding of solar physics as well as our understanding of the fundamental
properties of matter.

The discussion is divided into six chapters. Chapter 1 gives an introduction to
the subject, first clarifying the astrophysical relevance, then discussing some nuclear
physics aspects and finally reviewing the past measurements of the 8B neutrino spec-
trum. Chapter 2 describes the experimental approach. The setup is introduced and
various aspects of the response of the detection system are discussed. Chapters 3–4
concern the analysis of the experimental data. A preliminary neutrino spectrum is
extracted and compared to the spectra obtained in past measurements. Chapter 5
concludes and looks to the future. Finally, Chapter 6 presents additional physics re-
sults not directly related to the β decay of 8B.

The aim of the CMAM experiment was to measure the properties and the decay
of resonances (i.e. excited states) in the 12C nucleus. The ultimate goal, to improve
our understanding of nuclear structure, in particular the tendency of the nuclear con-
stituents, the protons and neutrons, to form clusters within the nucleus.

The discussion is divided into seven chapters. Chapter 7 reviews fundamental
aspects of nuclear structure in a historical context. The concept of α clustering is
introduced and its relevance for the structure of 12C discussed. Chapter 8 concerns
the 3He + 10,11B reactions used to populate resonances in 12C. Chapter 9 describes
the experimental setup and various aspects of the data analysis including the Monte
Carlo simulations. Chapters 10–12 present and discuss the results. Finally, Chapter 13
concludes and looks to the future.
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8B Neutrinos

1





CHAPTER 1

Introduction

1.1 A Brief History of the Solar Neutrino Problem

The solar neutrino problem emerged in 1968 when Davis and co-workers measured
a neutrino flux that was less than half of the solar model prediction. The solution of
the problem took more than 30 years. In the words of John N. Bahcall (1934–2005):

I am astonished when I look back on what has been accomplished in the
field of solar neutrino research over the past four decades. Working to-
gether, an international community of thousands of physicists, chemists,
astronomers, and engineers has shown that counting radioactive atoms
in a swimming pool full of cleaning fluid in a deep mine on Earth can
tell us important things about the center of the Sun and about the prop-
erties of exotic fundamental particles called neutrinos. If I had not lived
through the solar neutrino saga, I would not have believed it was possi-
ble. [Bah04a]

As we shall see, the 8B nucleus has been and still is one of the great protagonists of
the solar neutrino saga. Its production rate through proton capture on 7Be and the
energy spectrum of the neutrinos emitted in its decay are essential ingredients to our
understanding of the solar neutrino fluxes measured on Earth.

1.1.1 Missing Neutrinos

The basic principles of nucleosynthesis and energy production in stars were laid
down in 1957 in the seminal papers of Burbidge, Burbidge, Fowler and Hoyle [Bur57]
and, independently, Cameron [Cam57], though nuclear fusion had been generally
recognized as the source of stellar energy since the 1930s. In the Sun, hydrogen is
converted to helium via a chain of reactions which may be summarized as

4p + 2e− → 4He + 2νe + 26.731 MeV .

The primary process is the pp chain, shown in Fig. 1.1, which is responsible for 98%
of the energy production; the carbon-nitrogen-oxygen (CNO) cycle accounts for the

3



4 Chapter 1. Introduction

p + p →
2H + e+ + νe p + p + e− →

2H + νe

(pp) (pep)

99.75% 0.25%

2H + p →
3He + γ

86% 14% 2 × 10−5 %

3He + 3He →
4He + 2p 3He + 4He →

7Be + γ 3He + p →
4He + e+ + νe

(hep)99.89% 0.11%

7Be + e− →
7Li + νe

7Be + p →
8B + γ

7Li + p →
4He + 4He 8B →

8Be + e+ + νe

8Be →
4He + 4He

ppI ppII ppIII

Figure 1.1: The three cycles of the pp chain and associated neutrinos. The reactions producing
neutrinos are highlighted in blue. The standard solar model branching ratios, in percent, are
indicated at the points where pairs of reactions compete. Adapted from [Hax08].

remaining 2%. It was soon realized that the weakly interacting neutrinos, if measured
on Earth, could provide direct experimental evidence for the solar model proposed
by [Bur57,Cam57]. In 1968, Davis and co-workers reported the result of the first such
experiment [Dav68]. Surprisingly, they measured a solar neutrino flux that was less
than half of the solar model prediction [Bah68]. The measurement was an impressive
accomplishment: 37Ar atoms produced via the capture reaction,

νe +
37Cl → 37Ar + e− − 0.814 MeV ,

at a rate of 0.5 per day, had to be extracted from a tank located deep underground
in the Homestake gold mine in South Dakota, USA, containing 615 tons of chlorine-
based cleaning fluid (C2Cl4), and counted by observing the 2.83 keV Auger electron
emitted in the electron-capture decay of 37Ar back to 37Cl.

The solar neutrino energy spectrum predicted by the current standard solar model
[Bah04b] is shown in Fig. 1.2. While the total neutrino flux is constrained by the
Sun’s luminosity, the relative neutrino fluxes depend on nuclear cross sections and
the properties of the solar environment such as the temperature, density and com-
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Figure 1.2: The solar neutrino energy spectrum predicted by the standard solar model. For
continuum sources, the neutrino fluxes are given in number of neutrinos cm−2 s−1 MeV−1 at
the Earth’s surface. For line sources, the units are number of neutrinos cm−2 s−1. To avoid
complication in the figure, the difficult-to-detect CNO neutrino fluxes have been omitted. The
percentages give the theoretical uncertainties. Adapted from [Bah04b].

position. Due to the strong energy dependence of the tunneling probability asso-
ciated with the Coulomb barrier penetration, the competition between the three pp
branches is rather sensitive to the solar core temperature. As indicated in Fig. 1.2,
the Homestake measurement was primarily sensitive to the 8B neutrinos. The strong
dependence of the 8B neutrino flux on the solar core temperature (φ ∝ T18

c ) meant
that the deficit observed in the Homestake experiment could be explained by lower-
ing the central temperature of the Sun somewhat. Furthermore, large error bars were
associated with the laboratory measurement of the low-energy cross section for the
7Be(p, γ)8B reaction. For these (as well as other) reasons, it was originally believed
that the fault lay with the solar models and not with our understanding of neutrino
properties [Bah03].
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1.1.2 The Multiple Personality Disorder of Neutrinos1

The Standard Model of particle physics assumes neutrinos to be massless, but there
are no fundamental reasons why this should be the case. If one allows for finite neu-
trino masses and assumes that the mass eigenstates (eigenstates of the free Hamil-
tonian) differ from the flavor eigenstates (eigenstates of the weak Hamiltonian), one
finds that a neutrino initially produced in a pure flavor eigenstate, for example an
electron neutrino produced in a β decay of some nucleus, does not remain a pure fla-
vor eigenstate as it propagates away from the source. This happens because the dif-
ferent mass eigenstates comprising the flavor eigenstate accumulate different phases,
a phenomenon known as “vacuum oscillations” and first discussed by Pontecorvo in
1967 [Pon67]. The flavor and mass eigenstates are related by a unitary transforma-
tion,
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which is often re-written in terms of three mixing angles, θ12, θ13, θ23, one so-called
Dirac phase, δ, and two Majorana phases, φ1, φ2. For negligible θ13, the electron
neutrino survival probability in vacuum is given by

Pee = 1 − sin2 2θ12 sin2
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where x is the distance propagated, E is the neutrino energy and δm2
12 = m2

2 − m2
1

is the mass-squared difference. Because the Homestake experiment was sensitive
only to electron flavor neutrinos, oscillations to a different flavor would render them
invisible.

As pointed out by Wolfenstein in 1978 [Wol78], neutrinos acquire an effective
mass in the presence of matter which may be significantly different from the rest
mass. In the interior of the Sun, the effective mass of the neutrino reflects the elec-
tron density of the surrounding medium; the effective mass acquired by the electron
neutrino is larger than that of the muon neutrino due to the enhanced νe-e interac-
tion compared to νµ-e. In 1985, Mikheyev and Smirnov showed that this could lead
to large oscillation probabilities even for small mixing angles [Mik85]. This effect,
referred to as matter-enhanced neutrino oscillations or the MSW effect after its dis-
coverers, may be understood as a level-crossing phenomenon [Bet86].

We now know that the mixing angle is, in fact, rather large (contrary to what was
generally believed at the time Mikheyev and Smirnov published their work) imply-
ing a large oscillation probability even in vacuum. Even so, vacuum oscillations can-
not by themselves explain the measured neutrino fluxes. The MSW effect is needed.

1This phrase was borrowed from [Bah04a].
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Interestingly, the MSW effect also occurs in the Earth leading to a difference in day
and night neutrino fluxes. So far this effect has not been observed [Smy10].

1.1.3 Definite Proof

In 1990, the deficit in the solar neutrino flux, first observed by Davis and co-workers
in 1968, was confirmed by the Japan-based Kamiokande experiment [Hir90]. Fur-
thermore, it was shown that the neutrinos were indeed coming from the Sun. In the
Kamiokande experiment, originally designed for proton-decay search, a tank con-
taining 3 000 tonnes of purified water was used as target. Neutrinos were detected
by the Cherenkov radiation produced by elastically scattered electrons. The cross
section for ν-e elastic scattering is peaked at forward angles giving Kamiokande di-
rectional sensitivity.

During the first half of the 1990s, further evidence supporting the neutrino oscil-
lation interpretation came from the two 71Ga capture experiments GALLEX [Ans95]
and SAGE [Abd94], which used the reaction

νe +
71Ga → 71Ge + e− − 0.233 MeV ,

to detect neutrinos. As indicated in Fig. 1.2, these experiments had a lower detec-
tion threshold than the 37Cl capture experiment and the water Cherenkov experi-
ment, allowing for the first time a measurement of the numerous pp neutrinos. The
combination of Cl, Ga and Kamiokande results was found to be incompatible with
the temperature dependence of the neutrino fluxes predicted by practically any solar
model [Hax08]. In addition, confidence in solar models grew as new helioseismologi-
cal data appeared that was in perfect agreement with theoretical predictions [Bah03].

The successor of Kamiokande, Super-Kamiokande [Fuk01, Fuk02, Hos06, Cra08,
Smy10], started taking data in 1996. Thanks to its much larger size (50 000 tonnes),
it quickly confirmed the deficit in the 8B neutrino flux observed in previous experi-
ments and soon surpassed its predecessors in terms of statistics collected. However,
conclusive evidence for flavor oscillations was missing. Furthermore, the data could
be explained equally well by a number of different parameter choices. There were,
however, hints that the so-called large-mixing-angle (LMA) solution might be the
right one, one hint being that no significant distortion of the 8B neutrino energy spec-
trum was observed [Bah99].

Decisive proof came from the Sudbury Neutrino Observatory (SNO) [Ahm01,
Ahm02, Ahm04, Aha05, Jel09, Aha10] in the early 2000s. In this experiment, neutri-
nos were detected as they traversed a tank containing 1 000 tonnes of heavy water
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Figure 1.3: The combined flux of muon and tau neutrinos versus the flux of electron neutri-
nos. CC, NC, and ES flux measurements are indicated by the filled bands. The total 8B solar
neutrino flux predicted by the standard solar model [Bah04b] is shown as dashed lines and
that measured with the NC channel is shown as the blue band parallel to the model prediction.
The narrow gray band parallel to the SNO ES result corresponds to the Super-Kamiokande
result reported in [Fuk02]. The nonzero value of φµτ provides strong evidence for neutrino
flavor transformation. The data point represents φe from the CC flux and φµτ from the NC-CC
difference with 68, 95, and 99% C.L. contours included. Adapted from [Aha05].

(worth some 300 million US$) by means of three different reactions:

νe + d→ p + p + e− − 1.44 MeV (CC) ,

νx + d→ p + n + νx − 2.22 MeV (NC) ,

νx + e− → νx + e− (ES) ,

where x = e, µ, τ. The charged-current (CC) reaction is only sensitive to electron neu-
trinos whereas the neutral-current (NC) reaction is equally sensitive to all flavors. The
elastic scattering (ES) reaction (the one also used by Super-Kamiokande) is roughly
six times more sensitive to electron neutrinos than muon and tau neutrinos. By mea-
suring the electron neutrino flux as well as the total neutrino flux irrespective of the
flavor content, SNO could provide direct evidence of flavor oscillations independent
of solar models. The neutrino fluxes measured by SNO are displayed in Fig. 1.3. The
total flux measured by SNO agrees very well with the predictions of the standard
solar model.

Experimentally, one major challenge is the detection of neutrons from the NC
reaction. These are detected when re-captured on the deuterons in the heavy water:
A 6.25 MeV γ ray is produced which Compton scatters electrons that, if sufficiently
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Figure 1.4: Energy spectrum measured by SNO (in the CC reaction) compared to that pre-
dicted using an undistorted 8B neutrino spectrum (SSM) and that predicted when the effects
of large-angle-mixing flavor oscillations are included (LMA). The error bars on the data points
only give the statistical uncertainties. The grey band represents the 1σ uncertainty determined
from detector systematic uncertainties. Adapted from [Jel09].

energetic, emit Cherenkov light which may be detected. This technique requires very
low cosmic-ray muon backgrounds below 1% of that found in the Super-Kamiokande
experiment2.

Spectral information is best extracted from the CC reaction which produces an
electron with an energy nearly equal to that of the incoming neutrino less the Q value
of 1.44 MeV. In Fig. 1.4, the energy spectrum obtained by SNO is compared to that
predicted using an undistorted 8B neutrino spectrum3 and that predicted including
large-mixing-angle flavor oscillations. Both are seen to be consistent with the SNO
spectrum. The error bars on the data points give statistical uncertainties only. The
gray band represents the 1σ uncertainty determined from detector systematic uncer-
tainties; it does not include the uncertainties on the laboratory 8B neutrino spectrum.

The most recent spectra published by SNO (Fig. 29 of [Aha10]) and Super-Kamio-
kande (Fig. 1 of [Smy10]) remain consistent with an undistorted spectrum.

2In the second phase of the SNO experiment, two tonnes of NaCl were added to the heavy water so that
neutrons would be captured on 35Cl, resulting in a larger cross section and a more easily distinguishable
signal. In the third phase, 3He-filled proportional counters for direct neutron detection were installed.

3By “undistorted” is meant the neutrino spectrum measured in the laboratory. Here, the laboratory
spectrum of [Ort00] was used.
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1.1.4 Atmospheric Neutrinos

Evidence for flavor oscillations comes not only from measurements of solar neutri-
nos. When cosmic rays hit the atmosphere, pions and kaons are produced which de-
cay to electrons, muons and neutrinos. Theory predicts about twice as many muon
neutrinos as electron neutrinos. For example π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ gives
one electron neutrino but two muon neutrinos. However, in 1998, Super-Kamiokande
reported a ratio of muon to electron neutrinos from the atmosphere that was approx-
imately equal to unity [Fuk98a]. The electron-neutrino flux was roughly as expected
while the muon-neutrino flux was about half of the expected value, suggesting that
something was wrong with the muon neutrinos. The muon-neutrino flux displayed
a strong zenith-angle dependence [Fuk98b]. The strongest suppression was observed
for neutrinos coming from below, i.e. produced on the other side of the Earth. A plau-
sible explanation was that muon neutrinos oscillate into tau neutrinos which are not
seen in Super-Kamiokande because their energy is insufficient to produce tau parti-
cles. The strong suppression suggested maximal mixing, i.e. θ23 ≈ 45 degree, with an
oscillation length comparable to the Earth’s diameter.

1.1.5 Relevance of Remeasuring the 8B Neutrino Spectrum

Following SNO, new measurements of neutrino oscillations have been made by the
Japan-based KamLAND experiment [Egu03]. Its primary goal is to detect antineutri-
nos produced by nuclear power plants surrounding the experimental location. The
antineutrinos are detected in a large tank containing 1 000 tonnes of liquid scintil-
lator through the reaction ν̄e + p → n + e+. The experimental signal consists of the
prompt positron scintillation (which gives the neutrino energy), in combination with
the 200 microsecond delayed capture of the neutron on a proton giving a 2.2 MeV
γ ray (significantly reducing background). The disappearance of electron antineu-
trinos observed by KamLAND is consistent with the oscillation interpretation and,
as the first experiment, KamLAND observes spectral distortion [Ara05, Abe08]. The
energy spectrum measured by KamLAND is consistent with the spectrum predicted
by flavor oscillations while inconsistent with the spectra predicted by two alternative
models (neutrino decay and decoherence). The current best-fit values combining so-
lar neutrino data with KamLAND reactor data, are δm2

12 = 7.59+0.19
−0.21 × 10−5 eV2 and

θ12 = 34.3+1.3
−1.2 degree.

While primarily designed for measuring reactor antineutrinos, KamLAND will
also be measuring 8B neutrinos from the Sun via elastic scattering on electrons, with
a reduced detection threshold compared to Super-Kamiokande thanks to the liquid
scintillation detection technique. It remains to be seen exactly how far down in en-
ergy KamLAND can go. The background levels are expected to be much higher for
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the single-scintillation detection of neutrinos than the double-scintillation detection
of antineutrinos.

At present, spectral information on solar neutrinos only exists above 4 MeV (Super-
Kamiokande and SNO). Given the current oscillation parameters, the spectral distor-
tion is expected to be small in this energy region [Bah99] and has so far not been ob-
served. However, significant spectral distortion is expected around 3 MeV due to the
transition from vacuum to matter-enhanced (MSW) oscillations. (The level crossing
responsible for the MSW effect only occurs above 3 MeV.) This transition can only
be explored if the experimental data is extended to lower energies as KamLAND
promises to do.

Another experiment currently extending the solar neutrino data set to lower en-
ergies, is the Borexino experiment [Arp08] in Gran Sasso, Italy, which is similar to
KamLAND but focuses on the detection of 7Be solar neutrinos. Other on-going neu-
trino oscillation experiments are K2K, MINOS and OPERA. Many question remain
regarding the properties of neutrinos. Most significantly, the absolute masses of the
neutrinos are still unknown. An impressive achievement of solar neutrino measure-
ments is a prediction of the temperature at the center of the Sun to an accuracy of 1%.
If, in the future, neutrinos from the CNO cycle are measured, the solar core metallicity
may also be determined [Hax08].

As Fig. 1.4 demonstrates, present-day solar neutrino experiments are able to mea-
sure the neutrino energy spectrum with 1σ uncertainties (statistical as well as system-
atical) of 10% or less depending on the energy bin. In the future, these uncertainties
are likely to diminish making it possible to detect even small distortions of the 8B
neutrino spectrum. There is, however, one problem. Two of the most recent labora-
tory measurements of the 8B neutrino spectrum are in substantial disagreement, in
particular for large neutrino energies where they differ by as much as 10% [Win06].
This is clearly unsatisfactory. We, nuclear physicists, may soon find ourselves in the
somewhat embarrasing situation that solar neutrino experiments are able to deliver
more accurate measurements of the 8B neutrino spectrum than we. In consequence,
spectral distortions will be difficult to detect, in particular at high energies obscuring
a possible hep neutrino signal, i.e. neutrinos from the 3He+ p→ 4He+ e+ + νe reaction
(see Fig. 1.1).
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1.2 Nuclear Physics Aspects

Before proceeding to review the existing laboratory measurements of the 8B neutrino
spectrum, we shall briefly discuss some nuclear physics aspects of 8B and its decay.

1.2.1 Decay Modes of the 8B Nucleus

1.2.1.1 βDecay

Our present understanding of the β decay of 8B is that it occurs as a two-step pro-
cess. First, the 8B ground state decays to 8Be by emitting a positron and an electron
neutrino. Second, the unbound 8Be nucleus breaks up in two α particles:

8B→ 8Be + e+ + νe ,
8Be→ α + α .

A schematic illustration is given in Fig. 1.5. Transitions from the 2+ ground state of
8B to the 0+ ground state of 8Be or the very broad 4+ state at 11.4 MeV are second
forbidden and hence strongly suppressed. A recent experimental study [Bac07] gives
an upper limit of 7.3 × 10−5 for the branching ratio to the ground state. No 1+ or 3+

states are energetically accessible. This means that the decay proceeds exclusively by
allowed transitions to the 2+ states. In the discussion that follows, the distribution
of excitation energies populated in 8Be will be referred to as the “Ex distribution”.
The majority of the decays proceed via the broad 3 MeV state, resulting in a broad
distribution of α-particle energies peaked around 1.5 MeV.

1.2.1.2 Electron Capture

The 8B nucleus may also decay by capturing one of its atomic electrons (electron
capture, EC):

8B + e− → 8Be + νe .

Electron capture is irrelevant for all but the highest excitation energies in 8Be because
the β+ transition is much faster. With the excitation energy approaching the endpoint
of the β-decay window and the β-decay phase-space factor thus approaching zero,
the roles will eventually be reversed with electron capture gaining the upper hand.

Close to the endpoint of the β-decay window, we find two 2+ states at excitation
energies of 16.626 and 16.922 MeV. These states are known to be nearly maximally
mixed in isospin. We may therefore assume their β-decay matrix elements to be ap-
proximately equal. The lower state is situated 332 keV below the endpoint of the
β-decay window; the upper state only 36 keV below. Since the β-decay phase space
grows with the fifth power of the β energy, we expect the β-decay rates to have the



1.2. Nuclear Physics Aspects 13

8
Li

16.0052 2+; 1

8
Be

0.0 0+; 0

2mec
2

8
B

17.9798 2+; 1

3.0 2+; 0

11.4 4+; 0

17.640 1+; 1

16.626 2+; 0+1

16.922 2+; 0+1

17.2551

7
Li + p

-0.0918

4
He + 4

He

β− β+

8
B

α

Figure 1.5: Nuclear levels in the A = 8 isospin triplet below the ground state of 8B. The levels
are labeled by their energy above the 8Be ground state (in MeV), their spin-parity and their
isospin. Energies and quantum numbers are taken from [Til04]. The 2+ doublet found at an
excitation energy of 16 MeV is strongly isospin mixed.

ratio
rβ(16.922)
rβ(16.626)

∼
( 36 keV

332 keV

)5

= 1.5 × 10−5 .

In the absence electron capture, this is the relative intensity with which the two states
should be seen in the α spectrum.

1.2.2 Halo Structure of the 8B Nucleus

The existence of so-called halo nuclei, characterized by an unusually large spatial
extension, was recognized more than 20 years ago. The large spatial extension of
halo nuclei is explained by the presence of one or two loosely bound valence nucleons
with a large fraction of their wave function extending into the classically forbidden
region. For the wave function of the valence nucleon to extend far into this region,
the nucleon must be lightly bound, and Coulomb and centrifugal barriers must be
small. This explains why nearly all halo nuclei have been found among the light
neutron-rich nuclei.

8B is the only nucleus known to possess a proton halo structure in its ground state
[Jon04]. The proton separation energy is only 137 keV. The most compelling evidence
for the halo structure of 8B comes from p+7Be breakup reactions at relativistic energies
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of 1440 MeV per nucleon on a carbon and lead targets [Sme99]. The halo structure of
8B is inferred from the large one-proton removal cross section as well as the narrow
momentum distribution of the 7Be fragment indicative of a large spatial extension.
For more recent studies, see [Agu09, Fur09].

The halo structure of 8B has implications for the 7Be + p capture cross section at
low energies. In the solar environment, the 7Be + p reaction takes place at a center
of mass energy of ∼ 20 keV. The proton already encounters the Coulomb barrier
at a separation of ∼ 50 fm, making the capture cross section highly sensitive to the
tail of the 8B ground-state wave function [Rii93]. Long the most uncertain rate in
the pp chain, this cross section has recently been determined to an accuracy of 5%
[Jun03, Jun10].

The only excited state in 8Be above the β-decay window energetically accessible in
electron-capture decay, is the 1+, T = 1 state at 17.640 MeV, see Fig. 1.5. It is situated
385 keV above the p + 7Li threshold and known to decay mainly by proton emission.
We may estimate the EC decay rate to this state by picturing 8B as composed of a
proton loosely bound to a 7Be core and assuming that the electron is captured on the
7Be core with the proton acting merely as a spectator. From the 53.22(6) day half-life
of 7Be and the 89.6% braching ratio to ground state of 7Li, we deduce a capture rate
of 1.4 × 10−7 s−1 to the ground state of 7Li. (The first excited state in 7Li at 478 keV
accounts for the remaining 10.4%.) Assuming that the matrix element for electron
capture is unaffected by the presence of the proton, we only have to account for the
difference in phase space in the final state. For EC decays, the phase space is pro-
portional to the neutrino energy squared. In the decay of 7Be to the 7Li ground state,
the neutrino energy is 862 keV; in the decay of 8B to the 17.640 MeV state in 8Be, it is
340 keV. Therefore, our estimate of the EC decay rate is

rEC ∼ 1.4 × 10−7 s−1 ×
(340 keV

862 keV

)2

= 2 × 10−8 s−1 .

In comparison, the total decay rate of 8B, deduced from its 770 ± 3 ms half-life, is
0.9 s−1. The EC decay to the 17.640 MeV state in 8Be has not previously been observed.
A measurement of its strength would deepen our understanding of the halo structure
of the 8B nucleus.
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1.2.3 The 2+ Continuum in 8Be4

The 2+ continuum in 8Be forms a highly interesting subject for R-matrix analysis
[Bar69,War86,Bar89,Bha02,Hyl10a], the ultimate goal set forward by Barker in 1969,
being the consistent description of the data obtained from β-decay studies of 8Li and
8B as well as from α+α scattering studies. The R-matrix analysis of the present data is
the subject of the PhD dissertation of S. Hyldegaard [Hyl10a]. Here the R-matrix de-
scription of the 2+ continuum will serve, merely, to give an accurate parametrization
of the data, useful for the calculation of the neutrino spectrum.

Since many years, the mirror decays of 8Li and 8B to 8Be have been used to study
the properties of the so-called “induced weak currents” in nuclei [Gre85] (only sur-
passed in popularity by the mirror decays of 12B and 12N to 12C). Generally speaking,
the term “induced weak currents” designates the modifications to weak processes
occurring in nuclei due to the presence of strong interactions, implying that induced
weak currents are sensitive to the underlying quark structure of the nucleons. The
modifications are of recoil order, which is to say at the 10−3 level or below, and are
best studied in relative measurements of mirror decays whereby effects of nuclear
structure are minimized. More specifically, one compares the β− and β+ strength func-
tions [Wil71], or one compares the form of the β-α angular correlations [Sum08]. See
also [GM58, Wil00].

4By “2+ continuum” is meant excited states of spin-parity 2+.



16 Chapter 1. Introduction

1.3 Laboratory Measurements of the 8B Neutrino

Spectrum

The 8B neutrino spectrum cannot be derived theoretically because nuclear theory is
unable to give a reliable prediction of the Ex distribution (defined in Section 1.2.1.1).
Therefore, measurements are needed.

The best would be if we could determine the 8B neutrino spectrum directly by
detecting the neutrino and measure its energy. This approach is not feasible because
we are unable to produce 8B in the quantities needed to compensate for the tiny in-
teraction cross-section of neutrinos. The next best solution would be to measure the
energy of the positron and the two α particles and use energy conservation to deduce
the neutrino energy. In principle, this would be possible. However, in practice, a
β-α-α triple-coincidence measurement presents quite a challenge. Not that the three
particles cannot be detected and their energies measured. The challenge is to collect
enough statistics and, not least, convince any referee that one is in complete control
of all experimental effects.

In the first two studies of the β decay of 8B, performed in 1960 [Far60] and 1971
[Wil71], only singles α spectra were measured. The Ex distribution had to be unfolded
from the recoil broadening distribution, cf. Section 3.1.2, but this can be done with lit-
tle uncertainty thanks to the narrowness of the recoil broadening distribution. Small
solid-angle detectors were employed to reduce β summing5. At low energies, the α
singles spectra were affected by the β background. The energy loss of the α particles
in the catcher foil and the detector dead layer was a source of systematic uncertainty
in the energy calibration of the detectors. More recently, in 1987, the singles β spec-
trum was measured by [Nap87]. In this case, the Ex distribution had to be unfolded
from an even broader β spectrum. In 1996, Bahcall et al. compared the existing mea-
surements of the 8B neutrino spectrum and determined what became for some time
the standard neutrino spectrum [Bah96].

A measurement of the sum energy (i.e. total energy) of the two α particles pro-
vides a direct (no need for unfolding) and hence more reliable determination of the
Ex distribution than the singles measurements. Such measurements have only re-
cently become feasible thanks to advances in detector technology.

The first measurement of this type was performed by Ortiz et al. in 2000 [Ort00].
In their experiment, the 8B activity was implanted in a thin carbon foil and the α
particles were measured in coincidence in two 256 mm2 Si detectors placed at op-
posite sides of the foil. A strong magnetic field (3.5 T) was applied to sweep away
the positrons which, owing to their smaller momentum, have their trajectories bent

5By “β summing” is meant the coincident detection of an α particle and a positron in the same detector,
whereby the sum energy (i.e. total energy) of the two particles is measured.
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much more easily than the α particles. In this way, β summing and unwanted β-α co-
incidences were effectively eliminated. The detectors were calibrated using standard
148Gd and 241Am α sources, giving calibration points at 3.2 and 5.5 MeV, correspond-
ing to sum energies of 6.4 and 11 MeV. Corrections had to be made for the energy
loss of the α particles in the foil (20–30 µg/cm2, growing thicker during the exper-
iment) and the detector dead layers (9 ± 2µg/cm2 Si). The largest corrections (at
Eα = 0.5 MeV) were 25 and 15 keV, respectively. A significant drawback of the setup
of Ortiz et al. is that the efficiency for detecting the two α particles in coincidence
is energy-dependent, decreasing with the α-particle energy. A complicated Monte
Carlo simulation which takes into account the bending force exerted by the magnetic
field as well as an energy-dependent shift in α trajectory caused by the recoil motion
of the 8Be daughter nucleus, is necessary to correct for this effect.

The second measurement of this type was performed by Winter et al. in 2003
[Win03, Win06]. In their experiment, 27.3 MeV 8B ions were implanted into a 91 µm
thick Si detector and the sum energy of the α particles directly measured. One great
advantage of their approach is the complete absence of insensitive layers of material
in which the α particles lose energy. One significant drawback is the systematic shift
in energy of several tens of keV due to β summing which must be accounted for with
simulations. The energy calibration was performed by implanting 20Na in the detec-
tor, a β-unstable isotope that decays to unbound states in 20Ne which subsequently
break up into α + 16O, thereby giving rise to α groups with well-established energies
from 2 to 6 MeV. With this calibration method, Winter et al. do not measure the α-
particle energy alone but the sum energy of the α particle and the recoiling 16O ion.
The different response of Si detectors to α particles and 16O ions must then be taken
into account. Additional calibration points between 5 and 9 MeV were provided by
an external 228Th α source.

In between the measurements of Ortiz et al. and Winter et al., though first pub-
lished in 2006, another measurement was performed by Bhattacharya, Adelberger
and Swanson using a conventional single-α technique [Bha06]. The 8B activity was
implanted in a thin carbon foil and the α particles detected in small solid-angle Si
detectors to minimize β summing. Standard 148Gd, 239Pu and 241Am α sources were
used for calibration. Corrections had to be made for the energy loss of the α particles
in the foil (23.5µg/cm2) and the detector dead layers (∼50µg/cm2 gold).

The results of Winter et al. and Bhattacharya et al. are in excellent agreement but
disagree with the results of Ortiz et al. Winter et al. and Bhattacharya et al. find that the
peak of the Ex distribution is narrower and occurs about 50 keV higher in energy than
do Ortiz et al., see Fig. 4.3. The uncertainty in the determination of the peak position
is quoted as 12 keV by Ortiz et al., 9 keV by Winter et al. and 6 keV by Bhattacharya et
al.
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Recently, our collaboration has performed two independent experiments in which
the sum energy of the two α particles was measured by different techniques. The first
experiment, which forms the subject of the present dissertation, was performed in
January 2008 with a setup similar to that of Ortiz et al. The α particles are measured
in coincidence in separate detectors facing the thin carbon foil in which the 8B activity
is implanted. Our setup differs from that of Ortiz et al. in that we use segmented Si
detectors to reduce β summing and unwanted background from β-α coincidences.
Consequently, a strong magnetic field to sweep away the positrons is not needed.
This, as already mentioned, was a significant source of systematic uncertainty in their
measurement. Like Winter et al., we use the well-known β-delayed α emitter 20Na for
energy calibration. By implanting the 20Na activity in the same foil as used for the
8B measurement, we reduce the systematic uncertainties from energy loss corrections
compared to Ortiz et al. who relied on standard α sources for the energy calibration.
Unlike Winter et al., we measure the energies of the α particle and the recoiling 16O
ion separately, meaning that we do not have to correct for the different response of Si
detectors to α particles and 16O ions.

The second experiment, which is not treated in the present dissertation, was per-
formed at the turn of the year 2008/2009 at the KVI facility in Groningen, The Nether-
lands, using an implantation technique similar to that of Winter et al. The setup
was improved by using a 78 µm thick, finely segmented, Si detector with strips only
300 µm wide, whereby the effects of β summing were much reduced [Smi05].



CHAPTER 2

Experiment

Having reviewed past measurements of the 8B neutrino spectrum, we shall now dis-
cuss the experimental approach of the present measurement. The apparatus and the
experimental techniques are described in Section 2.1. A brief description of the SRIM
software used for energy-loss calculations, is given in Section 2.2. Finally, various
aspects of the response of the detection system are discussed in Section 2.3.

2.1 Apparatus and Techniques

2.1.1 Overview

The experiment was performed in January 2008 at the IGISOL facility for radioactive
beam production at the University of Jyväskylä, Finland. The experiment lasted two
weeks. The first week was spent preparing the setup. The actual measurements took
place during the second week. The measurement program is shown in Fig. 2.1. To be-
gin with, various calibration measurements were performed using a standard 241Am
α source. Then 20Na was measured for 5 hours, followed by 23Al for 8 hours and 8B
for 72 hours. Then 20Na was measured again, this time for 10 hours, and 23Al was
also measured again, this time for 22 hours. At the end, calibration measurements
were performed once more using the 241Am α source as well as an α source prepared
on-site containing the α-emitting nuclei of the 223Ra decay chain. From the beginning
of the first 20Na measurement to the end of the second 23Al measurement, the vacuum
of the experimental chamber was never broken.

α sources

20Na (5 h)

23Al (8 h)

8B (72 h)

20Na (10 h)

23Al (22 h)

α sources

time

Figure 2.1: Timeline of the IGISOL experiment
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Figure 2.2: The University of Jyväskylä, January 2008.

2.1.2 Radioactive Beam Production

2.1.2.1 8B

The 770 ms half-life of 8B implies that it must be produced and studied on-line. A
schematic and simplified illustration of the setup used for producing 8B and measur-
ing its decay is shown in Fig. 2.3. The primary beam consisting of singly ionized 3He+

ions was accelerated to 15 MeV in the K-130 cyclotron. The beam intensity measured
in a Faraday cup located upstream with respect to the ion guide was ∼ 0.5µA. The
beam energy is accurate to 0.5–1%. To exit the cyclotron beam line and enter the ion
guide, the 3He+ ions had to pass through two windows, one consisting of 4.5 mg/cm2

Havar (standard alloy of several metals including Ni, Co and Fe), the other consist-
ing of 25.6 mg/cm2 natNi. A target consisting of 1.95 mg/cm2 LiF evaporated on a
3.2 mg/cm2 Al backing was placed inside the ion guide. The Li content was 95%
enriched 6Li. 8B ions were produced by the impact of the primary beam on the tar-
get through the 6Li(3He, n)8B reaction. According to calculations performed with the
LISE++ program [Tar04], the beam energy on target after passage through the two
windows as well as the Al backing of the target is 7.0 MeV. The straggling given by
LISE++ is 0.3 MeV.

As explained in [Äys01], the basic idea of the ion guide is to use a buffer gas,
typically helium, to slow down and thermalize the energetic 8B ions produced by the
impact of the primary 3He beam on the LiF target. The collisions with the buffer-gas
molecules not only slow down but also change the charge state of the 8B ions, the
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Cyclotron

3He

14/15 MeV

Ion guide

LiF

5/7 MeV

Accelerator chamber

8B

20 keV

Dipole magnet

Experimental chamber

4

3

2

1
5 mm collimator

Carbon foil

Havar Ni

DSSSD

Si detector

Figure 2.3: Schematic and simplified illustration of the experimental setup at IGISOL.

predominant final charge state being 1+ (i.e. singly ionized 8B atoms). The ions are
transported by the continuous flow of gas and injected into the high-vacuum section
of the isotope separator for further acceleration and separation by mass in a dipole
magnet. In the present case, the beam was accelerated to 20 keV resulting in the 8B
activity being implanted about midway into the carbon foil.

By degrading the energy of the primary beam to 7.0 MeV, we ensure that no 8Li is
produced through the 7Li(3He, 2p)8Li reaction which has a threshold of 8.1 MeV. The
presence of 8Li activity in the mass separated beam would constitute a very serious
problem. To our setup, the β− decay of 8Li is essentially indistinguishable from the
β+ decay of 8B. After 24 hours of beam time, the energy of the primary beam was
lowered to 14 MeV, resulting in an energy of 5.2 MeV on target. This was done to
further lower the risk of accidental 8Li production.

For a couple of hours, we switched to having the primary beam in pulsed mode
(on for two seconds, then off for six seconds). The number of β triggers was used
to monitor the growth in activity during the two-second beam-on period, and the
exponential decline in activity during the six-second beam-off period. A half-life
of 766+6

−16 ms was deduced from these measurements in good agreement with the
literature value of 770 ± 3 ms [Til04]. The inclusion of a 8Li component in the fit
function with the half-life fixed to 840.3 ms [Sal90] gives an upper limit of ∼ 10−5 on
the 8Li fraction. The small difference between the half-lifes of 8B and 8Li makes it
difficult to put better limits on the 8Li fraction.

During 72 hours of measurement, we observe 10.6 million α-α events and 5.2 mil-
lion single-α events. Given our solid-angle coverage of 30%, we estimate the average
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8B implantation rate to be 15.8 × 106/0.30/72 h = 2.0 × 102 ions per second.

2.1.2.2 20Na and 23Al

20Na and 23Al were produced in the 24Mg(p, nα)20Na and 24Mg(p, 2n)23Al reactions,
respectively. The energy of the primary beam was 40 MeV out of the cyclotron. The
target was 4.3 mg/cm2 natMg. In addition to 20Na, the mass separated A = 20 beam
may have contained small amounts of 20F, a pure β emitter that we need not worry
about. From the number of decays observed to the isobaric analog state in 20Ne and
the branching ratio of 2.877(42)% given in [Cli89], we estimate the average 20Na im-
plantation rate to 2.2 × 104 ions per second. In addition to 23Al, the mass separated
A = 23 beam contains vast amounts of 23Mg produced in the 24Mg(p, pn)23Mg reac-
tion. The Al-to-Mg ratio is about 1:200 [Per00]. From the number of counts in the
peak observed at 817 keV in the β-delayed proton spectrum of 23Al and the branch-
ing ratio of 0.22(11)% given in [Per00], the average 23Al implantation rate is estimated
to 2.4 × 102 ions per second. In comparison, the implantation rate obtained in 2000,
also in Jyväskylä, by Peräjärvi et al. was 20 ions per second [Per00]. In both cases, the
energy of the mass separated beam was 20 keV.

2.1.3 Detectors

The detection system consisted of four double sided silicon strip detectors (DSSSD)
60 µm thick, each backed by an unsegmented silicon detector 1.5 mm thick. The de-
tectors were placed about 5 cm from the foil in a rectangular configuration as shown
in Fig. 2.3 and 2.4. Together, the four detectors cover about 30% of 4πwith an angular
resolution of ∼ 3 degrees. The detectors are numbered 1–4 as shown in Fig. 2.3. De-
tector 1 is facing 4 and 2 is facing 3, with 1 and 2 placed upstream and 3 and 4 down-
stream. The detectors are turned 45 degrees relative to the beam axis. The thickness
of the DSSSDs is chosen such that the most energetic α particles (∼8.5 MeV) are com-
pletely stopped. The unsegmented 1.5 mm thick silicon detectors placed behind the
DSSSDs serve to detect β particles.

The DSSSDs measure 5 × 5 cm2. Both sides are divided into 16 strips running in
perpendicular directions. The front side is p+ doped, the back side n+ doped. The
p+ doped layer on the front side is implanted to a depth of only 100 nm. An Al grid
covers 3% of the surface. Further details regarding the design and performance of the
DSSSDs are given in [Ten04]. A feature that deserves to be emphasized is the very
thin dead layer of only 100 nm (over 97% of the surface) which facilitates the detection
of low-energy ions. For a general account of silicon detectors, see e.g. [Kno00].
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Figure 2.4: (Left) A look inside the chamber containing the final setup: Four DSSSDs backed
by unsegmented silicon detectors surrounding the carbon foil in the center. The beam comes
in from the left through the 5 mm collimator. DSSSD 2 (bottom left) is seen to be slightly tilted
with respect to the vertical axis. (Right) Drawing of the setup showing the two coordinate
systems, (x, y, z) and (ξ, η, ζ), used in the data analysis.

2.1.4 Electronics and Data Acquisition

The data acquisition system used in the IGISOL experiment and the data acquisition
system used in the CMAM experiment share the same basic structure which will be
described in connection with discussion of the CMAM experiment, cf. Section 9.2.

2.2 Energy-Loss Calculation

The effects of the passage of charged particles through matter are of paramount im-
portance to any nuclear physics experiment concerned with the detection of charged
particles. It is through their interaction with matter that we detect charged particles
as well as other kinds of radiation. In the present experiment, electrons, positrons,
protons, α particles and 16O ions are detected through the large numbers of electron-
hole pairs they create as they are stopped in a silicon crystal.

Here, we employ the SRIM (Stopping and Range of Ions in Matter) program pack-
age [Zie08] to perform energy-loss calculations1. Sometimes we want to know how
much energy is lost by a charged particle in passing through a slab of material of a
certain thickness. In other cases we also want to know how this energy is deposited in
the material. How much is spent on ionization? How much is transfered to the crystal

1The SRIM program package can be obtained from http://srim.org/. The most recent version (2008) is
used here.



24 Chapter 2. Experiment

Figure 2.5: Differential stopping powers, dE
dx , obtained from SRIM for protons, α particles and

16O ions in silicon divided into electronic and nuclear parts. The nuclear stopping of protons
is below the chosen scale.

lattice thereby disrupting its structure? For simple energy-loss calculations, we use
the tables given by SRIM containing stopping powers (energy loss per path length)
and ranges as a function of particle energy. If we want to know how this energy is
deposited in the material, we perform an event-by-event simulation of the stopping
process using the TRIM (Transport of Ions in Matter) program. In general, SRIM
energy-loss calculations are in good agreement with measurements, see e.g. [Zha02]
for a recent comparison, whereas the predictions of TRIM concerning how the energy
is deposited in the material, are less reliable.

SRIM stopping powers, dE
dx , are shown in Fig. 2.5 divided into electronic and nu-

clear parts, as explained below. The range of 0–10 MeV α particles in silicon is shown
in Fig. 2.6 (a). Using SRIM stopping powers, we calculate the energy loss of protons,
α particles and 16O ions in the carbon foil and the dead layers of the detectors by
simple numerical integration. As an example, the energy loss of α particles in 100 nm
silicon is shown in Fig. 2.6 (b). A fixed step size of 1 nm gives adequate precision. For
the 16O ions, which have the largest stopping power, a step size of 0.1 nm is required
to obtain sub-keV precision.
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Figure 2.6: (a) Range of α particles in silicon given by SRIM. (b) Energy loss of α particles in
100 nm silicon obtained by simple numerical integration of SRIM stopping powers.

2.2.1 Ionizing and Non-Ionizing Energy Loss

The stopping powers given by SRIM are divided into two parts: Electronic and nu-
clear stopping. The first refers to the energy lost in collisions with the electrons of the
target material, the second to the energy lost in collisions with the atomic nuclei of
the target material. The stopping powers may be integrated numerically to yield the
total energy transfered to the electrons, Eelec , and the total energy transfered to the
nuclei, Enucl. Fig. 2.7 displays Enucl in percent of the total energy, E = Eelec + Enucl.

The TRIM simulations also divide the energy loss into an electronic part, Eelec , and
a nuclear part, Enucl. The electrons and the recoiling nuclei may, in turn, deposit the
energy acquired in the collision with the incoming ion by three different mechanisms:
(i) Ionization, (ii) vacancy formation and (iii) phonon production. Mechanism (i)
creates electron-hole pairs which give rise to the electronic signal that we measure.
Mechanisms (ii) and (iii), on the other hand, do not contribute to the electronic signal.
The fraction of the electronic energy loss subsequently deposited by the two non-
ionizing mechanisms (ii) and (iii), is denoted felec. Similarly, the fraction of the nuclear
energy loss subsequently deposited by the two non-ionizing mechanisms (ii) and (iii),
is denoted fnucl. Then, the total non-ionizing energy loss is given by

Enon-ion = felecEelec + fnuclEnucl

The non-ionizing fractions, felec and fnucl, obtained from TRIM simulations for pro-
tons, α particles and 16O ions in silicon, are shown in Fig. 2.8–2.10. The electronic
non-ionizing fractions, felec , are below 1%. The nuclear non-ionizing fractions, fnucl ,
range from 60–80%.
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Figure 2.7: Integrated nuclear stopping, expressed as a percentage of the ion energy, for pro-
tons, α particles and 16O ions in silicon. Notice the different scales, both on the abscissa and
the ordinate.

2.2.1.1 Calculation Details

For 16O ions, the TRIM simulation was performed in the “Detailed calculation with
full damage cascades” mode. For protons and α particles, the simulations were
performed in the “Surface sputtering/Monolayer collision steps” mode as recom-
mended by TRIM for energetic light ions. This mode differs from the “Detailed cal-
culation with full damage cascades” mode by not using the approximation of “free
flight paths” (as a result, the simulation is 10–50 times slower). In all cases, at least
1 000 events were simulated.

In the “Ion distribution and quick calculation of damage” mode, TRIM gives non-
ionizing energy losses for 16O ions that agree with [Len86] within 1–2 keV, suggesting
that the underlying algorithms and approximations are near identical. In the more
comprehensive “Detailed calculation with full damage cascades” mode, TRIM gives
values roughly 10 keV below [Len86].
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Figure 2.8: Non-ionizing fractions felec and fnucl in silicon for protons of initial energy E. The
data points show the result of the TRIM simulations. The solid line shows the parametrization
used in the analysis of the experimental data.

Figure 2.9: Non-ionizing fractions felec and fnucl in silicon for α particles of initial energy E. The
data points show the result of the TRIM simulations. The solid line shows the parametrization
used in the analysis of the experimental data.
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Figure 2.10: Non-ionizing fractions felec and fnucl in silicon for 16O ions of initial energy E. The
data points show the result of the TRIM simulations. The solid line shows the parametrization
used in the analysis of the experimental data.

2.3 Calibration

A more descriptive section heading might have been “Getting to know your experi-
mental setup”. As used here the term “calibration” should be understood in its most
general meaning, i.e. the act of understanding the response of your measuring device
to the “forces” it is subject to. Aiming, as we are, for an accuracy comparable to that of
the previous experiments of 5–10 keV, we must calibrate our measuring device with
great care. All aspects of its response must be investigated. This is the purpose of
the present section. Its subsections, each dealing with its own aspect of the detection
system, can to a large extent be read independently of one another. The reader who
is interested in results but not in complicated data analysis, is advised to proceed to
Section 2.3.14 which gives a summary of Sections 2.3.1–2.3.13.

2.3.1 Geometry

Two coordinate systems are used to describe the geometry of the setup. These are
illustrated in the drawing of Fig. 2.4. The (x, y, z) coordinate system has its origin at
the implantation spot on the carbon foil, the z axis coincides with the beam axis, the
y axis points in the vertical direction and the x axis points in the horizontal direction.
The (ξ, η, ζ) coordinate system is detector-specific in that it has its origin at the center
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Figure 2.11: Hit pattern of DSSSD 3 (8B data). Observed distribution to the left, fitted distribu-
tion to the right. Back strip 10 was not working properly and hence excluded from the analysis.
So were the edge strips which were partially covered by a metallic frame.

of the DSSSD. The ζ axis is perpendicular to the detector plane and points toward
the carbon foil. The ξ and η axes are parallel to the detector plane and point in the
horizontal and vertical direction, respectively.

The exact positions of the detectors relative to the implantation spot are deter-
mined from the hit patterns, i.e. the intensity distribution over the surface of the
DSSSDs, assuming isotropic emission from a uniform circular region of diameter
7 mm. This is illustrated in Fig. 2.11 which shows the observed and fitted hit pattern
of DSSSD 3 using 8B data. Back strip 10 in DSSSD 3 was not working properly and
is excluded from the analysis. So are the edge strips which were partially covered
by a metallic frame mounted to protect the electronic read-out from the radiation.
Edge strips of the other DSSSDs are excluded from the analysis for the same reason.
If the finite dimensions of the implantation spot are not taken into account, errors of
∼0.2 mm in the determination of ξ and ζ result.

As seen in Fig. 2.4, DSSSD 2 was slightly tilted causing a small error in the deter-
mination of its vertical coordinate relative to the implantation spot. The effect of this
error is seen in Fig. 2.12 as a shift and broadening of the measured distribution of rel-
ative α-α angles in the decay of 8B. By varying the vertical position so as to minimize
the shift and broadening, the error is determined to 5.3 ± 0.5 mm corresponding to a
tilt of 7 degrees or, assuming that DSSSD 3 (opposite to DSSSD 2) was tilted too, a tilt
of 3.5 degrees for each detector (a closer inspection of Fig. 2.4 suggests that this was
indeed the case). DSSSD 1 and 4 were tilted by <0.5 degrees.

The geometries deduced for the 8B run and the first 20Na run are given in Table
2.1. The x and y coordinates are consistent within 1 mm. A tiny systematic shift
is seen which may be due to different beam optics. The z coordinates, on the other
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Figure 2.12: Distribution of relative α-α angles measured in oppositely facing pairs of detec-
tors (8B data). Distributions are shown both for tilted and non tilted geometries (see text for
explanation).

Table 2.1: Geometry of the detector setup determined from 8B and 20Na data. The coordinates
give the position of the center of the DSSSD.

DSSSD
x (mm) y (mm) z (mm)

8B 20Na 8B 20Na 8B 20Na

1 38.3 38.8 −0.4 0.2 −35.9 −38.1
2 −31.4 −31.8 −0.5 0.5 −29.8 −32.9
3 33.2 34.4 −1.8 −1.2 32.9 38.0
4 −37.4 −36.0 −1.1 −1.0 39.0 38.5

hand, differ by as much as 5 mm. Since the chamber was not opened between the
two measurements, there is no reason why the z coordinates should differ. Presently,
the origin of this difference is not fully understood.

2.3.2 Linearity of the Electronics

The linearity of the electronics was checked on five occasions during the seven days of
data taking by feeding signals from a precision pulse generator to the preamplifiers.
A dial on the pulser generator module was used to adjust the size of the signals. The
peaks observed in the ADC spectrum were perfectly Gaussian with a typical width
of σ ∼3.5 channels. Centroids were determined with negligible error.

A quadratic polynomial was used to fit the data. The residuals from the fit are
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Figure 2.13: Residuals from a quadratic fit to data obtained with a precision pulse generator
(three selected strips).

shown in Fig. 2.13 for three individual strips. The behavior of back strip 8 of DSSSD 1
is representative of the behavior found in all back strips of DSSSD 1–3. Similarly, the
behavior of front strip 9 of DSSSD3 is representative of the behavior found in all front
strips of DSSSD 1–3. The behavior of back strip 9 of DSSSD 4 is representative of the
behavior found in all strips of DSSSD 4, front strips as well as back strips.

The data were also fitted with a straight line. The maximum deviation of this fit
from the quadratic fit was determined and is given in Fig. 2.13 expressed as a percent-
age of the full range value (integral non-linearity). The values found are consistent
with the ±0.1% specified by the producer corresponding to ±4 channels over the full
range.

2.3.3 Method of Energy Calibration

The calibration of the energy scale is based on the two most intense β-delayed α

groups of 20Na. Their energies (2 153.3 and 4 433.9 keV) were deduced from the tab-
ulated [Til98] excitation energies of the corresponding states in the β-decay daughter
nucleus 20Ne (7 421.9 ± 1.2 and 10 273.2 ± 1.9 keV) using 4 729.84 ± 0.01 keV for the
α + 16O threshold energy [Til98].

In calculating the α energies, we neglect the tiny systematic shift caused by the
recoil motion of the 20Ne daughter nucleus. The magnitude of the shift is 1

5 ER where
ER is the kinetic energy of 20Ne which attains its maximal value when the leptons are
emitted in the same direction. To first order, one has ER,max = (E0 − Ex)2/2Mc2 where
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E0 = 13.376 MeV is the maximum total β energy for decays to the ground state of
20Ne, Ex is the excitation energy in 20Ne and M is the mass of 20Ne. Inserting numbers,
one obtains ER,max = 0.95 keV for the 2153 keV α group and ER,max = 0.26 keV for
the 4434 keV α group. The corresponding shifts in α energy are one-fifth of these
values, 0.19 and 0.05 keV, respectively. When averaged over the lepton angles the
shifts become even smaller.

The amount of statistics collected was sufficient to allow for the energy calibration
of the strips to be performed on a pixel-by-pixel basis2. In each pixel, the positions of
the two α groups were determined (most probable values were used). The energy loss
experienced by the α particles in the carbon foil and the detector dead layer prior to
entering the active volume of the detector was computed. Furthermore, corrections
were made for the non-ionizing energy loss in the active volume of the detector as
described in Section 2.2.1. (For the 4434 keV α group, the pixels were paired two-and-
two to gain enough statistics.) The energy loss in the foil was computed assuming
a fixed implantation depth of 32.7 nm neglecting a rather large spread of σ ∼ 10 nm
discussed below. The finite size of the beam spot was also neglected. In both cases,
the primary effect will be a broadening of the signal; systematic shifts will only occur
at the sub-keV level. The geometry of the detector setup was deduced from the hit
pattern as discussed in Section 2.3.1. The small quadratic correction, deduced from
the pulse generator calibration, was included in the calibration.

2.3.4 Implantation Depth

Fig. 2.14 shows the implantation depth distribution in carbon of 8B, 20Na and 23Al
ions at 20 keV obtained from TRIM simulations of 40 000 events. The average im-
plantation depths are 56.1 nm for 8B, 32.7 nm for 20Na and 28.2 nm for 23Al.

For 20Na, we may check the prediction of TRIM by monitoring the apparent shift
in energy of the 2153 keV α group with angle in the two upstream detectors (DSSSD
1 and 2). Back strips 7–10 were used in each DSSSD because they span the widest
range of angles. For each strip, the angular dependence of the measured α energy
(corrected for the energy loss in the dead layer of the detector) was fitted with an
expression of the form

E(θ) = 2153.3 keV + k + ∆E0 secθ (2.1)

where θ is the angle with respect to the normal to the foil plane and ∆E0 is the energy
loss at zero degrees. The constant k is included to account for imperfections in the
energy calibration. A simultaneous fit was performed to the four strips allowing for

2Here, “pixel” refers to the 3 × 3 mm2 geometric overlap of front and back strips. The strips are not
physically divided into pixels.
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different values of k, but with the same value of ∆E0. In Fig. 2.15 (a), the energy loss
in the foil ∆E(θ) = E(θ) − 2153.3 keV − k is plotted against secθ. Each data point is
obtained by averaging over the four strips. The fit yields ∆E0 = 10.2 ± 0.7 keV for
DSSSD 1 and ∆E0 = 9.6± 0.6 keV for DSSSD 2. The slope of the straight line superim-
posed on the data points is the average of these two values, i.e. 9.9± 0.5 keV. We may
convert this energy loss to an equivalent implantation depth by dividing with the
stopping power of 2153 keV α particles in carbon, dE/dx = 1.336 keV/µg/cm2. The
result is 7.4± 0.4µg/cm2 or, equivalently, 32.9± 1.7 nm, in perfect agreement with the
TRIM prediction.

2.3.5 Foil Thickness

By monitoring the apparent shift in energy of the 2153 keV α group with angle in the
two downstream detectors (DSSSD 3 and 4), we may determine the thickness of the
carbon foil less the implantation depth of the 20Na ions. The procedure was explained
in Section 2.3.4. The results are displayed in Fig. 2.15 (b). The fit gives ∆E0 = 27.1 ±
0.8 keV for DSSSD 3 and ∆E0 = 26.9 ± 0.9 keV for DSSSD 4. Taking the average
of the two and converting to the equivalent thickness of carbon, we obtain 20.1 ±
0.4µg/cm2 or, equivalently, 89± 2 nm. By adding the implantation depth determined
previously (32.9 ± 1.7 nm) we obtain 122 ± 3 nm for the full thickness of the carbon
foil. In comparison, measurements performed with the 241Am α source, with and

Figure 2.14: Implantation depth distribution of 8B, 20Na and 23Al ions in carbon at 20 keV
obtained from TRIM simulations. Mean values of the distributions are given.
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Figure 2.15: Energy loss of 2153 keV α particles in the carbon foil as a function of secθ where
θ is the angle with respect to the normal to the foil surface. Given in the parentheses are the
slopes of the best fit straight lines corresponding to the energy loss at normal incidence. Their
average is used for the straight lines shown on the plot.

without the carbon foil placed between the source and the detector, yield a thickness
of 106 ± 2 nm. Though fairly close, the two values certainly do not agree within the
quoted error bars indicating the presence of systematic effects at the 10% level not
properly accounted for. One such effect could be inhomogenities in the foil. We take
their weighted average value, 114± 8 nm (= 25.7± 1.8µg/cm2), as our estimate of the
foil thickness with the error bar raised to account for the large spread. This is in good
agreement with the 25µg/cm2 specified by the manufacturer.

2.3.6 Detector Dead Layers

Details concerning the design and performance of the DSSSDs are given in [Ten04].
An aluminum grid 600 nm thick that serves to collect the electron-hole pairs created
by the penetrating radiation covers 2.9% of the detector surface. Over the remaining
97% of the surface, the dead layer (p+ doped Si) is only 100 nm thick. The precision
of this (mean) value is not stated by the manufacturer (Micron Technology, Inc.). A
precision better than 10% seems unlikely. Since the detectors used for the present
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Figure 2.16: The short but eventful life of a carbon foil. From left to right: (i) Fishing for the car-
bon foil, (ii) before exposure, (iii) after one week’s exposure to various beams the implantation
spot is clearly seen and (iv) its diameter is measured to 7.0 ± 0.5 mm.

experiment were not made from the same Si wafer3, we expect variations in dead
layer thickness at the 10% level.

Dead layers are usually measured with a monochromatic α source by rotating
the detector (thereby varying the angle of incidence) while monitoring the shift in
energy. Unfortunately, such a measurement was not performed during the present
experiment. In principle, dead layers may be determined by monitoring the shift of
the 2153 keV α group of 20Na over the length of a single strip. In practice, however,
this approach fails for two reasons: First, due to the smallness of the dead layer thick-
ness as well as the limited angular range spanned by the strips (< 25 degrees), the
shift is only 3 keV. Second, part of this tiny shift is caused by the varying energy loss
in the carbon foil, the contribution of which must be properly subtracted. The same
is true for the 241Am calibration data. In this case, it is the energy loss in the source
itself that must be properly subtracted.

An attempt was made to determine the dead layers by monitoring the shift of the
1110 keV 16O recoil group with changing angle. With an energy loss of ≈ 115 keV in
100 nm silicon, the anticipated shift over an angular range of 25 degrees is ≈ 12 keV,
enough to allow for a rough determination of the dead layer thickness. We use the
four central front strips (vertical) for the analysis. The 16O ions hitting these strips
are emitted at 45 degrees relative to the foil plane. The variation over the length of
the strip is slightly less than 5 degrees and the corresponding change in effective foil
thickness 6 percent.

At 45 degrees upstream (DSSSD 1 and 2), the energy loss of the 1110 keV 16O ions
in the foil is ≈65 keV so the shift in energy due to the varying effective foil thickness
over the length of the strip is 0.06×65 keV = 4 keV, which should be compared to the
11 keV expected from the varying effective dead layer. The exact magnitude of this
shift may be calculated for each angular bin using SRIM tables. (If, say, the energy loss
predicted by SRIM is off by 5 keV, we still get the shift right within 5

65 4 keV = 0.3 keV.)

3Our collaboration has a large collection of DSSSDs. The detectors have been purchased over many
years, two at a time.
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Figure 2.17: Energy loss of 1110 keV 16O ions in the dead layer as a function of secχwhere χ is
the angle of incidence relative to the normal to the detector surface. Given in the parentheses
are the slopes of the best fit straight lines corresponding to the energy loss at normal incidence.

For DSSSD 3 and 4 the situation is less favorable. At 45 degrees downstream, the
energy loss in the foil is ≈ 160 keV implying a shift of 0.06 × 160 keV = 10 keV over
the length of the strip with an uncertainty of ±1.6 keV due to the ±8 nm uncertainty
on the thickness of the foil.

The angular dependence of the measured 16O energy, corrected for the energy loss
in the foil, is fitted with an expression similar to Eq. 2.1. For each detector a simul-
taneous fit is performed to the four strips allowing for different values of k, but with
the same value of ∆E0. The results are displayed in Fig. 2.17. The energy loss in the
dead layer at normal incidence is determined to 92± 19 keV for DSSSD 1, 76± 13 keV
for DSSSD 2, 31 ± 16 keV for DSSSD 3 and 104 ± 23 keV for DSSSD 4. The equiva-
lent dead layers (including an additional 10 keV uncertainty on DSSSD 3 and 4 due
to the uncertainty on the foil thickness) are 84 ± 17 nm, 70 ± 12 nm, 30 ± 23 nm and
102±29 nm, respectively. For DSSSD 1, 2 and 4 the dead layers are in good agreement
with our expectations. The dead layer obtained for DSSSD 3 is unrealistically small.
Considering the simplifying assumptions (fixed implantation depth, homogeneous
foil and dead layer) made in the analysis, this should cause no worries. A 10% varia-
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tion in dead layer thickness over the length of the strips (e.g. due to tiny amounts of
dirt covering part of the detector surface) suffices to explain such a result.

As it turns out, the dead layers may be determined rather accurately by requiring
the β-delayed proton groups of 23Al at 539 and 817 keV to have the same energy in
all four DSSSDs. The logic behind this approach is the following: If, say, 10 nm is
added to the dead layer, the energies of the 2153 and 4434 keV α groups of 20Na are
reduced by 2.3 and 1.6 keV, respectively (for normal incidence). Since these two α
groups provide our energy calibration, the apparent energy of the proton groups will
shift too. One finds ∆Ep = −2.7 keV. The increased dead layer implies an energy loss
correction for the protons that is slightly larger but only by 0.5 keV so the net shift is
−2.2 keV. By adjusting the thicknesses until agreement is obtained between the four
DSSSDs, we obtain dead layers of 85, 75, 120 and 105 nm Si for DSSSD 1–4, respec-
tively, in good agreement with expectations and the values obtained by monitoring
the shift of the 1110 keV 16O recoil group. The estimated error (statistical) is ±7 nm.

Assuming a certain dead layer thickness in one DSSSD, the requirement of equal
proton energies in all four DSSSDs fixes the dead layer thickness in the other three
DSSSDs to within ±7 nm. The overall scale, naturally, is free to vary. However, with
dead layers ranging from 75 to 120 nm and given the 100 nm specified by the manu-
facturer, it seems reasonable to assume that the overall scale is correctly determined
within ±15 nm.

2.3.7 Detection Thresholds

The range of 5.5 MeV α particles in atmospheric air is 4 cm [Yu03]. So, if we place
an 241Am source at a distance of, say, 5 cm from the detector and raise the pressure
inside the chamber to near-atmospheric levels, the α particles will have very little
energy left by the time they reach the detector. This method was used to study the
trigger efficiency close to threshold. The typical rise “time” was ∼ 100 keV (10–90%
trigger efficiency). 50% Trigger efficiency was reached at 130–210 keV depending on
the channel (henceforth referred to as the trigger threshold). ADC thresholds were
30–200 keV depending on the channel.

2.3.8 Charge-Sharing Phenomena

Given that an α particle hits one of the DSSSDs, what is the overall efficiency for it be-
ing recorded in the data stream and identified in the subsequent analysis? Generally
speaking, they are good, around 96% for α particles with energies above the trigger
and ADC thresholds.

For an α particle to be identified in the analysis, its front-strip energy, Ef , and
back-strip energy, Eb , must agree within a specified tolerance. We refer to this re-
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quirement as “front-back matching”. The observed distribution of energy differences,
δE = Ef −Eb , resembles a Gaussian centered at δE = 0. At the beginning of the exper-
iment, the width is σ ≈ 14 keV in DSSSD 1–3 and σ ≈ 18 keV in DSSSD 4. During the
experiment, the resolution deteriorates considerably (cf. 2.3.12) in the front strips of
DSSSD 1 and 2 so that σ ≈ 25 keV at the end of the experiment. In DSSSD 3 the width
grows to σ ≈ 19 keV; in DSSSD 4 it remains unchanged. We adopt a tolerance of ±4σ
for the front-back matching with σ increasing linearly with time from its start value
to its end value.

Using data from the 8B run, where a continuous distribution of α energies from
threshold to 8.5 MeV is measured, one may study the dependence of δE on the parti-
cle energy and hence the stopping range. One may also study the dependence on the
angle of incidence on the detector. Small systematic variations in δE on the order of
±2 keV are found in both cases. This may be interpreted as evidence for the charge
collection efficiency being weakly dependent on the range of the α particle.

More can be learned by studying two-dimensional plots with Ef on one axis and
Eb on the other. An example of such a plot is shown in Fig. 2.23 (a). Only events
with a single front-strip signal and a single back-strip signal are shown. Both a ver-
tical, a horizontal and a diagonal response tail is visible. The diagonal response tail
is discussed in Section 2.3.10. The horizontal tail is caused by α particles stopped in
a front-side inter-strip spacing; the conduction electrons created in the Si crystal are
shared between the adjacent front strips but in unbalanced proportions such that only
one of the two voltage pulses climbs above detection threshold. Similarly, the vertical
tail is caused by α particles stopped in a back-side inter-strip spacing. In this case it is
the holes that are shared. Since front strips and back strips run perpendicular to one
another, sharing (almost) never occurs on both sides at the same time. Together, the
horizontal and vertical tails account for less than 0.1% of the intensity. Notice that the
vertical tail (sharing between back strips) extends from the point of maximum inten-
sity on the diagonal whereas the horizontal tail (sharing between front strips) extends
from a point on the diagonal somewhat below the point of maximum intensity. The
reason for this asymmetry is the presence of an additional dead layer of 0.8–0.9 µm
Si equivalent in the inter-strip spacing on the front side.

A more balanced sharing of charge carriers between the adjacent strips gives two
above-threshold voltage pulses which, when added up, match the single voltage
pulse registered on the opposite side of the DSSSD. This is illustrated in Fig. 2.18
where the sum of the shared energies is plotted versus the non-shared energy. The
red circle marks the locus of maximum intensity expected in the event of full charge
collection. For sharing between back strips, the observed locus of maximum inten-
sity coincides with the red circle. For sharing between front strips, this is not quite the
case due to the aforementioned extra dead layer. Additional off-diagonal intensity is
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(a) (b)

Figure 2.18: 241Am measured in DSSSD 1. (a) Sharing between back strips. Events with a single
front-side energy signal and two back-side energy signals coming from neighboring strips are
selected. The non-shared front-side energy is on the abscissa; the sum of the shared back-side
energies is on the ordinate. (b) Sharing between front strips. Similar to (a) but with the roles of
front and back strips reversed.

present in Fig. 2.18 the origin of which has not been investigated. A close inspection
reveals that the diagonal intensity is actually slightly off-diagonal: The sum of the
shared energies is systematically 30 keV less than the non-shared energy.

The 8B data may be used to study the energy and angular dependence of charge
sharing. Using the non-shared front-strip energy, we obtain the spectrum of α-particle
energies shared between back strips. We do not include off-diagonal sharing events.
Sharing events with one of the shared energies below detection threshold are not in-
cluded either. Dividing this spectrum by the full spectrum of α-particle energies one
obtains the curves shown in Fig. 2.19 which give the probability for charge sharing
to occur between back strips depending on the α-particle energy. The probability for
charge sharing to occur between front strips is obtained in a similar way. (In doing so
it is necessary to account for the extra dead layer present between front strips.) The
probability for charge sharing to occur is found to be similar in front and back strips,
both in terms of energy dependence and magnitude (about 1.5%), though minor dif-
ferences are also observed. The interstrip spacing accounts for 0.1µm/3.2µm = 3%
of the surface area of the DSSSDs so a sharing probability of 1.5% makes good sense.
The charge sharing probability is also found to be weakly dependent on the angle
of incidence, the probability being largest for normal incidence. We shall not con-
cern ourselves any further with the phenomena of charge sharing. See [Yor87] for
a dedicated experimental study of inter-strip effects in silicon strip detectors. We
content ourselves with two observations: The first one is that sharing occurs with
a probability of ≈ 2 × 1.5% = 3%. The second one is that the probability is weakly
energy-dependent.
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Figure 2.19: Ratio of the spectrum of α-particle energies shared between back strips to the full
spectrum of α-particle energies using 8B data.

2.3.9 Single-Particle Detection Efficiency

We have seen that the single-α detection efficiency is reduced by 3% due to charge
sharing. The presence of additional experimental effects at the percent level cannot
be excluded. Fortunately, the single-α detection efficiency can be determined directly
from the 8B data without any need of understanding the underlying effects: Given
the arrangement of the detectors and the fact that the α particles from the decay of 8B
are being emitted back-to-back, we know with certainty that given the detection of an
α particle in one detector a second α particle has to hit the opposite detector. Conse-
quently, the single-α detection efficiency in the opposite detector can be determined
by simply keeping count of how often the second α particle is detected.

The ratio of the coincidence α spectrum to the singles α spectrum measured in the
central central 6 × 6 pixels of DSSSD 4 is shown in Fig. 2.20 (a) and (b). We interpret
this ratio as the single-α detection efficiency in DSSSD 1. Note that the energy on
the abscissa refers to the α particle detected in DSSSD 4. As will be discussed in
Section 3.1.4, the α particles from the decay of 8B are not emitted in a perfect back-
to-back configuration. To be certain that the second α particle has hit DSSSD 1, we
restrict our attention to the central 6×6 pixels of DSSSD 4. Above≈ 0.7 MeV, the trend
of the data points is given by the red curve. The efficiency exhibits a weak energy-
dependence dropping from≈ 97.0% at 0.7 MeV to ≈ 96.3% at 8 MeV. Below ≈ 0.7 MeV
the efficiency seems to drop rapidly. This is not the case. As illustrated in Fig. 2.20 (c),
the rapid drop in the ratio of coincidences to singles is caused by the presence of a
low-energy background component in the singles spectrum. If we require Eβ = 0 in
the Si detector behind DSSSD 4, the low-energy component is reduced by a factor of
two or so, indicating that β particles are responsible for at least part of the observed
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Figure 2.20: (a) and (b) Ratio of coincidences to singles in the central 6 × 6 pixels of DSSSD 4.
The curves superimposed on the data points are meant to guide the eye. (c) α Spectra measured
in DSSSD 4. See the text for explanation of the labels. The low-energy background component
is seen to dominate the α spectra below 0.4 MeV and contributes up to 0.7 MeV.

low-energy background. If β particles were the sole source of background, we would
expect the low-energy component to disappear all together when we require Eβ > 0 in
one of the Si detectors behind DSSSD 1–3. This is seen not to be the case. We conclude
that part of the low-energy background component present in the singles spectrum
cannot be explained as β particles. The most plausible alternative would seem to
be uncorrelated noise, e.g. induced by the laser system at the IGISOL facility. Due
to the presence of the low-energy background component in the singles spectrum,
we are unable to determine the single-α detection efficiency of our detectors below
≈ 0.7 MeV. The single-α detection efficiencies of DSSSD 2–4 are very similar to that
of DSSSD 1. The extent of the background component in the singles spectrum does,
however, vary somewhat. In DSSSD 1, for instance, the coincidence-to-singles ratio
already starts falling around 1.0 MeV.

Background measurements, performed during short interruptions during the 72-
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hour long 8B measurement, indicate the presence of a long-lived β-activity in the
chamber (half-life on the order of hours) which accounts for about half of the inten-
sity below 0.5 MeV in the singles spectrum. The energy loss of minimum-ionizing β
particles in silicon is 0.6 keV/µm. Given that the DSSSDs are 60 µm thick, the typ-
ical energy deposited by β particles is only 36 keV. β Particles subject to significant
straggling may, however, deposit considerably more energy, thus giving rise to the
low-energy background component discussed above.

2.3.10 Response Function

The term “response function” refers to the distribution of energies measured from a
perfectly monochromatic source due to experimental effects. Below, we discuss how
the response function is best extracted from the experimental data.

The β decay of the 2+, T = 1 ground state of 20Na to the isobaric analog state
(IAS) in 20Ne, found at an excitation energy of 10 273.2±1.9 keV, is responsible for the
second most intense peak in the β-delayed α spectrum found at 4 434 keV. The IAS
in 20Ne and the ground state of 20Na have the same quantum numbers and similar
structures. The width of the IAS is ≤ 0.3 keV [Til98]. The energy of the α-particles
emitted in its decay is smeared out due to the β-decay recoil motion of 20Ne. For a
pure Fermi transition, the broadening effect can be approximated by [Bha02]
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with x = δE/Tmax where δE = Eα − 〈Eα〉 is the shift relative to the mean α-particle
energy. The maximum shift is given by
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, (2.3)

where me, mα and M are the electron, α-particle and 20Na masses; Q = Ex−4 729.84 keV
and W0 = (E0−Ex)/me where Ex is the excitation energy in 20Na and E0 = 13.376 MeV
is the maximum total β energy for decays to the ground state of 20Na. For the IAS in
20Ne, one obtains Tmax = 29.9 keV. The transition to the IAS was shown by [Cli89] to
be a mixed Fermi and Gamow-Teller type transition. The Gamow-Teller component
is, however, rather small so the broadening effect is well described by Eq. 2.2. Only
little interference between the IAS and neighboring 2+ states, which could potentially
distort the shape of the 4 434 keV peak, is expected due to the unique structure and
T = 1 character of the IAS. We conclude that the physical shape of the 4 434 keV peak
is well understood and hence this provides an excellent case for studying the modifi-
cations to the shape introduced by experimental effects.
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We adopt the parametrization of [Bha06] to describe the line shape caused by
experimental effects. It consists of a Gaussian folded through two low-energy expo-
nential tails:
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where E0 and E are the nominal and observed energies, λi are the exponential decay
lengths and erfc is the complement of the incomplete error function. The normaliza-
tion coefficients are A1 = 1/(1 + r) and A2 = r/(1 + r) with r being the relative area of
tail 2 compared with tail 1.

The presence of the exponential tails may, in part, be attributed to incomplete
charge collection, i.e. not all electron-hole pairs created by the incoming α particle
reach the electrodes (or they do, but too late) either due to recombination or trap-
ping. The presence of impurities and structural defects in the crystal lattice enhances
the probability of recombination and trapping. The further the charges have to travel
to reach the electrodes, the more likely recombination and trapping is to occur. The
strength of the electric field also plays a role: A stronger field implies faster charge
collection and hence reduced risk of recombination and trapping [Kno00]. We shall
not concern ourselves any further with the physical interpretation of the parame-
ters entering Eq. 2.4. We note, however, that the length of the exponential tails may
depend on the range and hence the energy and identity of the incoming ion. The
matching of front and back-strip energies discussed in Section 2.3.8 eliminates the
hits for which incomplete charge collection only occurs for one type of charge carri-
ers. In consequence, only loss phenomena which affect both types of charge carriers
equally contribute to the exponential tails.

Ions striking the aluminum grid that covers 3% of the detector surface experience
an additional energy loss compared to other ions giving rise to a low-energy “satel-
lite” peak. We model the additional energy loss as a Gaussian distribution with mean
Eg and spread σg. A spread of 5% is expected from the variation in effective thickness
with angle. The complete line-shape formula then reads,
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where g is the percentage of the detector surface covered by the aluminum grid. We
refer to Ψ as the “response function” of the detector. It gives the energy distribution
measured from a monochromatic source.

The line shape of the 4 434 keV peak in the β-delayed α spectrum of 20Na, includ-
ing experimental effects, is given by the convolution of the response function,Ψ, with
the lepton broadening distribution, ρ(x), of Eq. 2.2. Fits to the measured line shapes
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Figure 2.21: Fits to line shape of the 4 434 keV peak in the β-delayed α spectrum of 20Na (first
measurement). The fitting function is a convolution of the response function (Eq. 2.5) with the
lepton broadening distribution (Eq. 2.2). The fit is shown by the solid red line. The contribution
of the main and satellite peak are shown by the dashed green line and the dotted blue line,
respectively. The pure lepton broadening distribution is shown by the dash-dotted purple
line.

are shown in Fig. 2.21. The α-particle energy is corrected for the energy lost in the foil
and the dead layer of the detector on an event-by-event basis taking into account the
variation in effective thickness with angle, but assuming a fixed implantation depth
of the 20 keV 20Na ions in the foil. The best-fit parameter values are given in Ta-
ble 2.2. The thickness of the Al grid, xg , deduced from the energy loss, Eg , is also
given. These are used for calculating the energy loss in the aluminum grid at other
α-particle energies. The most probable value, Emax , of the response function, Ψ , i.e.
the energy for whichΨ attains its maximal value, does not coincide with the nominal
energy, E0. The displacement, δE = Emax −E0 , is given in the last column of Table 2.3;
it depends on the length of the exponential tails. Since most probable pulse-height
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Table 2.2: Parameter values of the response function obtained from the analysis of the shape
of the 4 434 keV peak in the β-delayed α spectrum of 20Na (first measurement).

DSSSD
σ λ1 λ2 r

g Eg xg σg δE
(keV) (keV) (keV) (%) (keV) (µm Al) (keV) (keV)

1 8.42 1.21 43.3 0.0942 3.17 86.5 0.49 14.0 -1.3
2 7.42 5.83 45.3 0.0425 4.46 86.9 0.49 16.2 -4.4
3 8.61 4.34 47.5 0.0823 3.14 38.2 0.22 13.3 -3.8
4 11.6 1.56 55.0 0.0875 4.05 83.1 0.47 17.3 -1.6

Figure 2.22: Ex Response functions for the two sets of oppositely facing detectors. Relevant to
the determination of the 8Be excitation energy, Ex , in the decay of 8B.

values were used for the energy calibration, it is necessary to correct for this displace-
ment. The spread in energy loss caused by the spread in implantation depth (see
Fig. 2.14) is estimated from simulations to 4 keV. It contributes in quadrature to the
spread, σ , given in the second column of Table 2.2.

In the β decay of 8B, the quantity of interest is the 8Be excitation energy, Ex , com-
puted as the sum of the α-particle energies. We calculate the Ex response function
as

Ψn1+n2 (E) =
∫

Ψn1 (E1)Ψn2 (E − E1) dE1 , (2.6)

whereΨn1 (E1) andΨn2 (E2) are the single-α response functions in detectors n1 and n2.
Ψn1+n2 (E) is shown in Fig. 2.22 for the two sets of oppositely facing detectors for a
sum energy of 3 MeV. To a first approximation, variations in implantation depth do
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(a) (b)

Figure 2.23: (a) Corresponding front and back-strip energies measured with 241Am in DSSSD
1. (b) Fit to the 241Am spectrum measured in a single pixel in DSSSD 1. The dashed, dotted
and dash-dotted curves show the contribution of the three individual 241Am lines.

not affect the sum energy: The reduced energy loss of one α particles is compensated
by the larger energy loss of the other α particle. To account for this correlation, we
use

√

σ2 − (4 keV)2 in stead of σ in the calculation of Ψn1+n2 (E) where σ is the spread
given in Table 2.2.

The 2 153 keV peak in the β-delayed α spectrum of 20Na can be used to check
whether the tails of the response function depend on the energy. Such a check has,
however, not yet been performed. The fit to the line shape of the 2 153 keV peak is
complicated by the sizeable width, Γ = 15.1 ± 0.7 keV [Til98], of the corresponding
state in 20Ne. A proper R-matrix description is necessary to account for interference
with other 2+ states in 20Ne.

Initially, before the idea of using the IAS in 20Ne came up, an attempt was made
to extract the detector response function from the observed shape of the 241Am peak.
This approach was, however, abandoned for reasons that will shortly become clear.
Plenty of statistics meant that the analysis could be performed on a pixel-by-pixel
basis. Corresponding front and back-strip energies are shown in Fig. 2.23 (a). Only
diagonal hits were considered for the analysis. A typical single-pixel 241Am spectrum
is shown in Fig. 2.23 (b). 241Am has three sharp α lines at 5486, 5443, and 5388 keV
with relative intensities of 85.2%, 12.8% and 1.4%, respectively [Fir96]. As seen in
Fig. 2.23 (b), the experimental resolution is not sufficient to separate these three lines.
The spectrum was fitted with a function of the form

f (E) ∝
3

∑

i=1

ciΨ(Ei,E) ,
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Table 2.3: Typical parameter values of the response function obtained from the analysis of the
line shape of the α spectrum of 241Am.

DSSSD
σ λ1 λ2 r

g Eg xg δE
(keV) (keV) (keV) (%) (keV) (µm Al) (keV)

1 12.8 9.7 45 0.50 3.5 108 0.70 -8.7
2 11.0 12.1 51 0.33 4.1 98 0.63 -8.7
3 12.2 13.7 55 0.25 2.9 69 0.45 -9.9
4 16.0 12.5 56 0.24 3.2 93 0.60 -10.4

with the coefficients ci fixed to the intensities given above and with the energies of
the two minor peaks, E2 and E3, at fixed positions relative to the major peak, E1,
which was allowed to vary freely. The response functionΨ given in Eq. 2.5 was used
with the Gaussian function replaced by a delta function centered at E′ = Eg. Typical
parameter values obtained from the fit are given in Table 2.3. Compared to the IAS
in 20Ne, the 241Am peak has a significantly larger spread, σ , and its exponential tails,
λi , are more pronounced. These differences must obviously be a consequence of
energy loss in the 241Am source material though the effect is not fully understood.
The energy loss depends on the spatial distribution of the implanted activity and will
be affected by material deposited on the surface of the source over years of use.

2.3.11 Measurements with α Sources

The α-particle energy spectrum of 241Am was measured at the beginning of the ex-
periment and at the end. In addition, the α-particle energy spectra of 223Ra and its
α-emitting descendants, 219Rn, 215Po and 211Bi, were measured at the very end of the
experiment. The spectrum measured in one selected DSSSD is shown in Fig. 2.24 (a).
Deviations of the observed peak energies (most probable value) from literature val-
ues are shown for all DSSSDs in Fig. 2.24 (b).

The deviation observed for 211Bi, away from a linear trend, may be explained
as follows: For each step in the 223Ra decay chain, the recoiling daughter nucleus
will, on average, come to a halt slightly deeper into the source because some of them
escape. Hence, α particles will experience a slightly larger energy loss. Being the
last α-emitting isotope in the decay chain, 211Bi will be buried more deeply than any
of the other α-emitting isotopes and its α particles subject to the largest such energy
loss. (In the absence of 211Bi this effect would have gone unnoticed: The α energies
of 223Ra, 219Rn and 215Po increase with decreasing mass number thereby masking the
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Figure 2.24: (a) Spectrum measured from a “cocktail” of α-particle emitters consisting of 223Ra,
219Rn, 215Po and 211Bi (solid line) and from 241Am (dashed line). (b) Deviations from literature
values.

increasing energy loss as a calibration issue.)
For 241Am, the energy loss in the source was measured by varying the orientation

of the source relative to the detector while monitoring the shift in peak position. We
find that the energy lost by α particles exiting normal to the source plane is 7.7 ±
0.4 keV, see Fig. 2.25.

2.3.12 Temporal Variations in Gain and Resolution

A signal from the precision pulse generator was fed to the preamplifiers throughout
the entire experiment in order to monitor the stability of the calibration. Fig. 2.26
shows variations in the position (solid, black) and width (dashed, red) of the pulse
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Figure 2.25: Energy loss of 241Am α particles in the source, ∆E , as function of secϕ where ϕ is
the angle out of the source.

generator signal for two selected strips. The sudden big jumps in position can be
attributed to interventions where the pulse generator was used for other calibration
purposes. However, slow drifts in position (probably due to variations in the elec-
tronic gain) are also visible, both in front and back strips. Toward the end of the
experiment, the resolution in the front strips of DSSSD 1 and 2 deteriorates consider-
ably. This is clearly seen in Fig. 2.26. In contrast, the resolution of the back strips is
unchanged. In DSSSD 4, both front and back strip resolution is unchanged, whereas
in DSSSD 3 the resolution worsens over the course of the experiment in both front
and back strips, but only by a small amount. Given the deteriorating resolution in
the front strips of DSSSD 1 and 2, we only use the back strips for energy determina-
tion. For consistency, we do this in all four DSSSDs. The front-strip energies are only
used for the front-back matching discussed in Section 2.3.8 where we adopt a time-
dependent tolerance to account for the deteriorating resolution in the front strips.

Since we know the implantation depth, the foil thickness and the detector dead
layers at the beginning of the experiment and at the end, we can calculate the shift
in apparent energy of the 817 keV proton group of 23Al, the 2 153 and 4 434 keV α

groups of 20Na and the 5 486 keV α line of 241Am. By subtracting these shifts from the
shifts actually observed, we obtain the shift that has occurred in the electronic gain.
This is shown in Fig. 2.27 for selected back strips in each DSSSD. The data point at
channel ∼ 3000 gives the shift of the pulse generator signal, carefully corrected for
the big “artificial” jumps observed in Fig. 2.26. The shift in electronic gain is well
described as a linear function of pulse height with the exception of the fourth data
point (241Am) which is systematically 5 keV above the linear trend.
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Figure 2.26: Variations in the position (relative to the average), δx, and width, σ, of the pulse
generator signal in front strip 8 and back strip 10 of DSSSD 1 during the experiment.

2.3.13 Foil and Dead Layer Growth

Using data from the second 20Na measurement, performed at the end of the exper-
iment, the energy lost by 2 153 keV α particles exiting normal to the foil plane is
determined to 10.4±0.2 keV upstream and 36±2 keV downstream. The former value
is in good agreement with the value of 9.9±0.5 keV obtained from the first 20Na mea-
surement. The latter value is significantly above the value of 26.9 ± 0.6 keV obtained
from the first measurement. Dividing the excess, 9± 2 keV, by the stopping power of
2 153 keV α particles in carbon, dE/dx = 1.336 keV/µg/cm2, we determine the equiv-
alent growth in foil thickness to 7.0 ± 1.6µg/cm2. Using the 241Am source, the foil
thickness was measured to 23.9 ± 0.4µg/cm2 at the beginning of the experiment and
28.5 ± 1.0µg/cm2 at the end, corresponding to a growth of 4.6 ± 1.1µg/cm2. Within
errors, this agrees with the growth deduced from the 20Na data. The foil thickness
deduced from the second 20Na measurement, 35.0±1.5µg/cm2, is significantly larger
than the thickness deduced from the 241Am measurement. We take their weighted
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Figure 2.27: Drift in electronic gain in four back strips. ∆E is the change in energy from the
beginning of the experiment to the end. The best fit straight line is superimposed.

average, 31 ± 3µg/cm2, as our estimate of the true foil thickness with the error bar
raised to account for the large spread.

The reason for the growth in foil thickness is not obvious. There seems to be two
possible explanations: Either a very intense and stable beam component or contami-
nating gas, e.g. hydrocarbons from pump oil. In the former case, the additional ma-
terial will be deposited only on the upstream side of the foil whereas in the latter case
material will aggregate on both sides of the foil and presumably also on the surface
of the detectors. Taking the observed growth (∆x = 7µg/cm2), the time with beam
on target separating the two measurements (∆t = 80 hours), the cross sectional area
of the beam (a ≈ 0.4 cm2) and the mass of a single carbon atom (m = 2.0 × 10−17 µg),
we obtain I ∼ a∆x/m∆t = 5×1011 pps as an estimate of the average beam intensity re-
quired to explain the observed growth. The assumed beam content is not important
for the estimate, using Si one obtains I ∼ 3 × 1011 pps.

A stable beam component of the intensity estimated and with the appropriate A/q
ratio to pass through the separator, seems very unlikely. Therefore, we conclude
that a contaminant gas originating from the pumping system constitutes the most



52 Chapter 2. Experiment

plausible explanation for the observed growth in foil thickness. In this case, we expect
the contaminant gas to condensate not only on the foil but also on the surface of the
detectors in amounts similar to that found on the foil, thereby lowering the energy of
the 2 153 keV α group by another 9 ± 2 keV. This corresponds to an additional dead
layer of 40 ± 9 nm Si. Remarkably, the inclusion of this additional dead layer in the
analysis of the second 23Al data set, brings down the energy of the 817 keV proton
group from 826 to 817 keV in exact agreement with the energy obtained from the first
data set. (Optimal agreement between the four DSSSDs is obtained by increasing the
dead layer of DSSSD 1 by 30 nm, that of DSSSD 2 and 3 by 40 nm and that of DSSSD 4
by 45 nm.)

2.3.14 Summary

Before proceeding to the next chapter let us briefly summarize the most important
things we have learned about our “measuring device”: The geometry has been deter-
mined with an accuracy of 1 mm or so. An energy calibration has been performed us-
ing the 2 153 and 4 434 keV β-delayed α groups of 20Na. A small quadratic correction,
derived from measurements with a precision pulse generator, was applied to the cali-
bration. The foil thickness at the beginning of the experiment has been determined to
25.7± 1.8µg/cm2 and the thickness of the dead layers of DSSSD 1–4 have been deter-
mined to 85, 75, 120 and 105 nm, respectively (see Section 2.3.6 for a discussion of the
uncertainties on these values). Trigger thresholds vary from 130–210 keV depending
on the channel. Charge sharing between neighboring strips occurs with a probability
of 3%. The probability exhibits a weak energy dependence. The single-particle detec-
tion efficiency of our setup has been determined above 0.7 MeV by comparing singles
and coincidence α spectra from the decay of 8B. The experimental response function
has been determined by analyzing the shape of the 4 434 keV peak in the β-delayed
α spectrum of 20Na. The additional energy loss experienced by particles striking the
electrode grid that covers 3% of the detector surface gives rise to a low-energy satel-
lite peak. The electronic gain drifts by up to 10 keV during the experiment. The foil
and the dead layers grow in thickness during the experiment by the equivalent of
7µg/cm2 of carbon. These temporal variations are taken into account in the analysis
of the 8B data by assuming that they occur linearly in time. Finally, the resolution of
the front strips of DSSSD 1 and 2 deteriorates toward the end of the 8B measurement.
In consequence, we use exclusively the back strips for energy determination.



CHAPTER 3

Data Analysis

We have presented the experiment and its calibration in the previous chapter. The
present chapter is concerned with the data analysis. In section 3.1, we discuss the
kinematics of the β decay of 8B and the theoretical description of the β-ν-α angular
correlations. This is necessary to determine the recoil correction, ER , and to model
the α-α coincidence detection efficiency of the setup. In section 3.2, we extract the
Ex spectrum from the experimental data. We correct for detection efficiencies and
discuss the uncertainties on the spectrum.

Note: We distinguish between the Ex spectrum, which is the observed distribution
of excitation energies, and the Ex distribution, which is the distribution of excitation
energies obtained from the R-matrix fit (Section 4.1), i.e. corrected for the effects of
the detector response function (Section 2.3.10).

3.1 Correlations and Kinematics

3.1.1 Kinematics

A schematic illustration of the kinematics of the 8B β decay is given in Fig. 3.1. In
the rest frame of the daughter nucleus (recoil frame) the two α particles travel at

θ

∆θ

ν

β

θβν

V R

8
Be

∗

vα1

vα2

uα1

α1

θαν

θαβ

uα2
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Figure 3.1: Kinematics of the β decay of 8B. In the rest
frame of the daughter nucleus 8Be the two α particles
travel at equal speeds in opposite directions, i.e. v2 =

−v1. The velocities of the α particles in the rest frame of
8B are obtained by simple vector addition, ui = vi + VR,
where VR is the recoil velocity of the daughter nucleus
8Be.
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equal speeds in opposite directions, i.e. vα2 = −vα1 . The velocities of the α particles
in the rest frame of 8B (laboratory frame) are obtained by simple vector addition,
uαi = vαi + VR, where VR is the recoil velocity of the daughter nucleus 8Be. Squaring
and multiplying by 1

2 mα, we obtain the α-particle kinetic energy in the laboratory
frame,

Eαi =
1
2 mαu2

αi

=
1
2 mαv2

αi
+

1
2 mαV2

R +mαvαi · VR

= E∗α +
mα

M ER ± 2
√

mα

M E∗αER cosθ , (3.1)

where ER =
1
2 MV2

R is the kinetic energy of the recoiling daughter nucleus and E∗α =
1
2 (Ex + 92 keV) is the α-particle kinetic energy in the recoil frame, Ex being the excita-
tion energy in 8Be. With the angle θ chosen as shown in Fig. 3.1, the plus sign applies
to α1 and the minus sign to α2. In the present case mα

M =
1
2 whereas in the case of 20Na

mα

M =
1
5 .

Adding the two α-particle laboratory energies, we obtain

Eα1 + Eα2 = 2E∗α + ER = Ex + 92 keV + ER , (3.2)

owing to the cancellation of the last term in Eq. 3.1. Apart from the small correction
given by the recoil energy ER, the sum energy of the α-particles thus equals the exci-
tation energy in 8Be plus the 92 keV gap that separates the ground state of 8Be and the
α+α threshold. The recoil energy attains its maximal value when the leptons are emit-
ted in the same direction. Momentum conservation gives ER,max ≈ (E0 − Ex)2/2Mc2

where E0 = 17.4688(10) MeV is the maximum total β energy for decays to the ground
state of 8Be, Ex is the excitation energy in 8Be and M is the mass of the 8Be nucleus.
At Ex = 3 MeV one obtains ER,max = 14 keV. When averaged over the lepton angles,
the recoil energy is somewhat reduced. A precise calculation, cf. Section 3.1.4, gives
an average recoil energy of 8.5 keV. The dependence of the average recoil energy on
Ex is shown in Fig. 3.3.

3.1.2 Recoil Broadening

As discussed in Section 3.1.1, the recoil of the 8Be daughter nucleus causes a small
systematic shift of the α-particle energy given by the second term of Eq. 3.1. The
third term averages to zero but causes a substantial broadening of the α-particle en-
ergy spectrum, i.e. for fixed Ex we measure a distribution of α-particle energies in the
laboratory. According to [Bha02] the shape of this distribution is well described by
the following expression:

ρ(x) =















15
16Tmax

(1 − 2x2 + x4) −1 ≤ x ≤ 1
0 |x| > 1

(3.3)
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with x = δE/Tmax where δE = 1
2 (Eα1 − Eα2 ) is the shift relative to the mean, and

Tmax is the maximum shift given by Eq. 2.3 with M, in this case, being the 8Be mass;
Q = Ex + 92 keV and W0 = (E0 − Ex)/me where E0 = 17.4688(10) MeV is the maximum
total β energy for decays to the ground state of 8Be. The full-width at half-maximum
of the recoil energy distribution is FWHM = 1.08 Tmax.

The broadening observed for 2.8MeV < Ex < 3.0 MeV is shown in Fig. 3.2 (b).
The data has been fitted with the theoretical distribution of Eq. 3.3 folded through
the following response function:

Ψn1−n2 (δE) =
∫

Ψn2 (Eα2)Ψn1 (2δE + Eα2) dEα2 ,

whereΨn1 ,Ψn2 are the single-particle response functions introduced in Section 2.3.10
and n1, n2 are the detectors in which α1, α2 are detected. The only free parameters
in the fit are Tmax and an overall normalization factor. We restrict our attention to
coincidence events in which one of the α particles is detected within the central 6 × 6
pixels. This is done to eliminate the bias toward small values of δE induced by the
preferential selection of decays with the α particles emitted at small angles θ relative
to the recoil axis (see Section 3.2.4).

In Fig. 3.2 (a) we compare the FWHM obtained in each excitation-energy bin by
the fitting procedure described above with the theoretical prediction. The agreement
is seen to be very good. The systematic deviations below ∼ 4 MeV are believed1 to
result from the neglect of higher-order terms in the derivation of Eq. 3.3 such as the
kinematic terms discussed below. The deviations do not represent a binning effect,
nor can they be explained by uncertainties in the response function (this has been
checked with simulations). Coincidence data from DSSSD 2 and 3 with one α particle
detected within the central 6× 6 pixels of DSSSD 3 was used for the present analysis.
Coincidence data from DSSSD 1 and 4 has also been analyzed and is found to give
practically identical results.

3.1.3 β-ν-α Triple Correlation

Neglecting terms of order Eβ/M where Eβ is the total β energy and M is the mass of the
β-decay daughter nucleus (popularly known as recoil order terms), the β-ν-α triple
correlation probability distribution is given by Eq. 5 in [Cli89]. Further neglecting the
kinematic terms of order Eβ/Mvα where vα is the speed of the α particle in the recoil
frame one obtains the following approximate probability distribution:

w ≈ 1 + A
pβ
Eβ

cosθβν + B
pβ
Eβ

cosθαβ cosθαν,

1A thorough analysis will be performed in the near future.
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Figure 3.2: Recoil broadening in the β decay of 8B. (a) FWHM of the α-particle energy distri-
bution as function of the 8Be excitation energy. The solid red curve superimposed on the data
points is the theoretical prediction. (b) Quality of the fit to the α-particle energy distribution in
one selected excitation energy bin.

where pβ is the βmomentum, θxy is the relative angle of particle x and y as illustrated
in Fig. 3.1 and the coefficients A and B are given by

A =
g2

g1
− ξ

30
g12

g1
, B =

ξ

10
g12

g1
,

with
g2

g1
=

1
3 (2a3 + 1) ,

g12

g1
=

1
2Θ(a3 − 1).

Here a3 is the so-called triple-correlation coefficient and ξ and Θ are spin-dependent
coefficients which for the present spin sequence, 2+ → 2+ → 0+, take on the values 10
and 1, respectively. For pure Gamow-Teller decays, we have a3 = −1 (for pure Fermi
a3 = 1). We thus arrive at the following approximate formula:

w ≈ 1 −
pβ
Eβ

cosθαβ cosθαν. (3.4)
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Before proceeding, let us briefly discuss the approximations made. Recoil order
terms Eβ/M < 17 MeV/7.5 GeV ∼ 2 × 10−3 may safely be neglected. The kinematic
terms, on the other hand, are of order Eβ/Mvα where vα is the speed of the α particle
in the recoil frame and hence become large for small Ex. Uncertainties concerning the
trigger levels prevent a reliable efficiency correction to be made below Ex = 1 MeV.
Above 1 MeV we have

Eβ
Mvα

=
Eβ
M

( mα

Ex + 92 keV

)1/2
<

17 MeV
7.5 GeV

( 3.7 GeV
1 092 keV

)1/2

= 0.13 ,

indicating that, maybe, the kinematic terms cannot be disregarded in the present case.
The neglect of the kinematic terms may possibly explain the deviation observed in
Fig. 3.2. Importantly, the Ex distribution is not affected.

3.1.4 Simulation of Recoil Effects

As a consequence of the recoil motion of the 8Be nucleus, the α particles do not travel
in completely opposite directions in the laboratory frame. In general, the effect is
small but in the particular case of 8B, the effect is enhanced by the combination of a
large Q value and a light daughter nucleus. We expect the effect to be most important
at small Ex where the recoils are largest. At Ex = 3 MeV, for instance, the α-particle
energy in the recoil frame is E∗α = 1.5 MeV and the recoil energy of the 8Be nucleus,
ER , varies between 0 and 14 keV depending on the relative angle of the leptons.
The shift in α-particle angle, ∆θ , attains its maximal value when the α particles are
emitted at 90 degrees to the recoil axis. From Fig. 3.1 we find

∆θmax = arctan VR,max/vα

= arctan
√

mαER,max/ME∗α

≈ arctan
√

0.5 × 14 keV/1.5 MeV

= 3.9◦ (3.5)

for the maximal shift corresponding to a relative α-α angle of θαα = 180◦ − 2 × 3.9◦ =
172◦. The distribution of θαα for fixed Ex may be obtained by means of a Monte Carlo
simulation:

First, we generate a large sample of β + ν + α + α four-body final states using the
following procedure: The directions of the neutrino (ν) and the positron (β) are cho-
sen randomly (independent isotropic distributions) relative to a fixed axis given by
the α-particle recoil-frame momentum vector. The β kinetic energy Tβ is chosen ran-
domly (uniform distribution) from 0 to the maximum possible value of E0−me−Ex =

16.9578 MeV − Ex. Finally, the amplitude of the event w(Ex; Eβ, θαβ, θαν) is computed
from Eq. 3.4.
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Figure 3.3: (a) Recoil energy distribution obtained for three fixed values of Ex. (b) Average
recoil energy as function of Ex.

Second, we leaf through the sample just generated applying the Von Neumann
sampling technique: For each event a random number 0 ≤ r ≤ 1 is generated and the
event is accepted if w > rwmax where wmax is largest weight assigned to any event of
the sample. The neutrino energy is computed as Eν = E0 −Eβ with Eβ = Tβ +me being
the total β energy. The 8Be recoil energy, ER , is determined by the requirement of
momentum conservation, pR = −(pβ+pν). The laboratory velocities of the α particles,
uαi , are obtained from the velocities in the recoil frame, vαi , by simple vector addition:
uαi = vαi +VR with VR = pR/M. The relative α-α angle is then obtained from cosθαα =
uα1 · uα2/uα1uα2 .

Examples of θαα distributions for two different values of Ex are shown in Fig. 3.9 (a)
and (b) by the dash-dotted blue lines. Examples of ER distributions for three different
values of Ex are shown in Fig. 3.3 (a). In Fig. 3.3 (b) the average of the ER distribution
is plotted as function of Ex.
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3.2 Ex Spectrum

Below, we examine the various types of coincidence events found in the data, we
discuss how best to determine Ex from the measurement of the individual α-particle
energies and we use simulations to evaluate the efficiency of our setup for detecting
α-α coincidences and correct the experimental spectra accordingly. Finally, we check
the internal consistency of the singles spectrum and the coincidence spectrum and
estimate the uncertainty in the determination of Ex. In the end, a summary is given.

3.2.1 Multiple-Particle Events

Fig. 3.4 (a) shows all α-α coincidences detected during 72 hours of measurement.
Events within the region defined by the two red lines are used to construct the Ex spec-
trum.

Neglecting β-α angular correlations and assuming 100% β detection efficiency2,
the probability of the positron being detected in coincidence with the α particles is
simply equal to the solid-angle coverage of 30%. As can be seen by inspecting the
color scales of Fig. 3.4 (a) and (b), the requirement of a signal from the back detectors
(Eβ > 0) reduces the number of α-α coincidences by a factor of six, i.e. twice the
reduction expected, indicating that the β detection efficiency has been overestimated.
Since we are only interested in the α particles, this is not a cause of concern.

The chances of detecting the positrons in the DSSSDs are slim because the positrons
deposit very little energy, on average 0.6 keV/µm × 60µm = 36 keV. Only positrons
subject to significant straggling deposit enough energy to climb above detection thresh-
old. Therefore only 10 500 α-α-β triple coincidences have been identified, correspond-
ing to one in every thousand positron being detected in the DSSSDs in coincidence
with the α particles.

Fig 3.4 (c) and (d) show coincidences where the relative angle deviates substan-
tially from 180 degrees. The horizontal and vertical bands close to the axes corre-
spond to α-β coincidences in the DSSSDs with the second α-particle not detected.
The diagonal band may be identified with α-α coincidences where large-angle scat-
tering has occured in the carbon foil. Random coincidences, to be discussed below,
also give a small contribution.

2With 90% of the intensity in the Ex distribution located below 6 MeV, the large majority of positrons
will be minimum ionizing and, on average, deposit 0.6 keV/µm × 1500µm = 0.9 MeV in the 1.5 mm thick
back detectors. Enough to stay clear of the detection thresholds, thus seemingly justifying the assumption
of 100% β-detection efficiency.
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(a) (b)

(c) (d)

Figure 3.4: Two-dimensional energy spectrum of α-α coincidences from the decay of 8B. The
figures (a)–(c) display coincidences detected in opposite detectors. In the case of (b) and (c)

additional cuts have been imposed on the data as indicated by the text on top of the figures.
Figure (d) displays coincidences detected in non-opposite detectors.

3.2.1.1 Random Coincidences

As explained in Section 9.2, random coincidences may occur if two decays take place
within less than 2.5µs of each other, i.e. during the data taking window. The two
decays will be recorded to the same event in the data structure even though they
represent distinct physical events. It is instructive to compare the length of the data
taking window to the typical travel times from decay site to detection. Consider e.g.
the breakup of 20Ne to α+ 16O. Assuming 4 MeV for the energy of the α-particle and 1
MeV for the energy of the 16O ion, one finds travel times of 3.6 and 14 ns, respectively.
The delay between the arrivals of the two particles is seen to be much shorter than
the length of the data taking window.

Given the detection of a 8B decay, what is the probability that another decay will
occur and be detected within the next 2.5µs and hence be recorded in the same event
in the data stream? With an average 8B implantation rate of 2.0× 102 ions per second
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and a 30% solid-angle coverage, the answer is 2.0×102 s−1×2.5µs×0.3 = 2×10−4, i.e.
two in every 10 000 events will be random coincidences. Since the decays that come
in random coincidence are uncorrelated, exclusion of such events from the analysis
will not modify the shape of the Ex spectrum.

3.2.2 β Summing

Neglecting β-α angular correlations, the probability that the positron will hit the same
pixel as one of the α particles is only ∼ 2 × 9 mm2/4π (5 cm)2 = 6 × 10−4. Assuming
an average energy loss of 0.6 keV/µm for positrons in silicon, we estimate the energy
shift caused by β summing to 6 × 10−4 × 0.6 keV/µm × 60µm = 0.02 keV , i.e. van-
ishingly small. One may, however, argue that, for summing to occur, the positron
just has to hit the same strip as one of the α particles. If, say, the positron and the α
particle hit the same back strip but different front strips, their back-side signals will
add up while their front-side signals will be read out separately. Typically, the en-
ergy deposited by the positron Eβ is below detection threshold and hence only one
front-side signal (that of the α particle) will be recorded in the data stream. Due to
the smallness of Eβ, front and back energies will be fairly close, typically close enough
to survive the cut placed on the front-back energy difference. Consequently, the β-α
coincidence will be identified as a single α particle with an energy of Eα + Eβ because
we use the back-side signal for energy determination. The probability of the positron
hitting the same back strip as one of the α particles is 16 times the probability of it hit-
ting the same pixel and hence our estimate of the energy shift caused by β summing
is 16 × 0.02 keV = 0.3 keV, still negligibly small.

3.2.3 Determination of Ex

As we saw in Section 3.1.1, Ex may be computed by simply adding the two α-particle
energies provided one corrects for the 8Be recoil energy, ER. The α-particle momenta
offer an alternative way to determine Ex. Subtracting the two α-particle laboratory
momenta we obtain

p1−2 ≡ pα1
− pα2

= mα(uα1 − uα2 )

= mα(vα1 − vα2 )

= 2mαvα1

and consequently,
p2

1−2

4mα
= mαv2

α1
= 2E∗α = Ex + 92 keV (3.6)
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Figure 3.5: Illustration of the effect of a 1 mm error in the assumed placement of the detectors
on the deduced α-particle momentum.

The obvious advantage of using this formula rather than Eq. 3.2 to determine Ex, is
that it is exact. No need to correct for the systematic and energy-dependent shift
caused by the recoil energy term. The disadvantage of using this formula is that
it introduces additional experimental uncertainties in the determination of Ex as it
relies not only on the energies but also the directions of the α particles. As argued in
Section 2.3.1, the placement of the detectors relative to the activity implanted in the
foil is known to an accuracy of ±1 mm. This, at least, is true for the coordinates in
the plane perpendicular to the axis joining the center of detector and the foil. Let us
estimate the effect of a 1 mm error on Ex determined through Eq. 3.6. Given an error
∆p in the determination of the momentum of α1 , we have

∆p2
1−2 = (p1−2 + ∆p)2 − p2

1−2

= 2 p1−2 · ∆p + ∆p2

= 2 p1−2∆p cosγ + ∆p2 , (3.7)

where γ is the angle between p1−2 and ∆p as shown in Fig. 3.5. The magnitude of the
error ∆p is approximately given by

∆p ≈ 1 mm
5 cm/| sinγ| pα1 ≈ 1 × 10−2 | sinγ| p1−2 . (3.8)

Combining Eq. 3.7 and 3.8, we obtain

∆p2
1−2

p2
1−2

≈ 2 × 10−2 cosγ | sinγ| + 1 × 10−4 sin2γ .

When averaged over angles of incidence, the first term vanishes because of the cos γ
factor. We conclude that a 1 mm error in the assumed geometry causes a systematic
error of only 10−4 in the determination of Ex. At 3 MeV this is equivalent to 0.3 keV.
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Figure 3.6: Comparison of the Ex spectrum obtained using Eq. 3.6 to the Ex spectra obtained
using Eq. 3.2 with and without the recoil-energy term, ER, included (based on coincidence data
from DSSSD 2+3).

A similar analysis may be performed assuming that an error of 5 mm on the dis-
tance from the detector to the foil. The resulting systematic error in the determination
of Ex is 8 keV. As will be shown below, this is an overestimate of the actual error.

Let ΦE denote the Ex spectrum obtained from Eq. 3.2 neglecting the recoil energy,
ER. Denote the same spectrum ΦER when including the recoil. Finally, let Φp denote
the Ex spectrum obtained from Eq. 3.6. We compare the spectra by calculating:

δp−E =
Φp −ΦE

1
2 (Φp + ΦE)

, δp−ER =
Φp −ΦER

1
2 (Φp + ΦER)

.

These are shown in Fig. 3.6. The relative deviation, δ = ∆Φ
Φ

, may be translated into an
energy shift, ∆E , using

∆E ≈ ∆Φ
Φ

( 1
Φ

dΦ
dE

)−1

.

At Ex = 2.4 MeV, the rate of change of the Ex spectrum is 1
Φ

dΦ
dE ≈ 0.20% per keV and

the relative deviations observed in Fig. 3.6 are δp−E = 2.5% and δp−ER = 0.6%. It
follows that the spectra are shifted by 12 and 3 keV, respectively. We note that the
3 keV discrepancy is consistent with our previous estimates of the systematic error
introduced by the uncertainties in the geometry of the detector setup.

In the following analysis, we shall be using ΦER , i.e. the Ex spectrum obtained
from Eq. 3.2 including the recoil energy, unless otherwise stated.
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3.2.4 Coincidence Detection Efficiency

In an ideal world, the α-α coincidence detection efficiency would be 100%. In other
words, every time an α particle is detected in one detector, its partner α particle is
detected in the opposite detector. In the real world things are, as always, more com-
plicated.

First, the detectors are not perfectly aligned, neither with respect to each other, nor
with respect to the carbon foil. Second, even if the detectors were perfectly aligned,
the finite size of the implantation spot would still cause some α particles to miss
the opposite detector. Third, as discussed in Section 2.3.8, there is a weakly energy-
dependent 3% probability for charge sharing to occur. Such hits are discarded in
the analysis (though they can, to a large extent, be recovered if desired). Fourth, the
differing trigger/ADC thresholds of the detectors may render a low-energy α particle
invisible to one detector even though its partner α particle of nearly equal energy is
visible to the opposite detector. These were the experimental effects.

Two physical effects may also be identified. The most important one is the angular
shift ∆θ caused by the recoil motion of the 8Be nucleus. As can be seen from Eq. 3.5,
the shift increases with decreasing Ex, its maximal value exceeding 8 degrees below
3 MeV. Another, less important, effect is the angular straggling that occurs in the
carbon foil. At the energies and thicknesses relevant to the present study, the angular
spread σθ is approximately given by the empirical relation,

σθ ≈ 0.52◦
( E

1 MeV

)−1.12 ( x
100 nm

)0.462
,

where E is the α-particle energy and x is the distance traveled in carbon. This relation
was deduced from TRIM simulations.

The combined effect of all these “errors” is seen in Fig. 3.7 which displays the
ratio of the coincidence spectrum to the singles spectrum measured in DSSSD 4. The
curve labeled 14 × 14 is obtained by requiring that the α particle seen by DSSSD 4
is within the central 14 × 14 pixels, the curve labeled 12 × 12 by requiring that it
is within the central 12 × 12 pixels etc. The ratio of coincidences to singles is seen
to drop with decreasing energy. This is a consequence of the increasing recoil shift
∆θ. The more central we require the hit in DSSSD 4 to be, the more unlikely it is
for the partner α particle to miss DSSSD 1. The drop in the ratio of coincidences
to singles is correspondingly less marked. For the two most central cuts, 6 × 6 and
4× 4, the drop is essentially absent. The sharp drop around 0.6 MeV that occurs in all
spectra is due to the presence of a low-energy background component in the singles
spectrum (see Section 2.3.9). Though unaffected by the recoil shift ∆θ, the 4 × 4 and
6 × 6 coincidence-to-singles ratio still exhibits a weak energy dependence. This is
understood as resulting from an energy dependence in the single-particle detection
efficiency (see Section 2.3.9).
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Figure 3.7: Ratio of the coincidence spectrum to the singles spectrum measured in DSSSD 4.
The curve labeled 14×14 is obtained by requiring that the α particle seen by DSSSD 4 is within
the central 14 × 14 pixels, the curve labeled 12 × 12 by requiring that it is within the central
12 × 12 pixels etc. .

3.2.4.1 Monte Carlo Simulation

A Monte Carlo simulation was performed in order to quantify the effect of the vari-
ous “errors” discussed in the previous section on the Ex spectrum deduced from the
coincidence data. Below, the structure of the simulation program is described.

For a fixed value of Ex, one simulates a large number of 8B decays, say one mil-
lion, following the method given in Section 3.1.4. The quantities of interest are the α-
particle momenta in the laboratory frame, pαi

, and the amplitude of the event, w , cal-
culated from Eq. 3.4. From this primary sample, one generates a realistic sample with
∼ 105 events by applying the Von Neumann sampling technique (see Section 3.1.4).
Next, one chooses a pixel (n, i, j) in one of the detectors identified by detector number
n, front strip number i and back strip number j. Assuming that α1 is detected in this
particular pixel, one leafs through the realistic sample, counting the number of times
α2 is detected in the opposite detector. This involves sampling the implantation site
(assuming a uniform circular distribution of diameter 1.0 cm) and sampling the an-
gular straggling caused by the passage through the foil. In addition, the energy loss
in the foil and the detector dead layer is calculated before checking that the α-particle
energy is above detection threshold. The energy-dependence of the single-particle
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Figure 3.8: Coincidence detection efficiency as a function of 8Be excitation energy in three
selected pixels of DSSSD 1 (back strip 8, front strips 2, 8 and 15).

detection efficiency is taken into account twice, both in the detection of α1 and in the
detection of α2. Finally, the coincidence detection efficiency of the chosen pixel is
computed as

εn,i, j(Ex) =
Number of times both α1 and α2 are detected

Size of realistic sample
.

This step is repeated for each pixel (neglecting the edge strips there are 4 × 14 × 14 =
784 pixels in total) for selected values of Ex covering the range of interest. Fig. 3.8
shows εn,i, j(Ex) for three selected pixels of DSSSD 1. For pixel (8, 8), the recoil shift,
∆θ , never becomes large enough for the partner α particle to miss the opposite detec-
tor. Consequently, the efficiency is constant. For pixel (2, 8), the efficiency drops with
decreasing Ex as the angular shift becomes larger causing more α particles to miss the
opposite detector. For pixel (15, 8), the opposite trend is observed. This is due to the
detectors not being perfectly aligned. In the absence of any angular shift (large Ex)
most α particles miss the opposite detector. With increasing angular shift (small Ex)
more α particles have their trajectories bent enough to hit the opposite detector. Be-
low 0.6 MeV, the efficiency drops rapidly due to the trigger/ADC thresholds.

Fig. 3.9 (a) and (b) provide a good check of the simulation. They compare exper-
imental and simulated distributions of relative α-α angles for two different values of
Ex. The theoretical distributions which serves as input for the simulations, are also
shown. To eliminate bias introduced by preferential selection of events with small re-
coil shifts ∆θ, only coincidence events with an α particle detected within the central
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Figure 3.9: (a) and (b) Distribution of relative α-α angles at two different values of Ex obtained
from coincidence data in DSSSD 1 + 4 selecting only events with an α particle detected within
the central 6 × 6 pixels of DSSSD 4. Simulated distributions were obtained by feeding the
output of the simulation program to the same analysis program as used for the experimental
data. The lengths in the parentheses refer to the assumed diameter of the implantation area.
(c) Maximal recoil shift ∆θmax as a function of Ex.

6× 6 pixels were selected for the analysis. The simulated distributions were obtained
by feeding the output of the simulation program into the same analysis program as
used for the experimental data. The simulations were performed with Ex fixed to 1.75
and 6.25 MeV. For the experimental data, 500 keV windows were used.

Simulations were performed for different choices of the diameter of the implan-
tation spot. A uniform circular distribution was assumed in all cases. The best fit to
the experimental data was obtained with a diameter of 10 mm in reasonable agree-
ment with the diameter of the visible beam spot, see the photos in Fig. 2.16, which
was measured to 7 mm. A Gaussian distribution might seem a more realistic choice.
The assumption of a uniform distribution is, however, justified if the 8B beam from
the mass separator is badly collimated with a diameter significantly larger than the
5 mm collimator placed at the entrance to the experimental chamber. If this is the
case, the effect of the collimator will be to cut off the Gaussian flanks of the beam
leaving an essentially uniform distribution.

At Ex = 6.25 MeV, the extent of the distribution is almost entirely determined by
the experimental resolution. The theoretical distribution is seen to be very narrow.
At Ex = 1.25 MeV, the roles are reversed with the recoil shift being most important.
The simulated distribution is shifted by 1–2 degrees relative to the experimental dis-
tribution. This is presumably a binning effect but could also be related to the neglect
of the kinematic terms in the derivation of Eq. 3.4.
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3.2.4.2 Efficiency-Corrected Spectra

An overall efficiency correction of the Ex spectra is obtained by assigning weight fac-
tors 1/εn,i, j(Ex) to the individual coincidence events. The magnitude of the correction
applied to the Ex spectrum obtained from coincidence data in DSSSD 1 + 4, with the
requirement that the α particle seen by DSSSD 4 is detected within the central k × k
pixels, is shown in Fig. 3.10 (a), in percent of the uncorrected spectrum. The effects
of trigger/ADC thresholds have not been included. They only modify the excitation
energy spectrum below 1 MeV. The large fluctuations in the correction applied to the
14×14 Ex spectrum originate from the large weight factors assigned to the edge strips
which have rather little statistics.

Fig. 3.10 (b) shows the ratio of the 14 × 14 Ex spectrum to the 6 × 6 Ex spectrum
before and after the efficiency correction. The agreement between the two spectra is
seen to improve when the efficiency correction is applied. Significant discrepancies
remain, in particular in the high-energy end of the spectrum. We attribute these to er-
rors in the assumed geometry of the detector setup. The large correlated fluctuations
arise because we compare overlapping data sets (the 6 × 6 data set is a subset of the
14 × 14 data set).

In the further analysis, we will be using the 6×6 Ex spectrum up to 10 MeV. Above
10 MeV, we will be using the 10 × 10 Ex spectrum to gain more statistics.

Figure 3.10: (a) Efficiency correction applied to the Ex spectrum obtained from coincidence data
in DSSSD 1+ 4, with the requirement that the α particle seen in DSSSD 4 is detected within the
central k × k pixels, in percent of the uncorrected spectrum. (b) Ratio of 14 × 14 Ex spectrum to
the 6 × 6 Ex spectrum before and after the efficiency correction.
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3.2.5 Comparison to Single-α Spectrum

Below, we will use the Ex distribution, f (Ex) , deduced from the R-matrix fit described
in Section 4.1, to derive the single-α energy distribution that we would expect to mea-
sure. This will then, as a check of self-consistency, be compared to the one actually
measured.

The single-α energy distribution, g(Eα) , is obtained by folding the Ex distribution,
f (Ex) , with the recoil broadening distribution ρ(x) of Eq. 3.3:

g(Eα) =
∫

f (Ex) ρ(x) dEx ,

where x depends on both Eα and Ex:

x =
Eα − 1

2 [Ex + 92 keV + ER(Ex)]
Tmax(Ex)

.

To obtain the energy distribution, h(E′α) , measured in the detector, we fold the single-
α energy distribution, g(Eα) , with the response function,Ψ(Eα,E′α) , given by Eq. 2.5:

h(E′α) =
∫

g(Eα)Ψ(Eα,E′α) dEα ,

taking into account3 the additional spread in α-particle energy caused by variations
in the foil implantation depth (about 10 keV at Eα = 1.5 MeV). Finally, we correct for
the weakly energy-dependent single-particle detection efficiency. We normalize the
distribution obtained to the measured singles spectrum and compute the standard-
ized residuals. These are shown for DSSSD 1 and 4 in Fig. 3.11. Above ≈ 1.6 MeV
the residuals look very nice. Between 1 and ≈ 1.6 MeV systematic deviations are
present. They can, however, be explained by a mismatch in the energy scales of the
reconstructed and measured singles spectra of only 1–2 keV. The downward trend,
starting around 1 MeV in DSSSD 1 and around 0.6 MeV in DSSSD 4, is due to the
presence of a low-energy background component in the measured singles spectrum
(see Section 2.3.9).

3Its influence on the calculated distribution is found to be negligible.
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Figure 3.11: Standardized residuals from the comparison of the reconstructed singles spectrum
to the measured singles spectrum.

3.2.6 Uncertainty on Ex

Four sources of systematic uncertainty in the determination of Ex may readily be
identified:

(i) Uncertainties in the tabulated energies of the α groups of 20Na used for the en-
ergy calibration.

(ii) Uncertainties in the energy-loss calculations.

(iii) The drift in electronic gain and growth in foil and dead layer thickness during
the experiment.

(iv) Uncertainties in the determination of the Ex response function.

We examine items (i)–(iv) one at the time:
(i) The uncertainties on the tabulated energies of the 2 153 and 4 434 keV β-delayed

α groups of 20Na are 1.0 and 1.5 keV, respectively, deduced from the uncertainties on
the excitation energies4 of the corresponding levels in 20Ne. This gives a systematic
uncertainty of 1.7 keV on the single-α energy in the peak region. The error is, of

4The uncertainty on the α + 16O threshold energy in 20Ne is only 10 eV.
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course, the same in all four detectors. Therefore, the contribution to the overall Ex

uncertainty is twice as big, i.e. 3.4 keV.
(ii) The systematic uncertainties associated with the energy-loss corrections are

greatly reduced by the use of 20Na, implanted in the same foil as 8B, for the energy
calibration. In Section 2.3.4 and 2.3.5, the uncertainties on the implantation depth and
the foil thickness were estimated to 1 and 8 nm, respectively. One can show that this
gives an uncertainty of only 0.3 keV on the single-α energy in the peak region. The
uncertainty on the dead layer thickness was discussed in Section 2.3.6. Assuming a
certain thickness in one DSSSD, the proton lines of 23Al fix the the dead layer thick-
ness in the other three DSSSDs to within ±7 nm. The uncertainty on the overall scale
was estimated to 15 nm. One can show that this gives an uncertainty of 0.4 keV on
the single-α energy in the peak region. The combined contribution of foil and dead
layer to the overall Ex uncertainty is calculated to 0.9 keV.

(iii) The drift in electronic gain and the growth in foil and dead layer thickness
have been taken into account in the analysis of the data by assuming that the changes
occur linearly in time. The success of this correction can be seen in Fig. 3.12 (a) which
shows the evolution in the maximum of the Ex spectrum during the experiment. The
72 hour long measurement has been divided into 8 bins of approximately 9 hours
duration each. To find the energy at which the Ex spectrum attains its maximum
value, the spectrum has been fitted between 2 and 4 MeV with a function of the form

f (Ex) =


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Fig. 3.12 (b) and (c) demonstrate the quality of the fit in one selected time bin. After
the correction, the maximum of the Ex spectrum is practically constant with time
except for the slight upward trend at the beginning of the experiment. Based on
Fig. 3.12 (a), the contribution to the overall Ex uncertainty from the drift in electronic
gain and the growth in foil and dead layer thickness is estimated to 5 keV.

(iv) The Ex response function (Eq. 2.6) causes the maximum of the Ex spectrum
to be shifted 15 keV down in energy relative to the true maximum; the exponential
tails give a shift of 6 keV, the satellite peak a shift of 9 keV. By varying the parameters
entering Eq. 2.6 within their estimated uncertainties, we find that the contribution to
the overall Ex uncertainty is at most 2 keV.

The sources of systematic uncertainty on Ex and their 1σmagnitude in the peak re-
gion are summarized in Table 3.1. For a general excitation energy, Ex , the uncertainty
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Figure 3.12: Variations in the maximum of the Ex spectrum with time (not corrected for the
recoil energy, ER). (a) Maximum as function of time before and after the correction for drift in
electronic gain and growth in foil and dead layer thickness. (b) Ex spectrum between 2 and 4
MeV for one selected time bin with the fit superimposed. (c) Standardized residuals from the
fit.

Table 3.1: Sources of systematic uncertainty on Ex and their 1σ magnitude in the peak region.
The combined uncertainty is obtained by adding the individual uncertainties in quadrature.

Source Magnitude (keV)

(i)
Uncertainties in the tabulated energies of 20Na α groups

3.4
used for the energy calibration

(ii) Uncertainties in the energy-loss correction 0.9

(iii)
Drift in electronic gain and growth in foil and dead layer

5
thickness during the experiment

(iv) Uncertainties in the determination of the Ex response function 2

Combined uncertainty 6
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due to (i) is (5.5−3.5Ex+0.61E2
x)1/2 keV with Ex in MeV. The combined uncertainty due

to (ii)–(iv), which we assume to be independent of Ex, is (0.92 + 52 + 22)1/2 = 5.5 keV.
Adding the two in quadrature, we obtain

σsyst. = ( 35.3 − 3.5Ex + 0.61E2
x )1/2 keV , (3.9)

as our most conservative estimate of the systematic uncertainty on Ex.

3.2.7 Summary

The correction applied to the Ex spectrum to account for the Ex dependence of the
α-α coincidence detection efficiency, has been discussed at length. The correction is
largest for small values of Ex where the recoil effects are strongest.

Due to uncertainties in the geometry, we are unable to perform an accurate ef-
ficiency correction of the 14 × 14 Ex spectrum. The 6 × 6 Ex spectrum, only subject
to geometry-dependent corrections below 1.5 MeV, has been selected for the further
analysis. Above 10 MeV, the 10×10 Ex spectrum, only subject to geometry-dependent
corrections below 7 MeV, is used to gain more statistics. We were able to check the in-
ternal consistency of the coincidence and singles spectra down to 1.6 MeV and found
good agreement. Below 1 MeV, the Ex spectrum is affected by detection thresholds.
Four Ex spectra have been extracted from the data:

I. Coincidence events in DSSSD 1 and 4 with an α particle detected within the
central 6 × 6 (10 × 10 above 10 MeV) pixels in DSSSD 1.

II. Coincidence events in DSSSD 1 and 4 with an α particle detected within the
central 6 × 6 (10 × 10 above 10 MeV) pixels in DSSSD 4.

III. Coincidence events in DSSSD 2 and 3 with an α particle detected within the
central 6 × 6 (10 × 10 above 10 MeV) pixels in DSSSD 2.

IV. Coincidence events in DSSSD 2 and 3 with an α particle detected within the
central 6 × 6 (10 × 10 above 10 MeV) pixels in DSSSD 3.

The uncertainty on Spectrum III is larger than the other three due to an additional
uncertainty associated with the detection efficiency correction5, and hence this spec-
trum is discarded. The uncertainty on Spectrum IV is also somewhat larger than the
uncertainty on I and II due to some atypical and not fully understood features of the
response of DSSSD 3. Therefore, I and II are the preferred spectra. Since their data
content overlaps, only one may be selected for further analysis. We randomly chose
spectrum II. Spectra I and IV are then used for checks of consistency. Impressively,
the maxima of I, II and IV agree to within ±2 keV. Spectrum II is shown in Fig. 4.1

Finally, the systematic uncertainty on Ex in the peak region was estimated to 6 keV.
5The additional uncertainty is due to the presence of a dead strip in DSSSD 3





CHAPTER 4

Results and Discussion

Finally, we are able to reap the rewards of our labor. In the present chapter, we unfold
the Ex distribution from the Ex spectrum. We compare this distribution to the Ex dis-
tributions obtained in previous studies and suggest reasons for the small discrepan-
cies observed. We estimate the effect of these discrepancies on the neutrino spectrum
and comment on the implications for the solar neutrino measurements. The neutrino
spectrum is calculated making some simplifying assumptions. The complete calcu-
lation, following the prescription of Winter et al., remains to be done. In addition,
certain systematic effects in the R-matrix parametrization of the Ex distribution be-
low 1 MeV remain to be explored. Finally, we present a couple of additional results
not related to the determination of the neutrino spectrum.

4.1 R-Matrix Description

A parametrization of the Ex distribution is not essential for the purpose of calculat-
ing the 8B neutrino spectrum. In practice, however, it is advantageous to calculate
the neutrino spectrum from a parametrization rather than from the measured spec-
trum because it facilitates the propagation of systematic uncertainties. Furthermore,
a physically meaningful parametrization allows for a reliable extrapolation to the
lowest energies (0–1 MeV) where the measured spectrum is affected by the detec-
tion thresholds. Finally, the effects of the detector response may easily be taken into
account by folding in the Ex response function (Eq. 2.6).

We adopt a parametrization similar to one used in the previous studies of Winter
el al. [Win06] and Bhattacharya et al. [Bha06] derived from R-matrix theory, cf. Sec-
tion 7.6. The decay is assumed to proceed by allowed transitions to the three known,
energetically accessible, 2+ states in 8Be: The first excited state at 3 MeV and the
strongly isospin-mixed doublet around 16 MeV. A satisfactory description of the Ex

distribution is, however, only achieved with the inclusion of a fourth, very broad,
2+ state lying above the β-decay window, but affecting the Ex distribution via its
low-energy tail. Our parametrization gives an improved treatment of the 16 MeV
doublet compared to that of Winter el al. and Bhattacharya et al. which is slightly
flawed. A detailed account of the parametrization is given in the thesis of S. Hylde-

75
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Figure 4.1: Ex Spectrum with the fit (Ex distribution folded with response function, red solid
curve) and the Ex distribution (blue dash-dotted curve) superimposed. The inset shows a close-
up of the peak region. The 15 keV shift due to the response function is hardly visible. The
standardized residuals are shown in the bottom figure.

gaard [Hyl10a] and will not be repeated here. The R-matrix description of the Ex

distribution constitutes in itself an interesting problem. The nature of the fourth,
higher-lying and very broad, 2+ state is of particular interest. Is this a genuine state
or an artifact of the R-matrix formalism? See the discussion in [Hyl10a].

The Ex spectrum obtained in the present study is shown in Fig. 4.1. The R-matrix
function folded with the Ex response function, has been fitted to the spectrum above
1.5 MeV giving an excellent description of the data with χ2/d.o.f = 0.97. The fit is
shown by the red solid curve. The Ex distribution obtained from the fit is shown by
the blue dash-dotted curve. The 15 keV shift between the two curves is hardly visible
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Relative 1σ statistical and systematic uncertainties on the Ex distribution are shown
in Fig. 4.2. The statistical uncertainties were obtained by standard error propaga-
tion [Ams08] of the covariance matrix of the fit parameters. To determine the ef-
fect of the systematic uncertainty on Ex (Eq. 3.9) on the Ex distribution obtained
from the fit, f (Ex) , we evaluate f (Ex) at energies Ex ± σsyst., compute the differences
| f (Ex ± σsyst.) − f (Ex) | and adopt the larger of the two differences as our estimate of
the 1σ systematic uncertainty. As pointed out by Winter et al., the choice of channel
radius in the R-matrix model represents a source of systematic uncertainty outside
the fit region, the effect of which may be estimated by varying the channel radius
within realistic limits. Winter et al. found that the choice of channel radius is a sig-
nificant source of uncertainty only for neutrinos at very high (Eν > 15 MeV) and low
(Eν < 0.5 MeV) energies. The invocation of a fourth, very broad, 2+ state lying out-
side the β-decay window, to reproduce the decay strength not accounted for by the
three known 2+ states, represents an additional source of uncertainty not recognized
by Winter et al. Other models in which the fourth 2+ state is assumed to reside inside
the β-decay window, give equally good fits to the data. To quantify the uncertainty
associated with the choice of R-matrix model, we intend to perform fits with a num-
ber of models, only differing in their assumptions regarding the whereabouts of the
fourth 2+ state. This analysis remains to be done.

Figure 4.2: Relative 1σ statistical and systematic uncertainties on the Ex distribution in percent
of the distribution value. The statistical uncertainties were obtained by standard error propa-
gation of the covariance matrix of the fit parameters. The systematic uncertainties reflect the
systematic uncertainties in the determination of Ex.
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Figure 4.3: Comparison of the Ex distribution obtained in the present study to distributions
obtained in previous studies. The distributions of Winter el al. and Bhattacharya et al. are
available online, see references in [Win06] and [Bha06]. The two distributions practically lie on
top of each other. The widths of the distributions indicate 1σ uncertainties. The two systematic
uncertainties given by Bhattacharya et al. were added in quadrature as recommended. The
data points show the experimental spectrum of Ortiz et al. obtained by private communication
with A. Garcia (2010). The error bars represent systematic and statistical uncertainties added
in quadrature. The dashed line going through the data points is merely meant to guide the
eye. All four distributions have been normalized to unit area.

4.2 Comparison to Past Measurements

In Fig. 4.3, we compare the Ex distribution obtained in the present study to the dis-
tributions obtained in the previous studies of Winter el al., Bhattacharya et al. and
Ortiz et al. All distributions have been normalized to unit area. The width of the
curves indicate 1σ uncertainties. The statistical and systematical uncertainties on our
distributions have been added in quadrature. The maximum of our distribution lies
between the maximum of the distribution of Ortiz et al. and the maxima of the dis-
tributions of Winter el al. and Bhattacharya et al. which are very close. The precise
location of the maxima are given in Table 4.1.

Relative deviations of the distributions of Winter el al. and Bhattacharya et al.
compared to our data, are shown in Fig. 4.4. The gray band indicates the 1σ uncer-
tainty on our distribution obtained by adding statistical and systematic uncertainties
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Table 4.1: Spectral maxima of the 8Be excitation energy distribution obtained in the present
and previous three studies.

Study
Spectral maximum

(keV)

Deviation from Error on energy
present study scale at maximum

(keV) (keV)

Ortiz 2000 2 899 −19 12

Winter 2006 2 943 25 9

Bhattacharya 2006 2 939 21 5

Present 2 918 0 6

in quadrature. For clarity, the uncertainties on the distributions of Winter el al. and
Bhattacharya et al., which are comparable to our uncertainties, are not shown. When
shifted down in energy by 21 keV, the distribution of Bhattacharya et al. is seen to be in
reasonable agreement with ours. The dip in relative deviation around 3 MeV shows
that their peak is slightly wider than ours, suggesting that experimental broadening
effects have not been completely accounted for in their analysis1. The curves labeled
“DSSSD 1” and “DSSSD 3” show the deviations of R-matrix fits of spectra I and IV
when compared to the R-matrix fit of spectrum II. Within errors, the fits are seen to
be consistent.

Starting with Ortiz et al., we are unable to point to a specific reason why their peak
energy is 19 keV below ours. We may note, however, that since they, like us, mea-
sured individual α energies, an error of 10 keV in the energy calibration is enough to
explain the discrepancy. Recently, it was reported [Ade10] that Ortiz et al. have recog-
nized that they underestimated the uncertainties related to the energy loss generated
by the carbon buildup in their catcher foil, so that a claim of a disagreement with
the measurements of Winter et al. and Bhattacharya et al. no longer should be made.
Considering that the largest energy-loss correction made by Ortiz et al. was 25 keV
(at Eα = 0.5 MeV), it seems unlikely that they should have underestimated the energy
loss by as much as 20–25 keV (the amount needed to bring their result in agreement
with that of Winter et al. and Bhattacharya et al.)

As for Winter et al., we have identified one possible source of error in their energy
calibration which relies on the measurement of the linearly added signals from the
20Na decay products, i.e. α+16O. Essentially, we suspect that they fail to account cor-
rectly for the differing response of their Si detector to α particles and 16O ions. Based
on our study of the differing response of Si detectors to α particles and 16O ions, as

1Alternatively, they may have underestimated the recoil broadening. See the discussion related to
Fig. 3.2.
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Figure 4.4: Relative deviations of the excitation energy distributions of Winter el al. and Bhat-
tacharya et al. compared to the present study. The gray band indicates the 1σ uncertainty on
our distribution obtained by adding statistical and systematic uncertainties in quadrature. The
distributions of Winter el al. and Bhattacharya et al. have uncertainties similar to ours. The
incorrect treatment of the 16 MeV doublet by Winter el al. and Bhattacharya et al. gives large
deviations above 15 MeV which are not shown. The curves labeled “DSSSD 1” and “DSSSD
3” show the deviations of R-matrix fits of spectra I and IV compared to the R-matrix fit of
spectrum II.

well as the study of [Len86], we conclude that the energy calibration performed by
Winter et al. overestimates the 2α-energy signal by 19 keV at 2.7 MeV (details are
given in Section 6.3.3.1). This would seem to explain the 25 keV deviation. Winter et
al. also used an external 228Th α source for the energy calibration. They state that the
α-particle energy loss in the source was taken into account, but it is unclear whether
they correct for the different implantation depth of the α emitters in the decay chain
of 228Th. As we saw in Section 2.3.11, this effect may distort the energy calibration.

Finally, we suspect that an overestimation, on the part of Bhattacharya et al., of the
exponential tails associated with the detector response, may explain why their peak
energy is 21 keV above ours. Bhattacharya et al. used a standard 148Gd α source to
determine their response function which was then folded into the R-matrix fit. The
effect of the exponential tails is to shift the extracted Ex distribution up in energy. In
the present study, we find that the response function determined from the α-source
data has much stronger exponential tails than the response function determined from
the 20Na data, a difference that may be attributed to energy-loss effects in the α-source
material (see Section 2.3.10). Similar effects may be present in the α-source measure-
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ment of Bhattacharya et al.

4.3 Neutrino Spectrum

Given the Ex distribution obtained from the R-matrix fit, we wish to calculate the cor-
responding neutrino energy spectrum. The calculation is complicated by the presence
of recoil order terms, affecting the neutrino spectrum at the level of 5–10% [Win06].
In addition, radiative corrections affect the neutrino spectrum at the level of 1%. A
detailed and comprehensive account of the steps involved in the calculation is given
in [Win06]. The uncertainties associated with the recoil order terms introduce uncer-
tainties in the determination of the neutrino spectrum that are roughly half as large as
the uncertainties originating from the uncertainties on the Ex distribution of Winter
et al. Here we limit ourselves to a simpler calculation, the purpose being to estimate
how the neutrino spectrum is modified by our—what we believe to be—improved
determination of the Ex distribution. A complete calculation, following the prescrip-
tion of Winter et al., will be performed in the near future.

Neglecting recoil order terms and radiative corrections, the positron energy spec-
trum, for fixed excitation energy, Ex , is given by,

dN
dEβ

∝ pβEβ (E0 − Ex − Eβ)2 F(−Z,Eβ) , (4.1)

where pβ and Eβ are the positron momentum and total energy, E0 = 17.4688(10) MeV
is the maximum total positron energy for decays to the ground state of 8Be and
F(−Z,Eβ) is the Fermi function which describes the modification of the β phase space
by the Coulomb interaction between the positron and the daughter nucleus of charge
Z. We evaluate F(−Z,Eβ) using the analytical expression given in [Bla52] which in-
cludes relativistic corrections but does not account for the screening of the nuclear
Coulomb field by the atomic electrons. The positron spectrum is calculated by inte-
grating Eq. 4.1 over all excitation energies, Ex , weighted by the Ex distribution. The
neutrino spectrum is obtained by the simple substitution Eν = E0 − Ex − Eβ.

Following this simplified procedure, we calculate the neutrino spectrum corre-
sponding to our Ex distribution as well as the neutrino spectrum corresponding to
the Ex distribution of Winter et al. The neutrino spectrum resulting from our own dis-
tribution is shown in Fig. 4.5 (a). The relative deviation with respect to the spectrum
of Winter et al. is shown in Fig. 4.5 (b). A significant deviation of several percent is
seen at high neutrino energies with our spectrum at these energies being the most
intense. The odd-looking wiggle around 0.5 MeV is due to the 16 MeV doublet. The
larger intensity in our neutrino spectrum at high neutrino energies is a natural con-
sequence of the fact that the maximum of our Ex distribution is shifted 25 keV down
in energy compared to that of Winter et al.
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Figure 4.5: (a) Neutrino spectrum calculated from the Ex distribution obtained in the present
study neglecting recoil order terms and radiative corrections. (b) Relative deviation with re-
spect to the neutrino spectrum calculated from the Ex distribution of Winter et al. The width of
the band indicates 1σ uncertainties calculated by adding the uncertainties on the two neutrino
spectra in quadrature. Only statistical uncertainties were considered in the calculation of the
uncertainties on our neutrino spectrum.

Leafing back to the introductory part, we find Fig. 1.4 which shows the current
level of uncertainty on the solar neutrino spectrum. A quick reading gives a relative
uncertainty of ≈ 10%. We therefore conclude that the deviations between us and
Winter et al. are well below the precision of the existing solar neutrino data except
at the very highest neutrino energies (Eν > 13 MeV) where the deviations may have
some implication, in particular for the upper limit, up to now set on the hep neutrino
signal [Jel09].
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4.4 Additional Results

4.4.1 Electron Capture to the 16.922 MeV State

As illustrated in Fig. 4.6, five α-α coincidence events are seen from the decay of the
16.922 MeV state in 8Be. In comparison, roughly 180 coincidence events are seen from
the 16.626 MeV state. The ratio of 5/180 = 0.03 is inconsistent with the 10−5 ratio of
the phase spaces available in the β decay to the two states, cf. Section 1.2.1.2. We
therefore believe that the 16.922 MeV state has been populated in electron capture
(EC). Notice that it would have been nice to confirm this through the non-detection
of the positrons, but their energy is too low (< 36 keV). However, in the following
argument on decay rates we show that the EC interpretation very likely is correct.

The matrix elements for β+ decay and EC are the same. Thus, to get their relative
rates, we only need to know the respective phase-space factors fβ and fEC. The β-
decay phase-space factor is easily obtained from the parametrization of Wilkinson
and Macefield [Wil74]. The EC phase-space factor for capture from the innermost
atomic shell may be calculated from the expression given in [Bla52] (allowed decay,

Figure 4.6: Ex Spectrum from all detected α-α coincidence events (10.6 million). The hatched
spectrum corresponds to events with Eβ = 0 in all four back detectors.
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non-relativistic limit):

fEC ≈ 2πα3Z′3 [ W0 + 1 − 1
2α

2Z′2 ]2 ,

with W0 defined in Section 3.1.2, α≈1/137 the electromagnetic fine-structure constant
and Z′ = Z− 0.3 where Z = 5 is the charge of 8B and −0.3 corrects for the screening of
the nuclear Coulomb field by the atomic electrons. For the 16.626 MeV state, we find
that β decay dominates: fEC(16.626)/ fβ(16.626) = 0.040. For the 16.922 MeV state, the
roles are reversed: fEC(16.922)/ fβ(16.922) = 75. For the ratio of the total decay rates
rβ+EC to the two states, we find:

rβ+EC(16.922)
rβ+EC(16.626)

=
fEC(16.922)+ fβ(16.922)
fEC(16.626)+ fβ(16.626)

= 2.4 × 10−2 .

When multiplied with the 180 decays observed to the 16.626 MeV state, this gives 4.3,
in very good agreement with the 5 observed decays to the 16.922 MeV state.

4.4.2 Search for the 337 keV Proton Branch

As discussed in Section 1.2.2, it is possible for 8B to decay to p+7Li by electron capture.
This decay branch has not previously been observed. Its signature would be a sharp
peak in the singles spectrum at 337 keV. The branching ratio is predicted to be on the
order of a few times 10−8.

During 72 hours, we observe 15.8×106 8B decays. Taking the 30% solid-angle cov-
erage into account, the total number of 8B decays that have occured is 53× 106. Given
the predicted branching ratio of a few times 10−8, we only expect one or two proton
decays to have occured. To look for these protons, we must reduce the intensities of
α and β particles as much as possible. Since the decay to p + 7Li takes place by elec-
tron capture, no positrons will be present in coincidence with the protons. Therefore,
positron events are removed by requiring zero energy in the back detectors. To re-
duce the α background, we require that only one particle is detected. We restrict our
attention to the central 6 × 6 pixels of DSSSD 1, 3 and 4 in which the α-α coincidence
detection efficiency is maximal. (The α-α coincidence detection efficiency in DSSSD 2
is reduced due to a dead back strip in DSSSD 3.) The spectrum resulting from these
cuts is shown in Fig. 4.7. The background component rising up below 300 keV is the
same component that caused difficulties in the determination of the single-particle
detection efficiency at low energies, see Section 2.3.9. With our attention restricted to
the central 6 × 6 pixels of DSSSD 1, 3 and 4, the angular coverage is reduced to 3.3%.

We fit the data with a Gaussian on top of a smooth background modeled as an
exponential decay curve plus a constant offset. We fix the width of the Gaussian to
σ = 11.5 keV which is the typical width of the peaks seen in the β-delayed proton
spectrum of 23Al. With the peak energy fixed to 337 keV, the best fit is obtained with
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Figure 4.7: Low-energy spectrum of 8B with cuts imposed to reduce the intensities of α and β
particles. The red curve was obtained by fitting the data with a Gaussian on top of a smooth
background, allowing the peak energy to vary within ±20 keV from the expected value of 337
keV.

no contribution from the peak at all. The 2σ upper limit on the signal is 26 counts.
The corresponding limit on the proton branch is 1.5 × 10−5.

If the peak energy is allowed to vary within ±20 keV from the expected value of
337 keV, the best fit is obtained with the peak centered at 349 keV as shown in Fig.
4.7. The peak integral is 22 counts (branching ratio 1.3 × 10−5) with a 2σ upper limit
of 49 counts (branching ratio 2.8 × 10−5). The 2σ lower limit is consistent with zero
counts.

The existence of a 337 keV proton branch can not be inferred from the present
study which puts an upper limit of 1.5 × 10−5 on the branching ratio at 95% con-
fidence level. To reach a sensitivity of 10−8, particle identification seems necessary.
This could be accomplished with a Gas-Si type telescope like the ones used by [Tig95]
and [Per00] to measure the low-energy β-delayed protons from 23Al. With parti-
cle identification, the background could, potentially, be reduced to essentially zero,
thereby gaining a factor of ten or so in sensitivity. Another factor of ten could be
gained by expanding the solid-angle coverage (presently 3%). To get the last factor
of ten needed to reach a sensitivity of 10−8, significantly higher beam intensities are
required (due to the difficulties in obtaining beam time).





CHAPTER 5

Conclusion and Outlook

The long-standing puzzle originating from the observation in 1968 by Davis of a 50%
deficit in the solar neutrino flux, was solved in the early 2000s by the solar neutrino
experiments Super-Kamiokande and SNO: The electron neutrinos produced in the
hydrogen-burning reactions in the interior of the Sun oscillate to µ and τ neutrinos
rendering them invisible to Davis’ detector.

So far, the distortion of the 8B neutrino spectrum due to the transition from matter-
enhanced oscillations to vacuum oscillations around 3 MeV has not been observed
[Aha10, Smy10]. Above 4 MeV (the detection threshold of Super-Kamiokande and
SNO), the distortion is expected to be on the order of 10%. Within a decade, Super-
Kamiokande should be able to resolve a 10% distortion with 3σ significance [Smy10].

Using a coincidence-detection technique, we have measured the 8Be excitation en-
ergy distribution in the decay of 8B. The main feature of this distribution is a broad
peak centered at Ex≈3 MeV. The distribution obtained in the present study is shifted
20–25 keV toward lower excitation energies relative to the internally consistent dis-
tributions of Winter et al. and Bhattacharya et al. which are held as the current stan-
dard [Ade10]. Our measurement gives a more intense neutrino spectrum at high
neutrino energies. The deviation reaches 8% at Eν = 15 MeV. Below Eν = 11 MeV, our
spectrum deviates by less than 1% from the neutrino spectrum of Winter et al. and
Bhattacharya et al. We believe that our experimental approach gives an improved
handle on systematical effects compared to the approaches of Winter et al. and Bhat-
tacharya et al. We have pointed out possible errors in their measurements which may
explain the 20–25 keV shift.

The analysis of the KVI experiment (the implantation measurement recently per-
formed by our collaboration) is underway and will provide an important check of
the results obtained here. The complete calculation of the neutrino spectrum, follow-
ing the prescription of Winter et al., remains to be done. However, the conclusions
already made regarding the implications of our new measurement for the neutrino
spectrum, will not change substantially.
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CHAPTER 6

Additional Results

6.1 β-Delayed α Decay of 20Na

The β-delayed α decay of 20Na was measured for calibration purposes, but it is also
of great interest in its own right. Below, we discuss various aspects of the β-delayed
α decay of 20Na, and we compare our α spectra to the α spectra measured in previous
experiments. Notably, we show how the coincident measurement of the α particle
and the recoiling 16O ion from the decay of 22Na allows us to establish the existence
of three, very weak and hitherto unobserved, α groups below 1.5 MeV.

The decay of 20Na was measured both at the beginning of the experiment and at
the end, see Fig. 2.1. We refer to these measurements by the names “first measure-
ment” and “second measurement”, respectively.

6.1.1 Introduction

The Jπ = 2+, T = 1 ground state of 20Na decays to 20Ne by positron emission with
a half-life of 447.9(23) ms and Q(β−) = −13 886(7) keV [Til98]. Excited states in 20Ne
populated in the β decay of 20Na, with an excitation energy above 4 729.84(1) keV,
may break up to α+16O. The α particles originating from such transitions are referred
to as β-delayed α particles.

The most recent experimental study of the β decay of 20Na found in the litera-
ture is that of Huang et al. from 1997 [Hua97]. A much more comprehensive study
was carried out by Clifford et al. back in 1989 [Cli89]. They performed a β-α co-
incidence measurement in which the energies and directions of both particles were
recorded. By studying the dependence on the β energy of the kinematic shift in α

energy for selected relative β-α angles, they were able to determine the ratio of Fermi
(vector) to Gamow-Teller (axial-vector) components for a number of allowed transi-
tions including the transition to the Jπ = 2+, T = 1 isobaric analog state (IAS) in 20Ne
at 10 273.2(19) keV. The ratio of Fermi to Gamow-Teller components for this transi-
tion is of particular interest; together with the measured f t value, it determines the
weak vector coupling constant, GV, thus testing the Conserved Vector Current (CVC)
hypothesis. (The CVC hypothesis states that the vector part of the weak charge is
conserved under the strong interaction, whereas the axial vector part is not. In other

89



90 Chapter 6. Additional Results

words, the vector part of the effective weak charge is unchanged by the continu-
ous emission and re-absorption of quark antiquark pairs from the nucleon and other
strong processes, whereas the axial-vector part of the effective weak charge is not un-
changed by such strong processes.) For a number of allowed transitions to Jπ = 2+,
T = 0 states in 20Ne, limits were established on the Fermi contribution and from this,
also on the isospin mixing in 20Ne. Finally, f t values were measured and used to
determine to what degree the transitions were allowed, and hence indicate the spin
and parity of the final state.

The breakup of the IAS in 20Ne to α+ 16O is reminiscent of the breakup of the IAS
in 12C to three α particles (Chapter 11) in that both decays are isospin-forbidden and
only occur due to mixing with T = 0 states.

The present study is rather limited in scope compared to [Cli89]. Nevertheless, it
does bring new results: By measuring the α particle and the 16O ion in coincidence,
we are able to identify three new β-delayed α groups below 1.5 MeV that, in the sin-
gles spectrum, are buried under the five orders of magnitude more intense 16O recoil
groups. In addition, the high level of statistics gathered in the present experiment
allows for an R-matrix analysis of the interference feature seen in the β-delayed α

spectrum around 3 MeV. The large width of the corresponding states in 20Ne are sug-
gestive of a pronounced α + 16O cluster structure. The f t values obtained by [Cli89]
suggest that the transitions are first forbidden or allowed, and hence the spin-parity
could be 1−, 2+ or 3−. (The observation of α decay from these states excludes unnatu-
ral spin-parity.)

6.1.2 Data Analysis

α-16O Coincidences detected in the second 20Na measurement, with the α particle
seen in DSSSD 3 and the 16O ion in DSSSD 2, are shown in Fig. 6.1 with the α energy
along the abscissa and the 16O energy along the ordinate. The α particle and the 16O
ion share the available energy as E16O/Eα = mα/m16O = 0.25. Most of the intensity
is indeed seen to lie along the diagonal. Weak α-particle response tails are seen ex-
tending horizontally from the two most intense peaks. Coincidences in which the
16O ions strikes the aluminum grid that covers 3% of the detector surface, thus losing
additional energy before entering the active volume of the detector, are responsible
for the satellite peaks seen ∼0.6 MeV below the diagonal.

β-Delayed α spectra, summed over all four detectors, are shown in Fig. 6.2. Both
singles and coincidence spectra are shown. Only coincidence events which fulfill the
requirement E16O < 0.25Eα + 75 keV, i.e. events below the dashed red line in Fig. 6.1,
are included. This is done to remove the contribution from the horizontal response
tails. Satellite peaks due to the additional energy lost by α particles striking the alu-
minum grid are visible at the low-energy flank of the two most intense α groups
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Figure 6.1: α-16O Coincidences with the α energy along the abscissa and the 16O energy along
the ordinate. Coincidences in which the 16O ions strikes the aluminum grid that covers 3%
of the detector surface are seen below the diagonal. Weak α-particle response tails are seen
extending horizontally from the two most intense peaks. The projection of the data below the
dashed red line is shown on top.

(5 and 10). The low-energy part of the coincidence spectrum is shown in detail in
Fig. 6.3.

The α groups numbered 1–3 are only seen in DSSSD 3. This is because DSSSD 2,
which is placed opposite of DSSSD 3, is the only detector with sufficiently low thresh-
olds to detect the coincident 16O ions. As an example, the energy of the 16O ions co-
incident with the α particles of group 1, is 0.25 × 688 keV = 172 keV. After passage
through 30 nm carbon and 75 nm silicon, the energy is reduced to about 120 keV. Un-
fortunately, DSSSD 3 exhibits some strange behavior, as seen e.g. in the analysis of the
line shape of group 10 (Section 2.3.10) and in the analysis of the detector dead layers
(Section 2.3.6), indicating that perhaps DSSSD 3 was not fully depleted, in particular
toward the end of the experiment.

In the two-dimensional energy spectrum of Fig. 6.1, part of groups 1 and 2 are
cut-off by the 16O detection threshold. In consequence, there exists a preference for
shallow implantation in the carbon foil. This reduces the energy loss of the 16O ions
detected in DSSSD 2 (upstream) and increases the energy loss of the α particles de-
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Figure 6.2: β-Delayed α spectra of 20Na. The solid black line is the α-16O coincidence spectrum.
The dashed red line is the singles spectrum.

tected in DSSSD 3 (downstream). The bias introduced in the determination of the
α-particle energy is estimated to be no larger than −10 keV.

6.1.3 Results

The energies of the 16 α groups identified in the present experiment are given in Table
6.1 along with energies of the α groups identified in the two previous experiments.
Group 17, seen by [Hua97] but not by [Cli89], was not seen in the present experiment
despite higher statistics1.

The energies of groups 4–16 obtained in the present experiment are in internal
agreement and are consistent with the results of the two previous experiments. The
energies of the two most intense α groups, 5 and 10, used for the energy calibration,
differ from the energies used in the two previous experiments by a few keV. This
is due to the updated value for the α + 16O threshold in 20Ne [Aud03]. The small

1A single coincidence event is seen at 5.96 MeV.
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Table 6.1: Energies of β-delayed α groups of 20Na identified in the present experiment and in
the two most recent experiments described in the literature. Only statistical uncertainties are
given on the present results. Statistical uncertainties below 1 keV have been omitted.

α group
Present experiment

[Hua97] [Cli89]
1st 2nd

1 682 ± 5 694 ± 6
∼780a · · ·

2 844 ± 10 795 ± 4 · · ·
3 1 251 ± 10 1 190 ± 11 · · · · · ·
4 1 591 ± 7 1 593 ± 6 · · · 1 580 ± 40
5 2 153b 2 153b 2 150.4b 2 150.4b

6 2 481 2 481 2 483.5± 2.5 2 479.6± 2.1
7 2 600c 2 600c 2 756 ± 5 2 659 ± 7
8 3 300c 3 300c 3 325 ± 13 3 570 ± 25
9 3 800 3 800 3 803.0± 2.5 3 799 ± 3

10 4 434b 4 433b 4 432.2b 4 432.2b

11 4 679 4 678 4 674.6± 2.1 4 675 ± 3
12 4 889 4 888 4 884.4± 2.5 4 885 ± 3
13 4 900c 4 900c 4 930 ± 6 4 966 ± 7
14 5 180 ± 10 5 183 ± 10 5 222 ± 47 5 106 ± 7
15 5 265 5 262 5 253.5± 2.3 5 249 ± 4
16 5 689 ± 11 5 692 ± 5 5 691 ± 4 5 698 ± 6
17 · · · · · · 5 896 ± 6 · · ·

aThe evidence presented in [Hua97] for the observation of this α group is meager.
bUsed for energy calibration.
cBroad state. The energy given here is only meant as a rough estimate. Dedicated R-matrix fits are

necessary to obtain a precise and meaningful value for the energy.
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Figure 6.3: Low-energy part of the α-16O coincidence spectrum.

discrepancies seen in the case of group 14 and 15 may be attributed to systematic
uncertainties in the determination of the peak position due to the overlap of the two
groups as well as the presence of the broad underlying group 13.

In an attempt to identify the excited states in 20Ne responsible for the α groups
1–4, the equivalent excitation energies in 20Ne have been calculated and are given in
Table 6.2. The excitation energies have been calculated both assuming population of
the ground state in 16O and assuming population of the 0+ first excited state in 16O at
6 049 keV. Known states in 20Ne relevant to the identification of the α groups 1–4 are
listed in Table 6.3.

Group 4 may be identified either with the decay of the state labeled C to the
ground state in 16O, or with the decay of the state labeled E to the first excited state in
16O. The direct population of state C requires a second-forbidden transition. The di-
rect population of state E could proceed via an allowed transition (assuming that the
2+ spin-parity assignment holds), but the phase space available is rather limited due
to state E being situated only 121 keV below the end point of the β-decay window2.

2Electron capture may provide a viable alternative. In any event, one would have to explain why decays
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Table 6.2: Low-energy β-delayed α groups of 20Na identified in the present experiment. Eα
represents the average of the two values given in column 2 and 3 of Table 6.1, with the error
bar raised in the case of group 2 and 3 to account for the large spread. Ex is the corresponding
calculated excitation energy in 20Ne assuming that the decay goes to the ground state in 16O.
Similarly, E∗x is the calculated excitation energy in 20Ne assuming that the decay goes to the 0+

first excited state in 16O at 6 049 keV. The uncertainties on the excitation energies are simply
5/4 times the uncertainties on the corresponding α-particle energies.

α group Eα (keV) Ex (keV) E∗x (keV)

1 688 ± 4 5 590 11 639
2 820 ± 25 5 754 11 803
3 1 221± 31 6 256 12 304
4 1 592± 5 6 720 12 769

Table 6.3: Known states in 20Ne, the population of which may explain the low-energy α groups
identified in Table 6.2.

Label Ex (keV) Jπ , T Γ (keV) Decay modes

A 5 621.4± 1.4 3− , 0 (3.3 ± 0.3) × 10−6 γ, α
B 5 787.7± 2.6 1− , 0 (28 ± 3) × 10−3 γ, α
C 6 725 ± 5 0+ , 0 19.0 ± 0.9 γ, α
D 12 327 ± 10 2+ , 0 390 ± 50 α

E 12 743 ± 10 (2+), 0 61 ± 12 α

However, in both cases the expected f t value is significantly below the f t value ac-
tually measured [Cli89]. The alternative explanation proposed by [Cli89] is a weak β
branch feeding a hypothetical state at around 11 MeV excitation energy in 20Ne which
decays mainly by γ-ray emission to state C. Given the good agreement between the
excitation energy of 6 720 ± 6 keV deduced from the present experiment, with much
reduced uncertainties compared to [Cli89], and the known energy of 6 725± 5 keV of
state C, this explanation seems plausible.

The identification of the transitions responsible for the α groups 1–3 is compli-
cated by the shifts in peak position of group 2 and 3 between the two measurements,
resulting in large uncertainties on the energy determination. The change in the rela-
tive intensity of group 1 compared to group 2 is also a source of concern. Presently,

to the 16O ground state are not seen.
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these effects are not fully understood, though they are believed to be explained in
part by the aforementioned bias introduced by the requirement of detecting the low-
energy 16O recoil in the opposite detector. In addition, the peculiar response of
DSSSD 3 may play a role. It seems plausible, however, that group 1 and 2 should
be identified with first-forbidden transitions to the states labeled A and B, subse-
quently decaying to the 16O ground state. Finally, group 3 can be identified with an
allowed transition to state D, subsequently decaying to the first excited state in 16O.
The large width of state D seems compatible with the rather large width of group 3,
seen in Fig. 6.3. This does, however, pose the question of why decays from state D to
the ground state in 16O are not seen. The corresponding α group should be seen at
6.1 MeV.

6.1.4 Continuation—What Next?

The changes in energy and relative intensity of the three low-energy α groups remain
to be understood. A plot of the DSSSD hit pattern would be a natural first step in an
attempt to clarify the role of the detection thresholds.

The relative intensities of the 16 α groups observed in the present experiment
remain to be determined and compared to the literature values. In determining the
intensities of the four lowest-energy α groups, the decrease in coincidence detection
efficiency due to the 16O ions falling below detection threshold, must be taken into
account.

An R-matrix analysis is underway, which will pin down the properties of the
broad resonances in 20Ne responsible for the interference feature seen in the β-delayed
α spectrum around 3 MeV. The β decay of 20Na provides a very clean way to study
the properties of the broad resonances in 20Ne in that the initial state and the tran-
sition operator are well understood leaving the final state as the only unknown (in
the same way that the β decays of 12B and 12N provide a very clean way to study the
broad resonances in 12C).
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6.2 β-Delayed Proton Decay of 23Al

Like the β-delayed α decay of 20Na covered in the previous section, the β-delayed
proton decay of 23Al was measured with the primary objective of obtaining more
data points for the energy calibration. Two well-known proton groups with energies
of 560(5) and 839(5) keV according to the literature [Tig95], would serve to reduce
the uncertainty in the energy calibration at low energies. Later, it was realized that,
most likely, the errors on these energies were underestimated. Consequently, the
energy calibration was performed without the 23Al proton groups. Even so, these
proton groups have been very useful in the data analysis, notably, in constraining the
thickness of the detector dead layers.

Below, we present the new physics results that have emerged from the analysis of
the 23Al data. Namely, our revised energies for the protons groups previously seen at
560(5) and 839(5) keV, and the observation of several new, less intense, proton groups
between 0.9 and 2.1 MeV. We begin, however, with a few introductory remarks about
the astrophysical interest in the β-delayed proton decay of 23Al.

The decay of 23Al was measured both at the beginning of the experiment and at
the end, see Fig. 2.1. We refer to these measurements by the names “first measure-
ment” and “second measurement”, respectively.

6.2.1 Introduction

The proton-rich aluminum isotope 23Al decays to 23Mg by positron emission with a
half-life of 0.47(3) seconds and Q(β−) = −12.243(19) MeV [Fir07]. The proton sep-
aration energy in 23Mg is 7.5803(14) MeV [Fir07]. If states above this threshold are
populated in the β+ decay of 23Al, they may breakup to p+ 22Na. Protons originating
from such transitions are referred to as β-delayed protons.

The study of these transitions is relevant to the understanding of the so-called
low-temperature rapid proton capture process (rp-process) believed to take place in
classical novae at temperatures of 0.1–0.5 billion Kelvins. Classical novae are under-
stood as thermonuclear explosions taking place in the high-temperature hydrogen-
rich environment found on the surface of white-dwarf stars which are accumulating
material from a nearby companion star. In the rp-process, proton-rich elements are
created by successive proton captures with occasional β+ decays or electron captures
back toward stability. The β-delayed proton decay of 23Al is particularly important
for the description of the so-called NeNaMg cycle [Boy07].

The β-delayed protons from the decay of 23Al were measured by Tighe et al. [Tig95]
in 1995. They found four proton groups at 223(20), 285(20), 560(5) and 839(5) keV. The
lowest-energy group was attributed to transitions to the Jπ = 5/2+, T = 3/2 isobaric
analog state in 23Mg. More recently, Peräjärvi et al. measured six proton groups at
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Figure 6.4: β-Delayed proton spectrum of 23Al (first measurement).

200(20), 270(20), 400(20), 554(7), 839(6) and 1931(14) keV, basing their energy calibra-
tion on the 560 and 839 keV groups measured by Tighe et al. The four other proton
groups seen by Peräjärvi et al. had poor statistics, see Fig. 1 of [Per00].

6.2.2 Data Analysis and Results

In Jyväskylä we measured 23Al twice. The first time for 8 hours, the second time for
22 hours. In addition to 23Al, the A = 23 mass separated beam contains 23Mg which
is a pure β emitter and hence gives rise to a large β background below 0.5 MeV. This
is seen in the spectra of Fig. 6.4 and 6.5. In addition to the 560 and 839 keV proton
groups found by Tighe et al., we find a number of new proton groups between 1 and
2 MeV, the energies and relative intensities of which are given in Table 6.4.

The new proton groups found between 1 and 2 MeV are not of much astrophysical
interest because the corresponding center of mass energies are well above the Gamow
window of the p+ 22Na reaction at the relevant temperatures. The energies of group 1
and 2 are about 20 keV below the energies found by Tighe et al. The reason for this
discrepancy is presently not understood. We note that the energy of group 1 has
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Figure 6.5: β-Delayed proton spectrum of 23Al (second measurement).

been measured to 557(2) keV in a 22Na(p, γ) experiment [Ste96], in agreement with
the value of Tighe et al.

The 1-to-2 intensity ratio is determined to 50.2(19)% in the first measurement and
44.2(12)% in the second. The discrepancy might be due to the modeling of the back-
ground below group 1 or the assumption of Gaussian peak shapes. A thorough in-
vestigation has, however, not been conducted. Within 2σ our result for the 1-to-2
intensity ratio is consistent with the ratio of 0.7(1) obtained by Tighe et al.

The proton energy Ep and the excitation energy Ex in 23Mg are related by the sim-
ple expression

Ep =
22
23 (Ex − Sp) , Sp = 7.5803(14) MeV . (6.1)

Using Eq. 6.1, the proton energies measured in the present study have been con-
verted to excitation energies and a quick comparison to the tabulated energy levels
of 23Mg has been performed. Proton groups 8, 9, 10, 12, 13 have perfect matches
within ±5 keV. Proton groups 4, 5, 7, 11, 14, 15 have matches within ±15 keV. Pro-
ton groups 3 and 6 only have matches within ±30 keV. The deviations display no
systematic behavior.
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Table 6.4: Energies and relative intensities of β-delayed protons from 23Al obtained in the first
and second measurement. Only statistical uncertainties are given.

Proton group
Ep (keV) Rel. intensity (%)

1st 2nd 1st 2nd

1 538.5(3) 538.8(2) 28.4(7) 26.0(5)
2 817.2(2) 817.15(13) 56.6(7) 58.7(5)
3 907(3) 907a 0.32(7) 0.31(5)
4 945.1(14) 945.5(12) 0.85(11) 0.92(7)
5 1142.9(12) 1142.2(9) 1.76(15) 1.87(10)
6 1198(2) 1199.8(13) 0.63(9) 0.94(7)
7 1261.6(11) 1262.8(7) 2.41(18) 2.37(11)
8 1373(5) 1377(2) 0.30(7) 0.52(5)
9 1452(4) 1452a 0.58(13) 0.38(10)

10 1494.9(16) 1491.3(12) 2.26(19) 2.57(14)
11 1663(2) 1662.9(11) 0.89(11) 0.82(6)
12 1759.1(9) 1759.1(7) 3.1(2) 2.99(13)
13 1803.5(15) 1804.7(16) 1.45(15) 1.09(9)
14 1934(3) 1934(2) 0.43(8) 0.33(5)
15 2005(8) 2011(6) 0.08(5) 0.14(4)

aValue held fixed.

6.2.3 Continuation—What Next?

A thorough comparison to the tabulated energy levels of 23Mg remains to be done.
Some deviations are probably due to the presence of closely separated levels in 23Mg
which cannot be resolved due to the experimental resolution of ≈ 25 keV (FWHM).
Another possible explanation is interference between levels of same spin-parity.
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6.3 Response of Si Detectors to α Particles and 16O Ions

The results presented below are the fortunate byproduct of an important effort to
make sense of the measured energies of the 16O ions from the decay of 20Na, which
were found to deviate by some tens keV from the correct values. As it turns out, the
deviations are due to the different responses of Si detectors to different types of ions.

The results presented below do not affect the analysis of 8B data, but they were
central in our work to verify the validity of our data. As mentioned earlier, these
results may explain why Winter et al. measure a 8Be excitation energy spectrum that
is shifted 25 keV up in energy with respect to ours.

6.3.1 Introduction

When energetic light ions, like the protons and α particles that we measure in the
present experiment, are stopped in silicon, nearly all their energy goes to the creation
of electron-hole pairs which, in turn, give rise to a detectable voltage pulse propor-
tional in magnitude to their numbers and hence the energy of the ion. For heavier
ions, like 16O, a sizable fraction of the energy is lost in non-ionizing processes, e.g. by
causing damage to the crystal lattice structure, and hence does not contribute to the
voltage pulse. If not accounted for, this effect will cause us to systematically under-
estimate the true ion energy.

Past measurements [Len86, Len87, Com92] have shown that, even when the non-
ionizing energy loss is taken into account, the pulse heights measured for different
ions with the same energy still differ. This residual effect, often referred to as the
pulse height defect, may be explained by assuming that the average energy required
to produce an electron-hole pair in silicon is not constant. Instead, this energy de-
creases slightly with increasing stopping power dE

dx away from its normal value of
3.67 eV/pair observed with particles of low stopping power such as electrons, γ rays
or MeV protons [Len86]. We may understand this dependence in the following way:
For small stopping powers, the mean free path between the creation of two successive
electron-hole pairs is large compared to the atomic spacing and may therefore be con-
sidered as independent events. For larger stopping powers, the mean free path be-
comes comparable to the atomic spacing and the assumption of independence breaks
down. Naïvely, we may argue that the creation of the first electron-hole pair perturbs
the crystalline order, weakening the electronic bonds in the immediate surroundings
thus facilitating the creation of the next electron-hole pair. In practice, this means
that protons, α particles and 16O ions create slightly different quantities of electron-
hole pairs at the same cost with 16O ions creating the most and protons the fewest
(depending on the energy).

Below, we reexamine the measurement made in 1986 by Lennard et al. of the pulse
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height defect of protons and 16O ions relative to α particles [Len86]. We demonstrate
how the pulse height defect of 16O ions may be extracted from our own data and
compare our results to those of [Len86] who found that, for energies in the range 0.5–
2 MeV, the correction needed amounts to a multiplicative factor of ξ1H = 1.014±0.002
for protons and ξ16O = 0.979± 0.005 for 16O ions3.

6.3.2 Experimental Details

Lennard et al. measured the pulse height produced in Si surface barrier detectors by
1H, 4He, 7Li and 16O ions in the energy range 0.5–3 MeV. The energy of the ions was
accurately determined by time-of-flight measurements over a distance of 16.25 cm.
The energy loss in the detector dead layer was determined by rotating the detector
relative to the beam axis while monitoring the change in pulse height with angle.
A mixed α source consisting of 239Pu, 241Am and 244Cm was used to establish the
energy scale. A precision pulse generator was used to calibrate the linearity of the
electronics. Data relevant to the pulse-height analysis is given in Table 1 of [Len86].

We can extract equivalent data from our coincidence measurement of the breakup
of 20Ne to α + 16O following the β decay of 20Na. In order to reduce the variations
in energy loss experienced by particles emitted at different angles, we restrict our
attention to the central four pixels in each detector. We examine the pulse height
spectrum recorded in the two center-most pixels of back strips 8 and 9 in DSSSD 1–3.
The front-strip spectra are not used due to the large differential non-linearity of their
response, cf. Section 2.3.2. DSSSD 4 is excluded for the same reason. We identify the
two most intense α groups of 20Na (Eα = 2 153 and 4 434 keV) and their corresponding
16O recoil groups (E16O = 538.8 and 1 109.5 keV) and determine the pulse height at
peak value. (Lennard et al. used mean pulse-height values. For our data, the pulse
height at peak value differs from the mean pulse height by less than 0.5 channels or,
equivalently, 1.5 keV.) The pulse heights are, in all cases, determined with negligible
statistical error. We use the α-particle data to calibrate the energy scale. The energy
loss of the ions in the carbon foil and the detector dead layer is computed using SRIM
stopping powers assuming a foil thickness of 114 nm, a fixed implantation depth of
32.7 nm and dead layers of 85, 75 and 120 nm Si in DSSSD 1–3, respectively. The
combined energy loss of the 16O ions in the foil and the detector dead layer ranges
from 100–280 keV.

3ξ16O =
C(1H)/C(16O)
C(1H)/C(4He)

=
0.965±0.005
0.986±0.002 = 0.979 ± 0.005 using values and notation of [Len86].
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6.3.3 Data Analysis

We begin with a few definitions:

Ei = Ion energy
∆Ef = Energy loss in foil
∆Edl = Energy loss in detector dead layer

E′i = Energy deposited in the active volume of the detector
Em = Energy measured
δE = Em - E′i (energy deficit)
∆En = Non-ionizing energy loss

We calculate the energy that is deposited in the active volume of the detector as
E′i = Ei − ∆Edl for the data of Lennard et al. and as E′i = Ei − ∆Edl − ∆Ef for our
own data. The energy deficit δE, i.e. the difference between the energy measured and
the energy deposited, is shown in Fig. 6.6. The error bars on our data points include
the uncertainties from the energy calibration as well as the uncertainties from the de-
termination of ∆Ef and ∆Edl due to the uncertainty on the foil thickness (±8 nm) and
dead layer (±7 nm). The ±15 nm uncertainty on the overall scale of the dead layers
gives an additional uncertainty in the determination of δE not shown in Fig. 6.6. The
uncertainty is ∓6 keV for the 538.8 keV ions and ∓12 keV for the 1109.5 keV ions
(same shift in all DSSSDs).

The assumption of a fixed implantation depth made in the calculation of ∆Ef is
well-justified as long as the energy loss is linear in distance, i.e. ∆E ≈ dE

dx∆x, as is the
case for protons and α particles. For the 16O ions, however, the energy loss constitutes
a sizable fraction of the ion energy and the linear approximation is less accurate. This
may introduce small systematic errors (at the 5 keV level or below) in the calculation

Figure 6.6: The energy deficit δE versus the energy measured Em for 16O ions.
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of ∆Ef.
Ideally, one should calibrate the detector with the same type of particles that are

measured in the experiment. Fig. 6.6 clearly demonstrates that an energy calibration
performed with α particles cannot be directly applied to 16O ions. A parametrization
of the error made is needed.

6.3.3.1 Non-ionizing Energy Loss

Part of the deficit observed in Fig. 6.6 may be attributed to the large non-ionizing
energy loss, ∆En , of 16O ions compared to α particles. Lennard et al. used stan-
dard energy-loss algorithms to calculate ∆En in silicon for α particles and 16O ions,
see [Len86] for details. We may determine ∆En at the energies measured in our study
by a second-degree polynomial extrapolation (or interpolation, depending on the en-
ergy) of their calculations. Correcting the energy deficit δE for the non-ionizing con-
tribution, we obtain Fig. 6.7. The residual deficit observed in Fig. 6.7 represents the
aforementioned pulse height defect. As argued by Lennard et al., it can be under-
stood by assuming that the average energy required to produce an electron-hole pair
in silicon depends on the stopping power.

Note that the α-particle energies, used for the calibration of the energy scale, have
been corrected for the non-ionizing energy loss as well. This lowers the measured
energy of the 16O ions, Em , by roughly 10 keV.

The dashed line superimposed on the data points is the best-fit straight line to
the four data points of Lennard et al. The slope α = 0.019 ± 0.004 is related to the
multiplicative factor, ξ , introduced by Lennard et al. through the simple relation α =

Figure 6.7: The energy deficit δE corrected for the non-ionizing energy loss ∆En versus the
energy measured Em for 16O ions. ∆En was obtained from [Len86].
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Figure 6.8: The energy deficit δE corrected for the non-ionizing energy loss ∆En versus the
energy measured Em for 16O ions. ∆En was obtained from TRIM simulations.

1−ξ. Inserting the value of ξ16O = 0.979±0.005 obtained by Lennard et al., one obtains
α = 0.021 ± 0.005 in excellent agreement with our result. This is expected since we
have obtained our value repeating the analysis originally performed by Lennard et
al.

The non-ionizing energy loss of α particles and 16O ions in silicon calculated by
Lennard et al. has been checked against the results of TRIM simulations. For α parti-
cles they agree within 1 keV, but for 16O ions TRIM gives non-ionizing energy losses
that are 10–15 keV below those calculated by Lennard et al. Using the non-ionizing
energy losses given by TRIM, one obtains the deficits shown in Fig. 6.8.

6.3.4 Conclusion

Based on the reanalysis of [Len86] as well as the analysis of our own data, we propose
the following calibration scheme: The α particle data is used for calibrating the energy
scale. In doing so, the energy losses in the foil and the detector dead layer are taken
into account and corrections are made for the non-ionizing energy loss of α particles
in silicon (as given by TRIM). Using this calibration, the measured pulse heights of
the 16O ions are converted to energies, Em , which are corrected for the pulse height
defect observed in Fig. 6.8 by a simple linear transformation:

Em → (1 − α)Em − β, β = −26 ± 5 keV, α = 0.015± 0.004 . (6.2)

Finally, corrections are made for the non-ionizing energy loss of 16O ions in silicon
(as given by TRIM) and for the energy losses in the dead layer and the foil. A similar
procedure should be applied to protons with Em → Em/γ replacing Eq. 6.2, where
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γ = 0.986 ± 0.002 as obtained by Lennard et al.
Our scheme differs from that of Lennard et al. in two respects. First, and most

importantly, we include the non-zero offset that Lennard et al. considered consistent
with zero. Second, we use the newest version (2008) of TRIM to calculate the non-
ionizing energy loss, ∆En. In this way, we obtain values of ∆En for 16O ions that are
10–15 keV below the values obtained by Lennard et al.

In a experiment like that of Winter et al. [Win03], or our own KVI experiment
for that matter, where the activity is implanted in the detector, one measures the
combined pulse height of the α particle and the 16O ion. Therefore, the total energies,
2153.5+ 538.8 = 2692.1 keV and 4433.9+ 1109.5 = 5543.4 keV, are used for the energy
calibration. If the non-ionizing energy loss of α particles and 16O ions in silicon is
taken into account, but the pulse height defect observed in Fig. 6.8 is ignored, one
obtains an energy calibration that overestimates the 2α energy from the decay of 8B
by ≈ 26 keV − 0.015 × 500 keV = 19 keV at 2.7 MeV. This may be the reason why
Winter et al. measure a 8Be excitation energy spectrum that is shifted 25 keV up in
energy with respect to ours.
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CHAPTER 7

Introduction

7.1 Paradigm of Nuclear Physics

To the nuclear physicist, the basic building blocks of the atomic nucleus are the pro-
ton and the neutron, commonly referred to as nucleons. Forgetting about their com-
posite nature and finite size, we treat the proton and the neutron as fundamental
particles whose properties (mass, electric charge, magnetic moment etc.) and mutual
interaction give rise to the observed properties of atomic nuclei. This, one may say,
constitutes the classical paradigm of nuclear physics. Its justification and usefulness
stems from the different energy scales of nuclear excitations (0.1–10 MeV) and nu-
cleon excitations (0.1–1 GeV). If a measurement of a nuclear property is made which
contradicts the predictions of the current nuclear model, we first try to improve the
nuclear model within this paradigm, i.e. we try to find a meaningful way in which
to accommodate our observation within the picture of the nucleus as composed of
inert neutrons and protons, interacting via some two-body potential. When nuclear
physicists say a phenomenon can be explained as a “nuclear structure effect” this is,
roughly speaking, what they mean. Only if our attempts to explain the new observa-
tion as a nuclear structure effect fail, do we invoke the internal structure of nucleons
in our explanation [Wil95].

One property that cannot be understood within the classical paradigm is the ∆ res-
onance observed e.g. at≈300 MeV in photoabsorption on many nuclei [Ahr85,Sch03].
The underlying reaction is

N + γ→ ∆→ N′ + π

where an individual nucleon (N) in the nucleus is brought to its first excited state
(the ∆ isobar) by the absorption of a photon (γ), implying that nucleons possess in-
ternal structure. In addition to proton and neutrons, today’s extended paradigm of
nuclear physics makes room for ∆ isobars as well as mesons in the nuclear medium.
The nuclear force is understood as resulting from the exchange of mesons between
nucleons. The effect of ∆ isobars and mesons on nuclear phenomena is described
sometimes explicitly, other times indirectly through the use of three-body potentials.
Many properties of nuclei can be understood within the classical paradigm of nuclear
physics. Even more within the extended paradigm.

109
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7.2 Nuclear Structure

Within less than a decade of Chadwick’s discovery of the neutron in 1932, two very
different descriptions of nuclear structure were formulated: The independent particle
model [Hei32a,Hei32b,Hei33] and the liquid drop model [Boh37,Boh39]. Their com-
mon starting point is a nucleus composed of protons and neutrons, held together by
a strong, short-range, nuclear force acting against the Coulomb repulsion of the pro-
tons. The liquid drop model considers the nucleons as strongly correlated, and hence
its focus is on the bulk properties of the nucleus, i.e. degrees of freedom which in-
volve correlated motion of nucleons such as rotation and vibration. The independent
particle model takes the complete opposite stance by replacing the nucleon-nucleon
force with an effective central potential in which the nucleons occupy states of fixed
energy, orbital momentum and spin, according to the Pauli principle. The indepen-
dent particle model developed into the shell model which, with the inclusion of a
strong spin-orbit coupling, is able to predict many important nuclear properties such
as the ground-state spins of even-even and odd-A nuclei as well as the observed
magic numbers. In view of the saturation property of the nuclear force, viz. its short
range, the great success of the shell model came as a surprise [Bet56]. Over the years,
the shell model has been greatly extended. The addition of residual interactions and
the use of non-spherical potentials has even allowed for the description of collective
degrees of freedom.

7.3 The α Cluster Model

The idea that α particles should exist as separate entities in the nucleus dates back to
before Chadwick’s discovery of the neutron [Gam30]. As noted by J. Hans D. Jensen
(1907–1973) in his Nobel lecture1 from 1963:

At that time one was tempted to consider alpha particles as basic building
blocks of nuclei. However, from those days a warning from Schrödinger
still persists in my mind. During the late twenties he chided the partic-
ipants in a Berlin seminar for their lack of imagination. In his impul-
sive manner he said: “Just because you see alpha particles coming out of
the nucleus, you should not necessarily conclude that inside they exist as
such.” [Jen63]

The notion of α particles as nuclear building block was, however, not entirely aban-
doned. Inspired by molecular physics where the basic building blocks (atoms) are

1Jensen shared half of the 1963 Nobel Prize for Physics with Maria Göppert-Mayer (1906–1972) for their
proposal of the shell model.
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Figure 7.1: Structure of the ground states in 8Be, 12C, 16O, 20Ne according to the original α-
cluster model. The α particles are arranged so as to maximize the number of α-α bonds.
Adapted from [Fre07a].

themselves composite systems that interact through effective forces, the α cluster
model of the nucleus was proposed in the late 1930s [Bet36, Wef37, Whe37, Wei38]
as an alternative to the liquid drop model and the independent particle model. The
closed-shell configuration gives the α particle its inert character: A large binding
energy of 28.3 MeV, spin-parity of 0+ and a first excited state at 20.2 MeV. These prop-
erties of the α particle gave reason to believe that it should be able to exist as a stable
sub-unit of the nucleus.

At first, the α cluster model was applied to nuclei composed of an integer number
of α particles, i.e. 8Be, 12C, 16O, 20Ne, 24Mg, etc. Their ground states were pictured
as geometric configurations with the binding energy proportional to the number of
bonds between the α particles, see Fig 7.1. In the case of 12C which can have at most
three bonds and has a binding energy of 7.275 MeV (relative to the 3α threshold), we
obtain a per-bond binding energy of 2.4 MeV. Similar per-bond energies were found
for 16O, 20Ne, 24Mg, 28Si and 32S [Haf38]. However, for the simplest of them all, 8Be,
unbound by 92 keV, the model fitted badly. The α cluster model was soon extended
to encompass nuclei consisting of an integer number of α particle plus-minus one
nucleon [Haf38], e.g. 9Be = α + α + n with the neutron acting like the glue between
the α particles much like the electron in a covalent bond between atoms.

Building on work of, among others, Morinaga, a new understanding of the α clus-
ter model emerged in the 1960s [Ike68]. It was realized that, as suggested by the case
of 8Be, the α-α bond is indeed very weak. In consequence, nuclei only exhibit α-
cluster structure in excited states close to the α-decay threshold. This is illustrated
in Fig. 7.2. For 12C, 16O, 20Ne, etc., ground-state configurations more stable than the
α-cluster structure exist. In the words of Ikeda “the alpha particle loses its identity
in the compact nucleus” [Ike68]. This is perhaps not so surprising when one con-
siders that the binding energy per nucleon of the α particle is 7.1 MeV, i.e. no greater
than the typical binding in stable nuclei. The structure of the α particle is thus easily
susceptible to the nuclear environment.
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Figure 7.2: Ikeda diagram showing the emergence of cluster-structure at particle-decay thresh-
old. Adapted from [Fre07a].

7.4 A Brief Digression

In 1983, the European Muon Collaboration (EMC) discovered that the quark momen-
tum distribution is changed when the bare nucleon is put into a nucleus [Aub83],
since dubbed the EMC effect. Recently, the EMC effect was measured in the light
nuclei 3He, 4He, 9Be and 12C [See09]. For 3He, 4He and 12C the observations were
consistent with models where the EMC effect scales with the average nuclear density,
but 9Be shows an abnormally large effect compared to its average density. One expla-
nation given by [See09] invokes the α+α+n cluster structure of the 9Be ground state:
While most nucleons are found in the dense environment of the compact α-particle
structure, the average density is much lower due to the α particles and the additional
neutron orbiting in a larger volume. Thus, the average density does not reflect the
local environment.

This brief digression serves to illustrate the importance of understanding nuclear
structure, in this particular case the phenomenon of clustering in light nuclei, in or-
der to use the nucleus as a “laboratory” for particle-physics measurements. It also
reminds us that the nucleons, whose properties ultimately determine nuclear struc-
ture, are not invariable entities. Their properties depend on the nuclear environment.
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7.5 The 12C Nucleus

7.5.1 The Hoyle State

The 0+ Hoyle state in 12C, famous for its astrophysical importance and named after
Fred Hoyle (1915–2001) who predicted its existence [Hoy53], is situated only 379 keV
above the threshold for decay to three α particles, making it a plausible candidate
for an α-cluster state. Its large size (the radius of the Hoyle state extracted from
inelastic electron scattering is 1.3–1.5 times that of the ground state [Che07]) and its
large reduced width (comparable to the Wigner limit) support the cluster-structure
interpretation.

In 1956, shortly after the experimental discovery of the Hoyle state [Dun53], Mori-
naga proposed that its structure resembles a linear chain of three α particles [Mor56].
Similar 0+ states were identified in 16O, 20Ne and 24Mg. The rotation of such a struc-
ture would lead to a band of excited states with spin-parity 2+, 4+,. . . on top of the
rotationless 0+ state. Vibrations would give additional energy levels. Using a sim-
ple model in which the linear α-particle chain was treated as a rigid rotator with a
fixed moment of inertia, Morinaga gave rough estimates of the energy of the 0+ states
and the spacing of the rotational excitations. Reasonable agreeement was found for
16O, 20Ne, and 24Mg, but experimental evidence was not conclusive. As for 8Be and
12C, little was known experimentally at the time. The calculations indicated, how-
ever, that a 2+ excitation of the Hoyle state should be found at ≈ 9.7 MeV. Due to its
α-cluster structure, it had to be a rather broad state.

In 1958, a broad state was indeed observed at 10.1(2) MeV [Coo57]. It was pop-
ulated in the β decay of 12B which implied it had to be 0+, 1+ or 2+. In 1966, its ex-
istence was confirmed in another β-decay experiment [Sch66] which determined its
energy to 10.3(3) MeV and found that it decayed via the ground state of 8Be, leaving
0+ and 2+ as the only possible spin-parity assignments. Soon after, Morinaga sug-
gested that this could be the 2+ rotational excitation predicted by his model [Mor66].
However, β-decay studies performed by our own collaboration have shown 0+ to be
the correct assignment [Fyn05, Dig05] in agreement with recent 12C(α, α′)12C experi-
ments [Joh03, Ito04].

Experimental observations indicating the existence of a 2+ rotational excitation
of the Hoyle state have been reported [Joh03, Ito04, Fre07b, Fre09], but a consistent
picture has not yet emerged. The R-matrix analysis of our most recent β-decay study
give evidence for a 2+ state around 11 MeV [Hyl10b]. However, the large natural
width of cluster states and the presence of several broad overlapping states in the
energy region of interest makes the search for the 2+ excitation very challenging
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7.5.2 Level Structure

The level-structure of 12C below 16 MeV according to the most recent compilation
[AS90] is reproduced in Table 7.1. Appreciation for the unusual character of the 0+

Hoyle state may be gained from a simplified shell-model analysis of the level struc-
ture of 12C in terms of single-nucleon excitations in the j j coupling scheme. The
ground-state configuration of 12C is illustrated in Fig. 7.3. The six protons and six
neutrons fill the 1s1/2 and 1p3/2 orbitals with their spins coupled to 0+. If a single nu-
cleon is excited to the the 1p1/2 orbital, it may couple with the unpaired nucleon left
behind in the 1p3/2 orbital to give 1+ and 2+; if excited to the 1d5/2 orbital, it may cou-
ple to give 1−, 2−, 3−, 4−; if excited to the 2s1/2 orbital, it may couple to give 1−, and 2−.
Thus, we conclude that 0+ states cannot be generated by simple single-nucleon exci-
tations. (Excitation of a single 1s1/2 nucleon to the 2s1/2 orbital can give a 0+ state, but
this is energetically very expensive.) A qualitative description of the 0+ Hoyle state
within the shell-model picture in terms of many-nucleon excitations can be given, see
e.g. [Coh65]; for a similar description of even-parity states in 16O, see [Bro66].

A 4+ state also cannot be generated from single-nucleon excitations. A 4+ state
does, however, arise naturally as the second member of the rotational band (2+, 4+, . . . )
build on top of the 0+ ground state. The fact that the energies of the 2+ and 4+ rota-
tional excitations of the ground state give a ratio of 14.04/4.44 = 3.3 in beautiful agree-
ment with the ratio of 2(2+ 1)/4(4+ 1) = 3.2 expected for a rigid rotator, EJ ∝ J(J + 1),
was already recognized early on.

p n
12

C

1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

Single-nucleon excitations:

1p1/2 ⇒ 1+, 2+

1d5/2 ⇒ 1−, 2−, 3−, 4−

2s1/2 ⇒ 1−, 2−

Figure 7.3: Simple shell-model description of the low-level structure of 12C in terms of single-
nucleon excitations.
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Table 7.1: Level-structure of 12C below 16 MeV according to the most recent compilation
[AS90]. The threshold for proton decay is 15.96 MeV. Brackets indicate tentative assignments.

Ex (MeV ± keV) Jπ; T Γ (keV) Decaya

g.s. 0+; 0 · · · stable
4.43891± 0.31 2+; 0 (10.8± 0.6) × 10−6 γ

7.6542± 0.15 0+; 0 (8.5 ± 1.0) × 10−3 γ, π, α
9.641± 5 3−; 0 34 ± 5 γ, α

10.3 ± 300 (0+); 0 3000 ± 700 α

10.844± 16 1−; 0 315 ± 25 α

(11.16± 50) (2+); 0 430 ± 80
11.828± 16 2−; 0 260 ± 25 γ, α
12.710± 6 1+; 0 (18.1± 2.8) × 10−3 γ, α
13.352± 17 (2−)b; 0 375 ± 40 γ, α
14.083± 15 4+; 0 258 ± 15 α

15.110± 3 1+; 1 (43.6± 1.3) × 10−3 γ, α
15.44 ± 40 (2+; 0) 1500 ± 200

16.1058± 0.7 2+; 1 5.3 ± 0.2 γ, p, α

aπ means e−e+ pair creation.
bThe Dalitz plot analysis of Chapter 12 firmly establishes the spin-parity of this state as 4−.
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The existence of two types of nucleons, namely, the proton and the neutron that
are identical to the nuclear force, have nearly equal masses and only differ in their
electric charge and magnetic moment, is reflected in the existence of pairs of states
with same spin-parity but different isospin, T. A good example is provided by the 1+

states at 12.71 MeV (T = 0) and 15.11 MeV (T = 1) which we may identify with
isospin-symmetric and isospin-antisymmetric superpositions of single-proton and
single-neutron excitations to the 1p1/2 orbital:

|15.11〉 = 1√
2

( | ↑↓〉 + | ↓↑〉 ) ,

|12.71〉 = 1√
2

( | ↑↓〉 − |↓↑〉 ) ,

with | ↑〉 corresponding to the proton and | ↓〉 to the neutron. In reality, the 12.71
and 15.11 MeV states are not pure isospin states. The Coulomb interaction mixes the
T = 0 and T = 1 states causing them to repel each other2. Physically, we may interpret
the lowering of the T = 0 state as it having acquired an excess proton excitation3.
The T = 1 state acquires an equivalent excess neutron excitation. Put more simply,
the 12.71 MeV state looks more like p + 11B and the 15.11 MeV state more like n +
11C. This has observable consequences for the one-proton and one-neutron removal
cross sections to the 12.71 and 15.11 MeV states [Ade77]. The 16 MeV doublet in 8Be
(Section 1.2.1.1) provides an extreme example of isospin mixing. Here, the two states
are nearly fifty-fifty T = 0 and T = 1.

7.5.3 Microscopic Cluster Models

In the excitation region just above the triple-α threshold, one finds states of both shell-
model and α-cluster character, prime examples, respectively, being the 1+ state at
12.71 MeV and, of course, the 0+ Hoyle state at 7.65 MeV. The coexistence of two
such different excitation modes makes the theoretical description of 12C particularly
interesting.

α-Cluster models such as the one of [ÁR08b] which we return to later, assume the
existence of α particles in the nucleus, i.e. 12C is described as a three-body system. The
microscopic cluster models do not make this assumption. They treat the nucleons on
an individual basis. A realistic4 two-nucleon potential plus a three-body potential
is used to describe the interaction of the nucleons. The eigenstates of the twelve-
body system are obtained by variational calculation using Gaussians for the single-

2This statement is true in general: When an interaction mixes two quantum states they repel each other.
3Proton excitation lowers the Coulomb energy because the time spent by the excited proton in the

vicinity of the three protons left behind in the 1p3/2 orbital is reduced (to be precise, the overlap of their
wave functions is reduced).

4By “realistic” is meant that the potential reproduces the phase shifts measured in nucleon-nucleon
scattering and the properties of the deuteron.
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nucleon wave functions. The α-cluster structure then emerges from the calculations,
see e.g. [Che07].

α-Cluster states are difficult to describe in shell-model type approaches such as
that of [Nav07], because large model spaces are required. See [For09] for recent
progress in the shell-model description of losely bound nuclei. Microscopic cluster
models such as antisymmetrised molecular dynamics (AMD) [KE07] and the closely
related fermionic molecular dynamics (FMD) [Rot04], have been more successful in
combining shell-model and cluster structures. Many reviews of the subject exist in
the literature, see e.g. [Fre07a] and [Oer06].

By measuring the properties of 12C resonances5 we provide data against which
the predictions of the various theoretical models can be tested thereby advancing our
understanding of clustering phenomena and nuclear structure in general.

5By “resonance” is meant an excited state above particle-decay threshold. We shall be using the terms
“resonance” and “excited state” interchangeably in the discussion that follows.
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7.6 Concepts of R-Matrix Theory

Many of the energy spectra found in the present dissertation exhibit broad features
which look very different from the standard Breit-Wigner distribution. R-matrix the-
ory [Lan58, Vog04] provides a framework in which these broad features can be de-
scribed in terms of physically meaningful parameters.

The short-range nature of the nuclear force plays a central role in the formulation
of R-matrix theory. Consider the nuclear decay A → B + C (or, conversly, the fusion
reaction B + C → A). The short range of the nuclear force implies that beyond a
separation of a few fm, B and C only interact electromagnetically. Accordingly, we
divide space in two regions: An external region, r > a, where B and C only interact
electromagnetically and an internal region, r < a, where the nuclear force is felt.

In the external region, we are dealing with a two-body Coulomb problem which
we know how to solve. A solution exists for any energy E > 0. The wave function
describing the relative motion of B and C in the external region may be written as a
linear combination of an ingoing and outgoing wave. Formally, ψ ∼ xI + yO. The
ultimate goal is to determine the relative size and phase of the amplitudes x and y.
Losely speaking, if the amplitude of the outgoing wave, y, is large compared to that
of the incoming wave, x, the A→ B + C decay amplitude is large and vise versa.

To determine x and y, we need to know what happens to the wave function in the
internal region. Here the relative motion of B and C is governed by the Hamiltonian
H = K + V where V is the unknown nuclear potential. Unaware of the form of V,
we cannot determine the eigenstates, HXλ = EλXλ, but we know that they exist and
form a complete basis. Formally, we may write the internal wave function as a linear
combination of the basis states,Ψ =

∑

CλXλ.

The information about what goes on in the internal region is mediated to the exter-
nal region by the matching of the internal and the external solutions at the boundary
r = a. The information, it turns out, is essentially contained in two quantities: The
eigenenergies of the internal region, Eλ , and the surface integral,

γλ =

(

~
2

2µa

)1/2 ∫

S
X∗λϕ dS ,

where µ is the reduced mass of B and C and ϕ is the (energy-independent) angu-
lar part of the external wave function, ψ. The integral is to be performed over the
boundary sourface. In R-matrix theory, we refer to the Eλ’s as the resonance energies
and to the γλ’s as the reduced widths. Knowledge of the Eλ’s and the γλ’s enables us to
calculate the ingoing and outgoing amplitudes, x and y, for a given energy, E. Con-
versly, a measurement of the these amplitudes, viz. the decay spectrum or reaction
cross section, enables us to determine the Eλ’s and the γλ’s.
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In the simple case of a single isolated level, R-matrix theory gives a parametriza-
tion similar to the standard Breit-Wigner form,

ρ(E) =
1
π

1
2Γ

(E − Eλ + ∆E)2
+

(

1
2Γ

)2 , (7.1)

with,
Γ = 2Pl(E)γ2

λ , ∆E = [Sl(E) − Sl(Eλ)]γ2
λ .

Here l is the orbital angular momentum of the relative motion of B and C, Pl is the
penetrability which gives the probability for tunneling through the Coulomb and
centrifugal barrier, and Sl is the so-called shift function. The penetrability, Pl, has
a dramatic effect on states located close to the particle-decay threshold. Due to the
smallness of Pl close to threshold, an intrinsically broad state, i.e. with a large reduced
width, γλ, may appear as a very narrow state to the “outside world”. The 0+ Hoyle
state in 12C and the 0+ ground state of 8Be provide good examples of this effect. States
close to particle-decay threshold may have an assymmetric shape with a reduced
low-energy shoulder and an enhanced high-energy shoulder. The multiplication of
the increasing penetrability factor with the decreasing Breit-Wigner tail may even
result in the apperance of a “ghost state” [Bar62, Bar68, Bec81, Szc91] above the main
peak, as shown in Fig. 7.4 and also beautifully illustrated in Fig. 1.7 of [Alc10]. Both
the 0+ Hoyle state in 12C and the 0+ ground state of 8Be have associated ghost states.

In the presence of multiple levels of the same spin and parity, intereference ef-
fects occur which may significantly affect the shape of the spectrum, e.g. causing the

Figure 7.4: Profile of the 8Be ground state calculated from Eq. 7.1 using Eλ = 92 keV, γ2
λ
=

896 keV, l = 0 and r0 = 1.41 fm. The very narrow ground-state peak has been replaced with a
Gaussian of width σ = 10 keV of the same area and scaled down by a factor 100.
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spectral maximum to be shifted compared to the “true” resonance energy, Eλ. The
destructive interference around 3 MeV in the β-delayed α spectrum of 20Na (Fig. 6.2)
gives a striking example of such intereference phenomena.

The radius6, a, enters the calculation of Pl and Sl. The choice of a is a source of
concern in all applications of R-matrix theory aiming for the determination of phys-
ically meaningful levels energies, Eλ , and, in particular, reduced widths, γλ; see the
discussion in [War86,Hyl10a]. One usually takes a = r0(A1/3

B +A1/3
C ) where AB and AC

are the mass numbers of B and C and r0 = 1.4 − 1.5 fm.

7.6.1 The Wigner Limit γW

In the classical picture of α decay, the decay rate has three contributions: (i) The
probability for the α particle to be formed, (ii) the rate at which it collides with the
barrier and (iii) the probability for it to tunnel through the barrier. In R-matrix theory,
the penetrability, Pl, accounts for (iii) while the reduced width, γλ, accounts for (i) and
(ii).

The Wigner limit, γ2
W =

~2

µa2 , gives a rough upper limit on the reduced width. In
the classical picture of α decay, the Wigner limit corresponds to setting the probability
for the α particle to be formed equal to unity. Then, the reduced width simply equals
the collision rate. If an excited nuclear state has a reduced width comparable to the
Wigner limit, it is indicative of it possessing α-cluster structure.

An order-of-magnitude derivation of the Wigner limit can be made by placing the
α particle in the ground state of a infinite nuclear well of radius a. Then, its energy is
E ∼~2/ma2 and its velocity v ∼~/ma, meaning that it collides with the barrier at a rate
of v/a = ~/ma2, corresponding to a width of ~2/ma2.

6The radius, a, is often referred to as the channel radius.



CHAPTER 8

Reactions Induced by 3He on
10B and 11B

To study the properties of 12C resonances, we must first find a way to populate them.
Below, we discuss how 12C resonances are populated by shooting a beam of 3He ions
on targets of 10B and 11B. Kinematical curves are used to identify competing reaction
channels. The angular distributions of the reaction products are used to shed light on
the reaction mechanism leading to the formation of 12C.

8.1 Reaction Channels

The following four-body final-state reactions (with the Q value given in MeV) were
measured,

(i) 3He + 10B → p + α + α + α + 12.4

(ii) 3He + 11B → d + α + α + α + 3.2

(iii) 3He + 7Li → n + p + α + α + 9.6

at beam energies of 4.9, 8.5 and 2.45 MeV respectively. The reactions were measured
in complete kinematics, meaning that all four final-state momenta were determined
experimentally. Neither of the three reactions have previously been measured in com-
plete kinematics. Reaction (iii) offers the possibility to study the decay of 9Be reso-
nances populated in the 3He+ 7Li→ p+ 9Be reaction. It differs from (i) and (ii) by the
presence of a neutron in the final state which is not detected with the present detector
array. The present discussion deals only with reactions (i) and (ii).

In the center of mass system (CM), the combined kinetic energy of the beam and
the target is

ECM =
M

m +M
Ebeam ,

with Ebeam denoting the beam energy and m and M denoting the masses of the beam
and the target. It follows that the CM kinetic energies in reactions (i) and (ii) are
10
13 4.9 = 3.8 MeV and 11

14 8.5 = 6.7 MeV, respectively. These energies may be compared
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to the Coulomb barrier height,

B =
1.4zZ

r
MeV fm ,

where z and Z are the electric charges of the beam and the target; r is the sum of the
nuclear radii which we here approximate as r ≈ 1.2(a1/3 +A1/3) fm, where a and A are
the mass numbers of the beam and the target. Inserting numbers, we find r ≈ 4.4 fm
and B ≈ 3.2 MeV, showing that reactions (i) and (ii) both occur above the barrier.

Reaction (i) has previously been studied by Waggoner et al. in 1966 [Wag66] at
beam energies of 2.45 and 6.0 MeV with an experimental setup that allowed for the
coincident detection of two final-state particles. The reaction was found to proceed
to the four-body final state by three different channels:

3He + 10B →























p + 12C + 19.7
α + 9B + 12.1
5Li + 8Be + 10.4























→ p + α + α + α ,

with Q values given in MeV. Our primary interest is with the first channel, p + 12C,
which holds information on the resonance structure of 12C. Excited states in 12C pop-
ulated in the p + 12C reaction, appear as peaks in the CM energy spectrum of the
proton. Similarly, excited states in 9B populated in the α + 9B reaction, appear as
peaks in the CM energy spectrum of the primary α particle. Narrow states give rise
to sharp peaks whereas broad states give rise to broad features that are not easily
recognizable. Channels involving very broad resonances (Γ ∼ 1 MeV) often overlap
kinematically, meaning that they are indistinguishable on the event-by-event basis.
Having measured the four-body final state in complete kinematics, we are in a better
position than Waggoner et al. to disentangle these broad channels, cf. Chapter 10.

Reaction (ii) has previously been studied only through measurements of the deu-
teron singles spectrum [Hin61, Mil69, Rey71]. Referring to reaction (i), we expect
reaction (ii) to proceed to the four-body final state by the following channels,

3He + 11B →























d + 12C + 10.5
α + 10B + 9.1
6Li + 8Be + 4.6























→ d + α + α + α

Again, our primary interest is with the first channel, d + 12C.
The maximum orbital angular momenta involved in the 3He+10,11B reactions may

be estimated by assuming that for reactions to occur, the surface of the two nuclei
must touch, i.e. the impact parameter can be no larger than the sum of the nuclear
radii, r ≈ 4.4 fm. Then,

Lmax ≈ rµv ,
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where µ = mM
m+M is the reduced mass of the beam and the target and v = (2ECM/µ)1/2

is their relative velocity. Inserting numbers, we find Lmax ≈ 2.8~ for the 3He + 10B
reaction at 4.9 MeV and Lmax ≈ 3.5~ for the 3He + 11B reaction at 8.5 MeV. Given
the ground-state spins of the nuclei involved (3He is 1

2
+

, 10B is 3+ and 11B is 3
2
−), we

conclude that excited nuclear states with spins up to 6–7~ are within reach. Parity
conservation imposes no further constraints: Any combination of spin and parity is
allowed. Finally, it is easily verified that in isospin conserving reactions only T = 0, 1
states in 12C are accessible in the 3He + 10,11B reactions.

8.2 Kinematical Curves

In any two-body reaction, 1 + 2 → 3 + 4, the CM energies of the reaction products,
E∗i , are uniquely determined by energy and momentum conservation. When trans-
formed to the laboratory system (in which particle 2 is assumed to be at rest), the
energies depend on the angle relative to the beam axis. The correspondence between
the laboratory energies, Ei , and the laboratory angles, θi , is one-two-one if CM ve-
locity of particle i is larger than the boost velocity, i.e. the velocity of the laboratory
system relative to the CM system. If, on the other hand, the CM velocity of particle i
is smaller than the boost velocity, two energies are possible for each angle (but only
one angle for each energy). In both cases, the relation between E and θ can be rep-
resented as a continuous curve, referred to as the kinematical curve. The result of a
classical derivation is

E3 =
m1m3

m2
2

E1



























cosθ3 ±
[

(

1 + m1
m2

)2 m2
2

m1m3

E∗3
E1
− sin2 θ3

]1/2

1 + m1
m2



























2

,

where Q = m1 +m2 −m3 −m4 is the Q value of the reaction (with c = 1) and

E∗3 =
1

1 + m3
m4













1
1 + m1

m2

E1 +Q













is the CM kinetic energy of particle 3. When the CM velocity of particle 3 is smaller
than the boost velocity, both signs are allowed. When the CM velocity of particle 3
is larger, only the plus sign is allowed, in which case E3 is a decreasing function of
θ3 from 0 to 180 degrees. This corresponds to the situation encountered in Fig. 8.1
which shows the proton energy versus angle in the 3He + 10B reaction. A multitude
of kinematical curves are seen in the singles spectrum (a). Restricting our attention to
events in which three α particles are detected in coincidence with the proton (b), we
find that only kinematical curves due to the p+ 12C channel survive. Each curve may
be identified with the population of a certain excitation energy in 12C as indicated
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Figure 8.1: (a) Proton energy versus angle using singles data from the 3He + 10B reaction. (b)

Proton energy versus angle using multiplicity four data (p+3α) from the 3He+10B reaction. The
kinematical curves present in both spectra are due to the p + 12C channel. The corresponding
excitation energies in 12C are indicated.

in the figure. The kinematical curves corresponding to the population of the ground
state and first excited state in 12C are not seen in (b) since these states are bound.
The addition kinematical curves, present only in the singles spectrum, are due to
reactions on 11B (present at the level of 10% in the 10B target) and reactions on the
carbon backing:

3He + 11B → p + 13C
3He + 12C → p + 14C
3He + 13C → p + 15N

The heavier the recoil nucleus, the shallower the kinematical curve.

8.3 Reaction Mechanism

Though not our primary interest, the reaction mechanism leading to the formation of
the 12C resonances that we wish to study, cannot be completely disregarded.

The reaction mechanism manifests itself most strongly in the CM angular distri-
butions of the protons and deuterons. This is seen in Fig. 8.2 which displays angular
distributions corresponding to the population of two selected states in 12C, namely,
the 0+ Hoyle state at 7.65 MeV and the 1− state at 10.84 MeV. The angular distri-
butions have been extracted from the singles data by gating on the corresponding
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Figure 8.2: Proton and deuteron CM angular distributions in the 10B(3He, p)12C and
11B(3He, d)12C reactions, populating the 0+ Hoyle state at 7.65 MeV and the 1− state at 10.84
MeV. The deuteron angular distributions were fitted with the simple model outlined in Section
8.3.1.

kinematical curves in the E-θ plot and have been corrected for experimental effects
through the use of simulations. The background contribution from overlapping chan-
nels was estimated by examining the E-θ plot and subtracted. It was not possible to
extract the deuteron angular distribution at backward angles for the Hoyle state due
to it overlapping with the much more intense 10B(3He, d)11Cgs channel. The deuteron
angular distributions are peaked at forward angles and exhibit a diffraction pattern
characteristic of direct reactions, in this case a one-proton transfer. The proton angu-
lar distributions, in contrast, are rather uniform, indicating a dominant compound
contribution over the entire angular range.

From our point of view, the most important aspect of the angular distributions
are their effect on the complete kinematics detection efficiency: The three α particles
resulting from the decay of 12C are kinematically focused by the motion of the 12C
nucleus. Consequently, the probability of detecting the α particles depends on the di-
rection of motion of the 12C nucleus which, in turn, is determined by the direction of
motion of the proton/deuteron, viz. the proton/deuteron angular distribution. The
effect may be an overall increase or reduction in the probability of detecting the 3α
decay of a certain 12C resonance in complete kinematics. This is relevant to the de-
termination of the γ-branching ratios in Chapter 11. The effect may, however, also
be a distortion of the observed α-particle energy distributions. This is relevant to the
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Dalitz plot analysis in Chapter 12. The effects are accounted for by including the
angular distributions extracted from the data in the Monte Carlo simulations (Sec-
tion 9.4).

The reaction mechanism may also manifests itself in spin degrees of freedom, i.e.
as alignment/polarization of the 12C nuclear spin, giving rise to angular correlations
between the proton/deuteron and the orientation of the 12C → 3α decay. Such cor-
relations are indeed observed in the 3He + 11B → d + 12C reaction proceeding via the
3− state at 9.64 MeV. The correlations are primarily seen at forward angles (where the
direct reaction mechanism is dominant) whereas correlations are essentially absent at
backward angles (where the compound mechanism is dominant). This difference in
behavior is not surprising. The effects of angular correlations induced by spin align-
ment/polarization are discussed in relation to the Dalitz plot analysis (Chapter 12).

8.3.1 Diffraction-Pattern Analysis

The diffraction pattern seen in the angular distribution resulting from a direct reac-
tion is characteristic of the orbital angular momentum transfers, L, involved in the
reaction. The steep rise seen at small angles in the case of the 10.84 MeV state is, for
instance, characteristic of an L = 0 transfer.

The angular momentum transfer, L, is, in turn, related to the spin and parity of
the resonance populated in 12C. This may be seen in the following way: Let Sα and Lα

denote the total spin and orbital angular momentum in the entrance channel. Sim-
ilarly, let Sβ and Lβ denote the total spin and orbital angular momentum in the exit
channel. Angular momentum conservation demands Sα+Lα = Sβ+Lβ. Rearranging,
we obtain

Lα − Lβ = Sβ − Sα .

The momentum transfers, L = Lα − Lβ, allowed by angular momentum conservation
thus are

L = |Sβ − Sα|, . . . , |Sβ + Sα| . (8.1)

The spins in the entrance channel may couple to Sα = 1, 2 and the parity in the en-
trance channel is (−1)1+Lα (3He is 1

2
+

and 11B is 3
2
−

). Considering first the 0+ Hoyle
state at 7.65 MeV, we find that the only possible spin in the exit channel is Sβ = 1
and the parity is positive (d is 1+). Invoking parity conservation and using Eq. 8.1,
we conclude that the possible angular momentum transfers are L = 1, 3. Applying
the same analysis to the 1− state at 10.84 MeV, we find that the possible momentum
transfers are L = 0, 2.

In a crude approximation [Sat90], the transition amplitude, T, for a single angular
momentum transfer, L, is proportional to the spherical Bessel function of the corre-
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sponding order,
T ∝ jL(qR) .

Here, R is the collision radius and q is the momentum transfer:

q = |q| = |kα − kβ| = k2
α + k2

β − 2kαkβ cosθ ,

with θ being the scattering angle and kα and kβ being the initial and final-state rela-
tive momenta in units of ~. Allowing for the coherent contribution of the two lowest
permitted momentum transfers, L and L + 2, we obtain the following expression for
the angular distribution,

dN
dΩ

∝ |T|2 ∝ | jL(qR) + reiφ jL+2(qR) |2 ,

with 0 ≤ r ≤ 1. Fits to the experimental angular distributions, including a constant
offset to account for the compound contribution, are shown in Fig. 8.2. In general,
the diffraction patterns are well reproduced. This is true also for the other states
populated in 12C. The radius was allowed to float and R ≈ 4.0 fm was consistently
obtained.

The spin-parity information that can be extracted from the angular distributions
in an analysis this simple is rather limited. Nonetheless, it nicely complements the
information extracted from the Dalitz plot analysis. The present experimental setup
was not optimized for angular-distribution studies. In this respect, the singles mea-
surements performed back in the 1960s and 1970s [Hin61, Mil69, Rey71] were more
sophisticated, both in terms of the experimental approach and in terms of the theo-
retical analysis.





CHAPTER 9

Experiment and Data Reduction

The experiment was performed at the Centro de Microanálisis de Materiales (CMAM)
located at the Universidad Autónoma de Madrid, Spain. Pilot studies were con-
ducted in 2005 and 2006. Drawing on the experience gathered from these stud-
ies [Kir08], the experimental setup was improved before a final study was conducted
in March 2008.

Section 9.1 and 9.2 give a brief description of the 2008 experimental setup. For a
comprehensive account, see the PhD dissertation of M. Alcorta [Alc10]. Section 9.3
gives an overview of the initial part of the data analysis, concerned with the trans-
formation of raw data into physics events. The various cuts imposed on the data are
introduced. As a check of self consistency, random coincidence rates are extracted
from the data and compared to the rates expected. The internal calibration of the
geometry and the E detectors is discussed. Finally, Section 9.4 gives a brief descrip-
tion the Monte Carlo simulations which constitute an indispensable tool for the data
analysis.

9.1 Beam, Targets and Detectors

The 3He− ions were produced through the use of a duoplasmatron ion source and
accelerated to their final energy in a 5 MV tandem accelerator, providing a very stable
beam with a energy resolution of a few tens of eV. Typical beam intensities on target
were 1–2 nA.

The targets, prepared to us by J. Chevallier at Aarhus University, were made as
thin as possible to minimize the energy loss of the reaction products. Their thickness
and composition is given in the table of Fig. 9.1.

The detection system consisted of four, 60 µm thick, double sided silicon strip
detectors (DSSSD), backed by unsegmented silicon detectors of varying thickness,
from 1.0 to 1.6 mm. The intrinsic resolution of the DSSSDs was 35 keV (FWHM) and
the intrinsic resolution of the back detectors was 40–50 keV (FWHM). The detectors
were arranged as shown in Fig. 9.2 about 4 cm from the target, with two of them
covering 7–75 degrees to the beam and two others covering 98–170 degrees, thereby
obtaining a total solid-angle coverage of 38% of 4π. One DSSSD had 32 × 32 strips
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Target
Thickness

Composition
(µg/cm2)

10B 18.9 90% enriched in 10B
11B 22.0 natural B
7Li 33.1 natural LiF

All targets have a 4 µg/cm2 carbon backing.

Figure 9.1: Table giving the thickness and composition of the three targets and picture of the 10B
target prior to beam exposure. During transport from Aarhus to Madrid, the foil had detached
from the support frame. O. Tengblad saved the experiment from failure by drilling a new
smaller hole in the support frame over which the intact part of the foil was placed.

of 2 mm width, the other three 16 × 16 strips of 3 mm width, resulting in an angular
resolution of 2 and 3 degrees, respectively. The detectors were arranged to maximize
multi-particle detection. This entailed placing two detectors as close as possible to
zero degrees in order to detect α particles with low center of mass energies which
are strongly kinematically focused in the forward direction. The limit to how close to
zero degrees we can place the detectors, is set by the large flux of Rutherford scattered
beam. Placing the detectors too close to zero degrees results in too many random
coincidences and may even damage the detectors.

The arrangement consisting of a thin detector in front of a thick detector, enables
particle identification through the ∆E-E method (Section 9.3.3). The thin detector
placed in the front is sometimes referred to as the∆E detector, and the thicker detector
placed behind is referred to as the E detector. The combined arrangement is referred
to as a ∆E-E telescope.

The three 16×16 DSSSDs used in the present setup are of the same novel design as
the four 16× 16 DSSSDs used for the 8B experiment in Jyväskylä, Finland, with an Al
grid covering only 3% of the surface. The 32×32 DSSSD is of the standard design with
an Al layer covering the entire surface. An account of the design and performance
of the novel-design DSSSD is given in [Ten04]. For a general description of silicon
detectors, see e.g. [Kno00].

Energy calibrations were performed with the standard α sources 148Gd and 241Am,
giving calibrations points at 3.2 and 5.5 MeV, respectively. The α-particle energies
were corrected for the energy loss in the detector dead layers. The calibrations of the
E detectors were found to be inaccurate at the level of a few tens of keV when applied
to the most energetic proton and deuteron groups which deposit over 10 MeV. To
correct for this, the E detectors were recalibrated as described in Section 9.3.7.
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Figure 9.2: Detector setup: Four ∆E-E telescopes (numbered 1–4) surrounding the target with
the beam coming in from the top left corner. The xyz coordinate system is used in the analysis.
The picture shows the fully assembled detector setup prior to insertion into the chamber.

9.2 Electronics and Data Acquisition

The description of the data acquisition system given below is deliberately simplified
and omits many details. The intention is to give an overview of the modus operandi of
the data acquisition system and explain the basic functions of the electronic modules.
For a detailed account, see [Alc10].

A schematic and simplified diagram of the data acquisition system is shown in
Fig. 9.3, along with a picture showing what the data acquisition system looks like in
real life. The electronic signal from the detector is fed to the preamplifier, the output
of which is a fast-rising few-millivolts pulse with a long tail on the order of 100 µs.
This signal is fed to the amplifier for further amplification and shaping. The output of
the amplifier is a few-volts Gaussian pulse with a width on the order of 1 µs, referred
to as the energy signal, which is fed to the ADC (Analog-to-Digital Converter). To
eliminate noise, the amplifier has a built-in discriminator which checks that the signal
is above the chosen threshold level.

In addition to the energy signal, the amplifier generates two logic signals. One sig-
nal, referred to as the timing signal, is fed, with a delay, to the TDC (Time-to-Digital
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Detector
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∼100µs
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Amp.
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ADC TDC

Trigger
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Trigger signal to

ADC and TDC

Other channels

Digital readout

Figure 9.3: Left: Picture of the experimental setup. The chamber is positioned on top of the
blue support, flanked by the preamplifiers wrapped in aluminum foil to reduce noise. Ampli-
fiers, ADC and TDC modules as well as other electronic modules are located in the gray rack.
Right: Schematic, simplified, diagram of the data acquisition system.

Converter). The other signal is fed to a system of standard electronic modules which
constitute the trigger logic of the data acquisition system. Here it meets with equiv-
alent signals from other channels. Simple AND and OR operations are performed
and, if accepted, a trigger signal is sent to the ADC and TDC modules with the pur-
pose of notifying them of the impending arrival of the energy and timing signals.
Following the receipt of this message, the ADC and TDC modules are alert for 2.5
and 2.15 µs, respectively. All signals arriving during this time span are processed by
the ADC and TDC modules which, in the case of the ADC, entails determining the
pulse height (proportional to the energy deposited in the detector) and, in the case
of the TDC, entails determining the time difference between the trigger signal and
the timing signal (giving the relative arrival times of the particles). At the closing of
the data taking window, the contents of the ADC and TDC modules are converted to
digital form and read out. During this 5.7 µs long period, the data acquisition system
is effectively blinded (dead time).

In the present experiment, the four E detectors and the two DSSSDs positioned
at backward angles (DSSSD 3 and 4) provided the trigger signals. A logic AND was
imposed between signals from the front and back sides of the DSSSDs and a logic OR
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between the DSSSDs and the E detectors. The forward-angle DSSSDs (1 and 2) were
removed from the trigger due to the large flux of Rutherford scattered beam.

One important message to take away from this, admittedly very simplified, de-
scription of the data acquisition system is that all particles striking the detectors dur-
ing the 2.5µs long data taking window are recorded to the same event in the data
structure, even though the particles may originate from distinct physical events. For-
tunately, the timing information from the TDC modules can be used to discriminate
between such random coincidences and real coincidences. Our ability to discriminate
between random and real coincidences is, however, somewhat reduced because the
amplifiers used in the present experiment employ a leading-edge-type discriminator.
This causes an effect known as “walk” in the timing signal and results in a time res-
olution of 100 ns (FWHM). In comparison, a resolution on the order of 1 ns can be
achieved with constant-fraction-type discriminators.

9.3 Data Reduction

9.3.1 TDC gate

The TDC (timing) information is used to clean the data for random coincidences.
Given the 2.5 µs length of the data taking window and the 100 ns width of the TDC
gate, all but 4% of the random coincidences are removed. The trigger/TDC thresh-
olds were around 550 keV both for the DSSSDs and the E detectors. The ADC thresh-
olds were set considerably lower, typically around 200 keV, meaning that energy sig-
nals between 200 and 550 keV can be detected, provided a coincident signal above
550 keV triggers the data acquisition system1. Sub-trigger signals do not give TDC
information and hence should not be made subject to the TDC gate.

The rise in trigger efficiency, ε, is found to be well described by a Fermi function,

ε(E) =
ε0

1 + exp[−(E − E0)/w]
,

with ε0 ≈ 100% and w ∼ 35 keV, corresponding to a rise “time” of 150 keV (10–90%).
The threshold levels quoted above refer to E0, i.e. the energy at which the efficiency
has reached 50%.

9.3.2 Front-Back Matching

The technique of matching energy signals from the front side and the back side of the
DSSSDs has already been discussed in relation to the 8B experiment (Section 2.3.8).
The matching is more complicated for the high-multiplicity events encountered in

1This is possible because the pulse height is used for the trigger while the pulse area gives the energy.
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Figure 9.4: ∆E-E plot used for particle identification in the study of the 3He + 11B reaction at
8.5 MeV. The data is from detector 2.

the present analysis, but the basic approach is the same. Charge sharing between
neighboring strips (Section 2.3.8) and summing (two particles hit the same strip) are
responsible for a sub-class of events where the matching of front and back strips
becomes particularly challenging. With two uncorrelated particles hitting the same
detector the probability of them hitting the same strip is roughly 10%. In some special
cases, notably the breakup of the ground state of 8Be to two α particles, the probability
of summing is increased due to the small relative velocity of the two α particles.

Charge sharing and summing are taken into account—to the extent to which we
understand these phenomena—in the simulations (Section 9.4).

9.3.3 Particle identification by the ∆E-E method

Since the stopping power, dE
dx , of charged particles in matter depends on their charge,

q, and velocity, v = E/m, we may uncover their identity by letting them deposit their
energy in two slabs of silicon in stead of just one: The larger their stopping power,
the larger a fraction of their energy they deposit in the first slab of silicon. This is
the basic idea behind the ∆E-E method (∆E is the energy deposited in the first slab of
silicon and E is the energy deposited in the second slab of silicon).

Applying the ∆E-E method to the 3He+11B data from detector 2, we obtain Fig. 9.4.
The DSSSD energy, ∆E , is along the ordinate, multiplied by cosχ where χ is the
angle of incidence on the detector (χ = 0◦ corresponds to normal incidence). To
first order, the factor cosχ removes the dependence of ∆E on the effective detector
thickness. The energy deposited in the E detector, also corrected to first order, is
along the abscissa. Bands of increased intensity (sometimes referred to as “bananas”
owing to their characteristic shape) corresponding to protons, deuterons, tritons and
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α particles are clearly seen. The most energetic protons punch through the E detector
without depositing their full energy. Protons hitting the edge strips of the DSSSD
may also fail to deposit their full energy. Some Rutherford scattered 3He ions are seen
forming a straight line of slope −1, corresponding to a fixed total energy of ≈ 8 MeV
and suggesting that the 3He ions have channeled through the DSSSD [Sig06].

In Fig. 9.4, the E-detector energy has been matched with all ∆E energies measured
in the DSSSD, i.e. if a proton and an α particle of energies Ep and Eα hit the DSSSD
depositing in it the energies ∆Ep and ∆Eα = Eα, and the proton continues into the E
detector depositing the rest of its energy E = Ep − ∆Ep, then both the correct match
(E,∆Ep) and the wrong match (E,∆Eα) are shown in Fig. 9.4. In the large majority
of such cases, the wrong match (E,∆Eα) falls outside the bananas so that an unam-
biguous identification can be made. If both matches fall inside a banana, we cannot
tell which is the correct match so we usually discard the event. In multiplicity three
and four events, such ambiguities can often be resolved by checking for energy and
momentum conservation.

9.3.4 Energy-Loss Corrections

Having identified the particles, we can correct for their energy loss in the target and
the dead layers of the detectors as described in Section 2.2. In calculating the energy
loss in the target, we assume the reactions to occur uniformly throughout the thick-
ness of the target. The dead layer on the front side of the 16 × 16 DSSSDs is only
100 nm thick2. The dead layer on the front side of the 32 × 32 DSSSD which is of the
standard design with an Al layer covering the entire surface, is estimated to 0.9 µm.
If the particle penetrates into the E detector, we must also correct for the 1 µm dead
layer on the back side of the DSSSD and the 0.7 µm dead layer on the front side of the
E detector.

9.3.5 Kinematical Cuts

The 100 ns width of the TDC gate allows for ≈ 4% of the random coincidences to
slip through. In addition, the TDC gate cannot be used to identify random coin-
cidences involving particles with energies below the trigger level (≈ 550 keV). The
complete kinematical information allows us to impose kinematical cuts on the multi-
plicity three and four events whereby the “left overs” from the TDC gate are signifi-
cantly reduced.

2From the analysis of the 8B experiment, we know that detector-to-detector variations of ± 20 nm occur.
The effects of these variations are too small to be of any importance for the present study.
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TDC gate Momentum conservation

(a) (b) (c)

Figure 9.5: Cleaning the multiplicity-four data from the 3He + 10B reaction using the TDC gate
and momentum conservation. (a) All p + 3α events. The 12C excitation energy determined
from the momentum of the proton, E(p)

x , is along the abscissa and the 12C excitation energy
determined from the momenta of the three α particles, E(3α)

x , is along the ordinate. (b) p +
3α events surviving the TDC gate. (c) p + 3α events surviving both the TDC gate and the
requirement of momentum conservation. The encircled events result from reactions on 11B,
present at the level of 10% in the 10B target.

9.3.5.1 Multiplicity-Four Events

In multiplicity-four events, we always require the total momentum to be conserved,

p3He = pp,d + pα1
+ pα2

+ pα3
.

Unless we are looking for γ transitions, cf. Chapter 11, we also require the energy to
be conserved,

E3He +Q = Ep,d + Eα1 + Eα2 + Eα3 ,

where Q = m3He +m10,11B −mp,d − 3mα is the Q value (with c = 1).
The effect of the requirement of momentum conservation imposed on the p + 3α

data sample, is shown in Fig. 9.5. The 12C excitation energy determined from the
momentum of the proton, E(p)

x , is along the abscissa, and the 12C excitation energy
determined from the momenta of the three α particles, E(3α)

x , is along the ordinate.
The TDC gate removes many of the random coincidences seen contaminating the
plot away from the diagonal, but is unable to remove them all. With the added re-
quirement of momentum conservation, the random-coincidence background is es-
sentially gone. The encircled events in the bottom-right corner of Fig. 9.5 (c) result
from reactions on 11B, present at the level of 10% in the 10B target. The higher-lying
band is due to d + 3α final states with the deuteron wrongly identified as a proton.
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The lower-lying band is due to n + p + 3α five-body final states with the neutron un-
observed. The separation between the two bands is 2.2 MeV, equal to the binding
energy of the deuteron. The two bands extending horizontally from the diagonal at
E(3α)

x = 7.65 MeV and E(3α)
x = 9.64 MeV and the thin vertical band at E(p)

x = 15.11 MeV
are discussed in Chapter 11.

If, additionally, energy conservation is imposed, all the non-diagonal events in
Fig. 9.5 (c) disappear. The combined effect of requiring momentum and energy con-
servation is to reduce the multiplicity-four data sample by roughly 7%.

9.3.5.2 Multiplicity-Three Events

We only consider multiplicity-three events in which the proton/deuteron is one of
the three detected particles. The energy of the third, unobserved, α particle can be
determined, either from momentum conservation,

Eα3 =
p2
α3

2mα
pα3
= p3He − (pp,d + pα1

+ pα2
) ,

or from energy conservation,

Eα3 = E3He +Q − (Ep,d + Eα1 + Eα2) .

The kinematical cut imposed on multiplicity-three events consists in requiring the
two methods to yield the same answer within 0.5 MeV. This cut is not quite as efficient
in removing the random coincidences left over from the TDC gate as the multiplicity-
four cut. It reduces the multiplicity-three data sample by roughly 20%.

The 10B(3He, pααα) and 11B(3He, dααα) reactions often proceed via the narrow (Γ =
5.6 eV) ground state 8Be, situated 92 keV above the 2α threshold. Experimentally,
this is seen as a narrow peak at 92 keV in the 8Be excitation energy spectrum shown
in Fig. 9.6. The width of the peak represents the experimental resolution. A priori,
we do not know which two α particles out of the three α particles in the final state,
originate from the breakup of the 8Be ground state. For each of the three possible
combinations, we compute the corresponding 8Be excitation energy by the invariant-
mass method [Ams08]. If we combine the two observed α particles, α1 and α2, the
spectrum labeled “Measured” in Fig. 9.6 results. The width of the peak is 40 keV
(FWHM). If we combine either of the observed α particles with the unobserved α

particle, α3, the peak gets wider. If we use momentum conservation to determine
the direction of the unobserved α particle but energy conservation to determine its
energy, we get the very wide spectrum labeled “Energy”. The width of the peak
is 330 keV (FWHM). If we only use momentum conservation, we get the spectrum
labeled “Momentum”. The width of the peak is reduced to 80 keV (FWHM).
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Figure 9.6: 8Be excitation energy spectra extracted from multiplicity-three events (p + 2α). The
spectrum labeled “Measured” was obtained by using the two observed α particles. The other
three spectra were obtained by using either of the observed α particles in combination with the
unobserved α particle. The momentum of the observed α particle was reconstructed by three
different methods (see text) giving different resolutions in the determination of the excitation
energy as seen from the width of the ground-state peak.

The resolution may be further improved to 75 keV by performing kinematic fitting,
a technique well known to particle physicists3. The general idea behind kinematic
fitting is to use the know properties (constraints) of a given physical process to im-
prove the measurements describing the process. In the present case there are three
unknowns, namely, the three momentum components of the unobserved α particle,
and four constraints from energy and momentum conservation. Typically, the three
momentum components that satisfy momentum conservation will not also satisfy
energy conservation, i.e. the problem is over constrained. The solution offered by
kinematic fitting is simple: Roughly speaking, kinematic fitting consists in finding
the three momentum components that best satisfy the four constraints while allow-
ing for the measured quantities (the momenta of the proton/deuteron and the two
other α particles) to vary within their estimated uncertainties, see [Fro79].

3I am indebted to Tord Johansson, Uppsala University, for introducing me to this technique.
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9.3.6 Random Coincidences

Below, we examine random-coincidence rates with the purpose of checking the self
consistency of the analysis.

First, we consider random coincidences between true4 p + 3α coincidences and
Rutherford scattered 3He. These constitute multiplicity-five events, with one proton
identified in the ∆E-E plot and four particles stopped in the DSSSDs. Energy and
momentum conservation is used to decide which is the 3He ion. We find 1.8 × 103

such random coincidences in the 3He + 10B data. How many should we expect to
find? We observe a total of Y = 7.1× 105 true p+ 3α coincidences. Based on the beam
current measured in a Faraday cup, the target thickness and Monte Carlo simulations
performed to account for geometric acceptance, we estimate the count rate due to
Rutherford scattered 3He to R = 2.3 × 104 s−1. (The count rate could not be directly
measured because the forward-angle DSSSDs were not included in the trigger.) Since
the TDC gate of the DSSSDs is 100 ns wide, we expect to see Y×R× 100 ns = 1.6× 103

random coincidences. This is in good agreement with the number observed.
Second, we consider reaction-reaction coincidences such as (p + 3α) + (p + 3α)

corresponding to an event with two protons and six α particles detected. To calculate
the expected number of such random coincidences, we need to replace the rate of
Rutherford scattered 3He incident on the detectors, R, with the rate at which we detect
true p+3α coincidences. We took data for 17.6 hours and observe Y = 7.1×105 true p+
3α coincidences so the rate is Y/17.6 hours = 11 s−1. Then, using the slightly narrower
TDC gate of the E detectors (70 ns), the expected number of (p+3α)+ (p+3α) random
coincidences is Y× 11 s−1 × 70 ns = 0.5. We identify 0 in the data. Following the same
line of reasoning, the expected number of (p + 3α) + (p + 2α) random coincidences is
2.3× 106 × 11 s−1 × 70 ns = 1.8, in good agreement with the 3 such events observed in
the data.

This random coincidence identification technique can be used to extract true par-
ticle coincidences from higher multiplicity events. Given an event with a higher
multiplicity than four, due to a beam-reaction or a reaction-reaction coincidence, we
use momentum and energy conservation to extract the true four-particle coincidence,
thereby increasing our multiplicity-four event sample. For example, be cleaning up
the beam-reaction coincidences, we increase our sample by about 1%.

4The term “true coincidence” is used to designate coincidences surviving the kinematical cuts.
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9.3.7 Internal Calibration

The energy calibration of the E detectors was performed with the standard α sources
148Gd and 241Am, giving calibrations points at 3.2 and 5.5 MeV. When extrapolated to
15 MeV which is the energy deposited by the most energetic protons and deuterons,
the calibration was found to be inaccurate at the level of a few tens of keV. The geom-
etry of the detector setup was measured with a standard ruler, but the delicate nature
of the detectors makes it difficult to achieve accuracies better than 5 mm. Therefore, it
was necessary to perform an internal calibration of the E detectors and the geometry
of the setup.

In principle, the problem is easily solved: Find a number of observables that de-
pend on the geometry and the E-detector calibration. Then vary the geometry and
the calibration until all observables have the correct value. One such observable are
the p+ 12C kinematical curves of Fig. 8.1 which are sensitive to the E-detector calibra-
tion as well as the position of the individual detectors relative to the target. Another
useful observable is the total momentum measured in multiplicity-four events which
is sensitive to the geometry, while only weakly sensitive to the E-detector calibration.
The difficulty is merely practical: It takes 5–10 minutes to execute the data analysis
program and hence 5-10 minutes to evaluate the effect of every change in geometry
or E-detector calibration on the observables.

Below, we describe one way to overcome this difficulty. Consider a particle of
mass m and laboratory (lab) energy E emitted at an angle θ relative to beam axis.
Since the CM energy, E∗ , is a function of both E and θ, the change in E∗ due to a
change in lab energy, ∆E , and a change in lab angle, ∆θ , is

∆E∗ =
dE∗

dE
∆E +

dE∗

dθ
∆θ .

Using non-relativistic kinematics, one easily finds,

dE∗

dE
= 1 −

(

mv2/E
)1/2

cosθ ,
dE∗

dθ
=

(

2mv2E
)1/2

sinθ , (9.1)

where v is the speed of the CM system relative to the lab system. As an example,
dE∗
dE = 0.91 and dE∗

dθ = 22 keV/degree for a 10 MeV proton emitted at 45 degrees.
Consider the CM energy spectrum measured in a single DSSSD pixel. As our

observable, we select the CM energy of a proton group corresponding to a narrow
state in 12C, e.g. the 12.71 MeV state. Then, we have both θ and E fixed and may
evaluate the derivatives using Eq. 9.1. These tell us how our observable, the CM
energy of the proton group, is affected by changes in the calibration (∆E) and changes
in the geometry (∆θ). Performing a simultaneous optimization to several states in all
pixels, we get nice constraints on the geometry and the E-detector calibrations.
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9.4 Monte Carlo Simulations

Monte Carlo simulations are indispensable for a quantitative comparison of experi-
mental results to theory. To mention a few examples, we use simulations to determine
the detection efficiency for the various γ branches studied in Chapter 11, and to deter-
mine the modification of the Dalitz plot intensity distributions studied in Chapter 12
due to experimental effects.

The simulations are structured in three parts: First, the physical description of the
reaction process. Second, the simulation of the effects of the detection system. Third,
the application of the analysis program to the simulated data.

In general, we describe the reaction process in terms of a sequential model: A path
of dynamically independent two-body decays leads from the initial to the final state.
Angular correlations may be present due to conservation of angular momentum and
parity. The functional form can often be derived from theory [Bie53]. In the study of
the 12C→ 3α breakup, other models than the sequential are also used. We obtain the
angular distributions of the proton/deuteron from the experimental data and include
them in the simulation. Intermediate resonances are usually described by the Breit-
Wigner formula, but the effects of the penetrability in the entrance and exit channels
are included when needed.

The second part of the simulation program, the one concerned with the detection
of the final-state particles, takes into account the geometry of the detector setup and
the response of the individual detectors to charged-particle radiation. The intrinsic
energy resolution is described by a Gaussian function. We include effects of sum-
ming between coincident particles and charge sharing between neighboring strips.
Energy losses in the target material and the detector dead layers are calculated using
tabulated values of the stopping power of ions in solids [Zie08]. We correct for the
pulse height defects of the different types of ions. Finally we include the experimental
trigger logic and detection thresholds.

Simulated and physical events are saved in identical data structures. This makes
it possible to pass the simulated data through exactly the same analysis program as
used for the physical data, hence correcting for any bias introduced by the various
cuts and gates imposed on the data.





CHAPTER 10

Reaction Channels and

Resonances

In Section 10.1 and 10.2, the complete kinematics data is analyzed using two-dimen-
sional energy spectra with the purpose of identifying the reaction channels leading to
the p + 3α and d + 3α four-body final states. It is found useful to divide the reactions
into two groups: Those that do proceed via the narrow 8Be ground-state peak and
those that do not. In Section 10.3, the energies and widths of the 12C resonances
observed in the present study are determined and compared to literature values. In
Section 10.4, α-decay branching ratios to the 8Be ground state are extracted. The
role played by the “ghost” of the 8Be ground state is discussed in detail. Finally, in
Section 10.5, the 12C→ p + 11B decay channel is briefly considered.

10.1 The 10B(3He, pααα) Reaction

As noted in the introduction (Chapter 8), this reaction was observed by [Wag66] to
proceed via three different two-body channels: p + 12C, α + 9B and 5Li + 8Be. In a
two-dimensional spectrum with proton CM energies on the abscissa and α-particle
energies on the ordinate, the p + 12C channel gives rise to vertical bands of increased
intensity, corresponding to the proton CM energy being fixed. Similarly, the α + 9B
channel gives rise to horizontal bands of increased intensity, corresponding to the α-
particle CM energy being fixed. The 5Li + 8Be channel gives rise to diagonal bands
of increased intensity, corresponding to the total CM energy of the proton and the α
particle from the breakup of 5Li being fixed.

A 100 keV wide gate is placed on the 8Be ground-state peak. The three α particles
may be paired in three ways. For each combination, we calculate the 8Be excitation
energy. If any of the three combinations give an energy within the ground-state gate,
we assume that the reaction did indeed proceed via the ground state of 8Be. Then,
the energy of the α-particle not originating from the 8Begs → 2α breakup, is the one
shown on the ordinate. If none of the three combinations give a 8Be excitation energy
within the ground-state gate, the α-particle energy is chosen at random1.

1Other choices may be more instructive: If one is mainly interested in the α+9B channel at low excitation
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Reactions found to proceed via the ground state of 8Be, are shown in Fig. 10.1.
Reactions found not to proceed via the ground state of 8Be, are shown in Fig. 10.2.
The two-dimensional energy spectrum (c) is divided by the dashed vertical line into
two regions: Region I corresponds to events in which the proton is stopped in the ∆E
detector and hence has to be identified by kinematical cuts. Region II corresponds
to events in which the proton penetrates into the E detector allowing for unambigu-
ous identification by the ∆E-E method. The reduced intensity in region I reflects the
reduced efficiency for identifying protons using kinematical cuts. Vertical and hori-
zontal bands indicating the population of resonances in 12C and 9B, are clearly seen.
Corresponding peaks are seen in the projected spectra (a) and (d). The diagonal band
in Fig. 10.1 (c) corresponds to the population of the unbound 3

2
− ground state of 5Li

through the 5Li + 8Be channel. The equivalent band in Fig. 10.2 (c) is much more
spread out due to the broad distribution of excitation energies populated in 8Be. The
5Li ground-state peak is clearly seen in the p-α relative energy spectrum (b). The
5Ligs +

8Be contribution to the proton and α spectra has been attempted removed
by gating on the 5Li ground-state peak in the p-α relative energy spectrum, giving
the blue dotted curve in the proton and α spectra. In general, the interpretation of the
structures in Fig. 10.2 (c) is complicated by the random choice of the α-particle energy
shown on the ordinate.

The proton and α groups observed in the projections of Fig. 10.1 and 10.2 are
listed in Table 10.1 and 10.2. Starting with the protons, we note that all proton groups
can be identified with known states in 12C. The excitation energies, Ex , and quantum
numbers, Jπ; T, given in Table 10.1 are from the most recent A = 12 compilation
[AS90]. Decays not proceeding via the 8Be ground state are most often assumed to
proceed via the 2+ first-excited state at 3 MeV, even though the large width of this
state makes the notion of a sequential decay rather problematic, an issue we shall
return to in Chapter 12. The few decays of the Hoyle state (Ex = 7.65 MeV) not
proceeding via the 8Be ground state, represent intensity “leaking out” of the ground-
state gate due to the experimental resolution, hence the brackets in Table 10.1.

Continuing with the α particles, we note that all four α groups can be identified
with known states in 9B. The few decays of the 9B ground state not proceeding via
the 8Be ground state, represent intensity “leaking out” of the ground-state gate, hence
the brackets in Table 10.2. Decays not proceeding via the 8Be ground state are often
described as proceeding via either the broad 2+ state in 8Be or the equally broad
ground state in 5He, see e.g. [Pre05, Pap07, Bro07, ÁR08a]. Again, the notion of a
sequential decay is rather problematic.

Together, the proton groups of Table 10.1, the α groups of Table 10.2 and the 5Ligs+

energies, better choices, assuming a direct reaction mechanism, would be the most energetic α particle or
the smallest-angle α particle.
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Figure 10.1: 10B(3He, pααα) complete kinematics data (multiplicity-four events only) with gate
on the 8Be ground-state peak. (a) Proton CM energy spectrum. (b) p-α Relative energy spec-
trum. (c) Two-dimensional energy spectrum with the proton CM energy on the abscissa and
the α-particle CM energy on the ordinate. The intensity scale is logarithmic. Region I cor-
responds to events in which the proton is stopped in the ∆E detector and hence has to be
identified by kinematical cuts. Region II corresponds to events in which the proton penetrates
into the E detector allowing for unambiguous identification by the ∆E-E method. (d) α-Particle
CM energy spectrum.
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Figure 10.2: 10B(3He, pααα) complete kinematics data (multiplicity-four events only) with
antigate on the 8Be ground-state peak. See the caption of Fig. 10.1 for details.
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Table 10.1: Proton groups observed in the 3He + 10B → p + 12C → p + 3α reaction. Excitation
energies, Ex , and quantum numbers, Jπ; T, are from the most recent A = 12 compilation [AS90].

p Group
Ep, CM Ex Jπ; T 8Begs Not 8Begs(MeV) (MeV)

1 14.59 7.65 0+; 0 × (×)
2 12.76 9.64 3−; 0 × ×
3 11.65 10.84 1−; 0 × ×
4 10.74 11.83 2−; 0 ×
5 9.93 12.71 1+; 0 ×
6 9.33 13.35 (2−)a; 0 ×
7 8.66 14.08 4+; 0 × ×
8b 7.71 15.11 1+; 1
9 6.79 16.11 2+; 1 × ×
10 4.39 18.71 c ; (1) × ×
11 2.69 20.55 (3+; 1) ×

aThe Dalitz plot analysis of Chapter 12 firmly establishes the spin-parity of this state as 4−.
bOnly observed in the singles spectrum.
cNatural parity.

Table 10.2: αGroups observed in the 3He+ 10B→ α+ 9B→ p+3α reaction. Excitation energies,
Ex , and quantum numbers, Jπ; T, are from the most recent A = 9 compilation [Til04].

α Group
Eα, CM Ex Jπ; T 8Begs Not 8Begs(MeV) (MeV)

1 11.01 0.00 3
2
−; 1

2 × (×)
2 9.38 2.36 5

2
−; 1

2 ×
3 9.08 2.79 5

2
+; 1

2 ×
4 2.95 11.65

(

7
2

)−
; 1

2 × ×
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8Be channel account for most of the intensity in the two-dimensional energy spectra.
The intensity not accounted for may be due to broad resonances in 5Li, 9B and 12C or
some more direct reaction mechanism leading to the four-body final state without the
formation of intermediate resonances. In any case, the concept of sequential reactions
via very broad intermediate resonances must be approached with great care.

10.2 The 11B(3He, dααα) Reaction

The analysis of 11B(3He, dααα) reaction is essentially identical to the analysis of the
10B(3He, pααα) reaction presented in the previous section, with p replaced by d, 9B by
10B and 5Li by 6Li. The two-body channels leading to the d+3α final state are: d+ 12C,
α+10B and 6Li+8Be. The two-dimensional energy spectra with associated projections
and the d-α relative energy spectrum are shown in Fig. 10.3 and 10.4. The deuteron
groups are listed in Table 10.3. The α groups will not be discussed. The narrow peak
in the d-α relative energy spectrum corresponds to the formation of the 3+, T = 0 first
excited state in 6Li, situated 2.186 MeV above the ground state.

Together, the identified deuteron groups, α groups and the 6Li(3+) + 8Be channel
account for most of the intensity in the two-dimensional energy spectra of Fig. 10.3
and 10.4. A broad diagonal structure (indicated by the red arrow) is seen in Fig. 10.3.
Its position fits with the broad 2+ and 1+ states in 6Li at 4.31 and 5.65 MeV, with

Table 10.3: Deuteron groups observed in the 3He+ 11B→ d+ 12C→ d+ 3α reaction. Excitation
energies, Ex , and quantum numbers, Jπ; T, are from the most recent A = 12 compilation [AS90].

d Group
Ed, CM Ex Jπ; T 8Begs Not 8Begs(MeV) (MeV)

1 8.14 7.65 0+; 0 × (×)
2 6.43 9.64 3−; 0 × ×
3 5.40 10.84 1−; 0 × ×
4 4.55 11.83 2−; 0 ×
5 3.80 12.71 1+; 0 ×
6 3.25 13.35 (2−)a; 0 ×
7 2.62 14.08 4+; 0
8b 1.74 15.11 1+; 1
9 0.89 16.11 2+; 1 × ×

aThe Dalitz plot analysis of Chapter 12 firmly establishes the spin-parity of this state as 4−.
bOnly observed in the singles spectrum.
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Figure 10.3: 11B(3He, dααα) complete kinematics data (multiplicity-four events only) with gate
on the 8Be ground-state peak. (a) Deuteron CM energy spectrum. (b) d-α Relative energy
spectrum. (c) Two-dimensional energy spectrum with the deuteron CM energy on the abscissa
and the α-particle CM energy on the ordinate. The intensity scale is logarithmic. Region I
corresponds to events in which the deuteron is stopped in the ∆E detector and hence has to
be identified by kinematical cuts. Region II corresponds to events in which the deuteron pen-
etrates into the E detector allowing for unambiguous identification by the ∆E-E method. (d)

α-Particle CM energy spectrum.
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Figure 10.4: 11B(3He, dααα) complete kinematics data (multiplicity-four events only) with
antigate on the 8Be ground-state peak. See the caption of Fig. 10.3 for details.
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respective widths of 1.3 and 1.5 MeV. These states are both T = 0 and are known to
decay by deuteron emission. Simulations based on a simple sequential description
give longitudinal intensity distributions that differ from that observed, but this could
be due to angular correlations which were not taken into account in these simulations.

The 3He+ 11B→ d+ 12C→ d+ 3α reaction is seen to offer a cleaner probe of the 7–
12 MeV excitation region in 12C than the 3He+ 10B→ p+ 12C→ p+ 3α reaction which
overlaps with α group 4. In both cases, background from very broad resonances
formed in the competing two-body channels or from some direct reaction mechanism
may be present.

10.2.1 Simple Analysis of the 3He + 11B → d + 12C Reaction

The non-observation of deuteron group 7 corresponding to the population of the 4+

state at 14.08 MeV, may understood by assuming that one-proton transfer is the dom-
inant reaction mechanism:

The ground-state configuration of 11B is shown in Fig. 10.5. The six neutrons cou-
ple to 0+. If the proton is transfered to the 1p3/2 orbital we obtain the 12C ground state
with the six protons also coupling 0+. If the proton is transfered to the 1p1/2 orbital, it
may couple with the unpaired proton in the 1p3/2 orbital to give 1+ and 2+. If trans-
fered to the 1d5/2 orbital, it may couple to give 1−, 2−, 3−, 4−. Thus, we conclude that
to obtain a spin-parity of 4+, we need at least one excited nucleon in addition to the
transfered proton, e.g. the configuration (1p3/2)2(1d5/2)2, hence the reduced transition
probability to the 4+ state.

p n
11

B

3
He d

1s1/2

1p3/2

1p1/2

1d5/2

Figure 10.5: Schematic illustration of 3He + 11B→ d + 12C one-proton transfer.
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10.3 Energies and Widths

The observed width of the peaks in the 12C excitation energy spectrum represents the
combined effect of a Breit-Wigner width, Γ , and an experimental (Gaussian) resolu-
tion, σx. Thus, to extract Γ, we must know σx. This becomes particularly important
for the 9.64 MeV state for which Γ ≈ σx.

The experimental resolution, σx , is easily obtained from the observed widths of
the narrow resonances which are dominated by the experimental resolution (Γ≪ σx).
As shown in Fig. 10.6, σx depends both on the excitation energy and on the pro-
ton/deuteron angle. The data points labeled “g.s.”, “4.44” and “12.71” were obtained
by fitting the corresponding peaks in the 12C spectrum with Gaussians. The dashed
curve represents a quadratic interpolation of these data points to 9.64 MeV. The data
points labeled “9.64 SIM” were obtained from simulations. They nicely follow the
interpolated curve.

The experimental resolution, σx , has three contributions: The intrinsic energy res-
olution of the detectors, the angular resolution of the detectors and the finite area of
the beam spot. The latter two are the most significant. The area of the beam spot was
determined from the multiplicity-four data set. For each event, the x and y coordi-
nates of the reaction site (i.e. in the plane perpendicular to the beam axis) were found

Figure 10.6: Energy and angular dependence of the 12C excitation energy resolution, σx , in
DSSSD 1 for the 11B(3He, dααα) reaction.
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by minimizing the momentum deficit:

∆p = | p3He − (pp,d + pα1
+ pα2

+ pα3
) | .

The resulting (x, y) distribution is well described by a Gaussian function in x times a
Gaussian function in y. Simulations assuming a point-like beam spot were used to
estimate the contribution to the spread in x and y from the energy and angular reso-
lution of the detectors. With these contributions subtracted, we find σ(x) = 0.97 mm
and σ(y) = 0.75 mm for 3He + 11B, and σ(x) = 0.72 mm and σ(y) = 0.52 mm for
3He + 10B.

The energies, Ex , and widths, Γ , given in Table 10.4, were determined by fitting
the peaks with a Breit-Wigner folded with the energy-dependent Gaussian resolu-
tion on top of a smooth background. Both multiplicity-three and four data were
used. Linear and quadratic forms were used for the background. The energies, Ex ,
were hardly affected by the choice of background form, while the widths, Γ , showed
some dependence which was taken into account in the estimated uncertainties. Due
to the angular dependence of σx , it was necessary to divide the data into angular
bins 10 degree wide and perform fits separately for each angular bin. Similarly, data
from different detectors was fitted separately to account for detector-to-detector vari-
ations in σx. The energies and widths, given in Table 10.4, represent the average over
all angular bins and detectors. In general, the energies and widths obtained from
different angular bins and detectors were in a good agreement within the statistical
uncertainties from the fit. When systematic trends were observed, the uncertainty on
the average value was adjusted accordingly. The uncertainty on Ex is dominated by
the uncertainty on the energy calibration. The uncertainty on Γ is dominated by the

Table 10.4: Energies and widths of 12C resonances obtained from the present study. Values
from the most recent A = 12 compilation [AS90] are also given.

State
(MeV)

Ex (keV) Γ (keV)

10B 11B [AS90] 10B 11B [AS90]

9.64a 9 648(5) 9 650(5) 9 641(5) 43(5) 42(5) 34(5)
10.84 10 841(5) 10 852(5) 10 844(16) 271(9) 273(6) 315(25)
11.83 11 832(5) 11 845(6) 11 828(16) 225(9) 241(16) 260(25)
12.71a 12 705(5) 12 710(5) 12 710(6) · · · · · · (18.1 ± 2.8) × 10−3

13.35 · · · 13 305(9) 13 352(17) · · · 510(40) 374(40)
14.08 14 078(5) · · · 14 083(15) 273(5) · · · 258(15)
16.11a 16 112(5) · · · 16 105.8(7) · · · · · · 5.3(2)
20.5 20 553(5) · · · 20 500(100) 245(7) · · · 300(50)

aUsed for the internal calibration of the geometry and the E detectors.
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modeling of the background, except for the 9.64 MeV state where it is dominated by
the uncertainty on the experimental resolution, σx.

The agreement with the literature values is generally very good except for a few
cases: (i) The width of the 9.64 MeV state, determined to1 43(4) keV in the present
study, is significantly larger than the literature value of 34(5) keV but agrees with
the value of 42(3) keV recently obtained by [Fre09]. (ii) The width of the 10.84 MeV
state, determined to1 272(5) keV in the present study, is below the literature value
of 315(25) keV. (iii) The energy of the 13.35 MeV state, determined to 13 305(9) keV
in the present study, is below the literature value of 13 352(17) keV. Its width, deter-
mined to 510(40) keV in the present study, is significantly above the literature value
of 374(40) keV which, however, represents the weighted average of five very differ-
ent values: 700(100) [Hin61], 355(50) [Sch65], 430(100) [Bro65b], 290(70) [Wag66] and
500(80) [Rey71].

10.4 Branching Ratios

Natural-parity states in 12C are allowed to decay via the ground state of 8Be. The
branching ratio to the ground state, fgs , is determined by the competition with other
open channels. Barrier penetrabilities are important to the competition but nuclear
structure may also play a role.

We distinguish between fpeak which is the branching ratio to the ground-state
peak, and fgs which is the branching ratio to the ground state as a whole. As discussed
in Section 7.6, part of the ground-state decay strength is found above the ground-state
peak and is referred to as the “ghost”. The branching ratio to the 8Be ground-state
peak is calculated as:

fpeak =
ν1

ν1 + ν2
,

where ν1 and ν2 are the solutions to the matrix equation:












n1

n2










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=












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






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




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ν2













.

Here, n1 is the number of decays experimentally observed to proceed via the 8Be
ground-state peak at 92 keV and n2 is the number of decays observed to proceed
via other channels. The matrix elements are the detection efficiencies determined
from simulations: ε11 gives the probability that a decay via the ground-state peak is
detected and correctly identified. Similarly, ε22 gives the probability that a decay via
some other channel but the ground-state peak is detected and correctly identified.
The cross terms, ε12 and ε21, give the probability that a decay is detected but wrongly
identified. They are non-zero due to the finite experimental resolution.

1Weighted average of the two values given in the table.
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Table 10.5: Branching ratios in α decay of 12C resonances. Statistical and systematical un-
certainties on the branching ratios obtained from the present study, fpeak and fgs, are given
separately.

State fpeak fgs ∆ f (stat.) ∆ f (syst.)a Literature Theoryb

(MeV) (%) (%) (%) (%) (%) (%)

9.64 98.0 100.0 0.05 0.4 97.2c 96
10.84 94.3 102.6 0.3 0.8 · · · 70
14.08 22 25 0.3 3 17(4)d 20
16.11 5.8 7.2 0.3 0.8 4.4(8)e f

aFrom the estimated 10% uncertainty on the detection efficiencies.
b3α-cluster model of [ÁR08b].
cFrom [Fre07b], uncertainty not given.
dFrom [Cau91]; [Fre07b] gives 17% without quoting the uncertainty.
e [AS90] gives Γα0 = 0.290(45) keV and Γα1 = 6.3(5) keV.
fThe 3α-cluster model of [ÁR08b] predicts a 2+, T = 0 state at 13.8 MeV with fgs = 4%.

In the present study, we extract branching ratios for the 9.64, 10.84, 14.08 and
16.11 MeV states. To check for systematic effects, we extract separate branching ratios
from the multiplicity-three and four data sets and also individually for the detectors.
Generally, good agreement is found when taking into account the estimated 10% un-
certainty on the detection efficiencies. The branching ratios given in Table 10.5 are
average values. Both branching ratios to the ground-state peak, fpeak , and branch-
ing ratios to the ground state as a whole, fgs , are given. The calculation of the ghost
contribution is described below.

For the 9.64, 14.08 and 16.11 MeV states, our values of fpeak are in good agreement
with the literature values. It is interesting to note that with the ghost contribution
taken into account, the 9.64 MeV state decays exclusively to the 8Be ground state.
A Dalitz plot analysis may help confirm/falsify this result. The level of agreement
between experiment and the 3α-cluster model of [ÁR08b] is good for the 14.08 MeV
state, reasonable for the 9.64 MeV state and rather poor for the 10.84 MeV state. The
16.11 MeV state has spin-parity 2+ and isospin T = 1. Its α decay is attributed to
mixing with T = 0 states. The 3α-cluster model of [ÁR08b] predicts a 2+, T = 0 state
at 13.8 MeV with fgs = 4%, in reasonable agreement with the experimental value.
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Figure 10.7: Energy diagram showing the sequential decay of an excited state in 12C via 8Be.
The excitation energy in 12C is Ex; the excitation energy in 8Be is E − 92 keV.

10.4.1 Ghost Contribution

In R-matrix theory, the profile of the 8Be ground state, ρ0(E) , is given by Eq. 7.1 with
Eλ = Egs = 92 keV and l = 0. The reduced width, γλ = γgs , is obtained from the
observed width, Γobs = 5.57 eV , through

γ2
gs =

Γobs

2P0 − Γobs
dS0
dE

,

where P0 and dS0
dE are the penetrability and the derivative of the shift function evalu-

ated at Egs. Then, for a narrow state in 12C with excitation energy Ex, the differential
decay rate to the 8Be ground state is

dΓ0

dE
= 2Pl′(E′)γ2

0 ρ0(E) ,

where E′ = Ex − 7.275 MeV − E is the α + 8Be kinetic energy and l′ is the α + 8Be
orbital angular momentum. The energy dependence of the tunneling probability in
the α + 8Be entrance channel is contained in Pl′(E′). For γ0 to be interpreted as a
reduced width, the 8Be ground-state profile ρ0(E) must be properly normalized:

∫ Emax

0
ρ0(E) dE = 1 , Emax = Ex − 7.275 MeV . (10.1)

The exit and entrance-channel radii, aαα and aαBe, which enter the calculation of the
penetrability and shift function, are computed as

aαα = r0(41/3
+ 41/3) = 3.17r0 , aαBe = r′0(41/3

+ 81/3) = 3.59r′0 ,

with, typically, r0 = r′0 = 1.41 fm. The integrated decay rate can be separated into that
going to the peak and that going to the ghost:

Γ0 = Γ0,peak + Γ0,ghost =

∫ Egs+δE

0

dΓ0

dE
dE +

∫ Emax

Egs+δE

dΓ0

dE
dE ,
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Figure 10.8: Ghost contribution versus r0 (3.17r0 is the exit-channel radius) in the sequential
decay of the 9.64, 10.84, 14.08 and 16.11 MeV states via the 8Be ground state.

where δE is some small number, say δE = 10 keV, sufficiently large to cover the
ground-state peak. The first integral is difficult to compute numerically due to the
tiny observed width of the ground-state peak. The integral may be computed by
fixing the entrance-channel penetrability, Pl′ , to its value at E = Egs and using the
analytical approximation2:

∫ Egs+δE

Egs−δE
ρ0(E) dE ≈ 1

1 + γ2
gs

dS0
dE

,

with dS0
dE evaluated at Egs.

The ghost contribution, η = Γ0,ghost/Γ0 , is shown in Fig. 10.8, with r′0 = 1.41 fm
fixed and r0 variable. The ghost contribution is seen to diminish with increasing
exit-channel radius consistent with expectations. Naturally, increasing the entrance-
channel radius has the opposite effect. The ground-state branching ratio (peak+ghost)
is now easily obtained from the branching ratio to the ground-state peak:

fgs =
1

1−η fpeak

The ground-state branching ratios are shown as a function of r0 in Fig. 10.9; values
obtained for r0 = 1.41 fm are given in Table 10.5.

2Here, ρ0 is the 8Be ground-state profile before normalization (Eq. 10.1).
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Figure 10.9: Ground-state branching ratios (peak+ghost) versus r0 (3.17r0 is the exit-channel
radius). The green-shaded bands indicate 1σ uncertainties obtained by adding statistical and
systematic uncertainties in quadrature.

10.4.2 Reduced Widths

Assuming that the decays not proceeding via the ground state of 8Be proceed via the
broad 2+ state in 8Be, we may compute the reduced widths γ0 and γ2 for the two
decay channels according to

fgs =
2〈P〉0γ2

0

2〈P〉0γ2
0 + 2〈P〉2γ2

2

, Γobs =
2〈P〉0γ2

0 + 2〈P〉2γ2
2

1 + γ2
0〈

dS
dE 〉0 + γ2

2〈
dS
dE 〉2

,

where we have defined (i = 0, 2),

〈P〉i =
∫ Emax

0
Pl′i

(E′) ρi(E) dE , 〈 dS
dE〉i =

∫ Emax

0

dSl′i
dE (E′) ρi(E) dE .

The parameters of [Bha06] were used for the profile of the 2+ state, ρ2(E). Only the
lowest allowed l′2 was used. For the 9.64 and 10.83 MeV states, the results are consis-
tent with a zero branch to the 2+ state. For the 14.08 and 16.11 MeV states, the ratios
of the reduced widths, γ2

2/γ
2
0 , are 3.4(6) and 16(3), respectively.
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10.5 Proton Decay to 11B

The proton separation energy in 12C is Sp = 15 957.0(4) keV. Excited states above this
energy populated in the 3He + 10B→ p + 12C reaction, can decay by proton emission
to 11B. This leads to the three-body final state p + p + 11B. Proton decay provides
information about the level structure of 12C complementary to α decay, e.g. because
the isospin selection rules of proton and α decay are different.

A preliminary analysis of the 3He+ 10B data has been performed with the purpose
of identifying such proton decays. Three classes of events were considered: (i) Two
protons and one ∆E particle3, (ii) One proton and two ∆E particles and (iii) Two
protons. Evidence was found for the existence of proton-decaying states in 12C at the
following excitation energies (MeV):

16.6, 18.3, 18.8, 19.3, 19.6, 20.5 .

Decays to the ground state, the first excited state at 2.12 MeV (bound) and the second
excited state at 4.44 MeV (bound) in 11B were observed. The states at 16.6, 18.3, 19.3,
19.6 and 20.5 MeV were also observed by [Tem97] in a study of the 12C(p, p′X) reac-
tions with X = p and α. The state at 18.8 MeV was not observed by [Tem97] but has
been observed in previous studies [AS90].

The excitation region from 16–21 MeV contains many states, the quantum num-
bers of which are not well established [AS90]. An analysis of the present experimental
data that combines the data from the α and proton channels, would provide valuable
information on this excitation region.

3By “∆E particle” is meant a particle that is stopped in the DSSSD.





CHAPTER 11

Indirect Detection of γ

Transitions

In the present chapter, we demonstrate how the complete kinematics information al-
lows us to identify γ transitions between unbound states in 12C. We find γ transitions
from the 15.11 MeV state to the 12.71, 11.83, 10.3 and 7.65 MeV states. We also find γ
transitions from the 12.71 MeV state to the 10.3 and 7.65 MeV states. The states pop-
ulated in the γ transitions subsequently break up into three α particles. Therefore,
we shall call this type of decay “γ-delayed 3α breakup”. We are also able to iden-
tify γ transitions to the bound states. Finally, we discuss the relation between the γ
transitions within 12C and the β decays of 12N and 12B to the same states in 12C.

There is a great amount of overlap between this chapter and [Kir09].

11.1 Introduction

The experimental detection of electromagnetic transitions in nuclei is challenging
when the energy distribution of the emitted γ rays is broad, as may happen for transi-
tions between particle-unbound states. In such situations, the γ branches are usually
small because they compete with particle decay channels of much larger width. Here
we explore an alternative experimental approach where the γ-ray detection is substi-
tuted by the measurement of multi-particle breakups in complete kinematics.

γ Transitions provide an experimental window to the excitation region in 12C just
above the triple-α threshold with a different selectivity for final states compared to
hadronic probes and β decay. As discussed in Section 7.5.1, this excitation region
contains several broad levels and is not yet resolved, neither theoretically nor exper-
imentally. Below, we refer to this excitation region as the “10.3 MeV state”.

γ Transitions, like β decay, have the advantage of being relatively easy to handle
from a theoretical point of view.

The first T = 1 state in 12C is situated at 15.11 MeV, about 1 MeV below the thresh-
old for proton emission, and has spin and parity 1+. It decays predominantly through
the emission of γ rays. α Decay is hindered by isospin conservation. Nevertheless,
the existence of a small α branch has been established experimentally [Bal74]. The
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majority of the γ decays go to the ground state (92%), but γ branches at the percent
level to the 12.71, 7.65 and 4.44 MeV states have also been measured [Alb72]. In the
present work, γ transitions to broad states in 12C have been detected for the first time.
The broad nature of these states explains why previous experiments relying on the
detection of the γ rays were not able to separate them from the background.

The decay of the 1+ T = 0 state at 12.71 MeV is dominated by α decay leaving
a small γ branch of 2%. Before this work the only known γ transitions were to the
ground state (87%) and the 4.44 MeV state (13%). Here we report on the first obser-
vation of transitions to unbound states.

11.2 Analysis and Results

11.2.1 γ-Delayed 3α Breakup of the 15.11 MeV State

Given the observation of all four final-state particles, we can determine the excitation
energy of the excited state in 12C populated in the 3He + 10B → p + 12C reaction
by two independent methods. We may either determine the excitation energy from
the momentum of the proton using energy and momentum conservation, or we may
determine the excitation energy from the momenta of the three α particles using the
invariant-mass method. Normally, these two methods bring us to the same result,
but if a γ transition precedes the breakup into three α particles, the results no longer
agree; the invariant-mass method gives the excitation energy of the state populated
in the γ decay, whereas the proton gives the excitation energy of the state initially
populated in the 3He + 10B→ p + 12C reaction. The energy difference is carried away
by the unobserved γ ray (neglecting the tiny recoil of the 12C nucleus).

To look for these γ-delayed 3α breakups, we use the two-dimensional spectrum
shown in Fig. 11.1 (a). The 12C excitation energy given by the proton, E(p)

x , is along the
abscissa and the excitation energy given by the invariant-mass method, E(3α)

x , is along
the ordinate (see also Fig. 9.5). Ordinary 3α breakups follow the diagonal while γ-
delayed 3α breakups appear below it. Due to its small αwidth, the 15.11 MeV state is
not visible in the projection (b), even though the single-proton spectrum shows that it
is populated in the 3He+ 10B→ p+ 12C reaction at a rate comparable to the 16.11 MeV
state.

The momentum carried away by the γ ray, Eγ/c, is below the experimental resolu-
tion and small compared to all other momenta involved. This fact allows us to impose
momentum conservation on the events that we include in Fig. 11.1, thereby signifi-
cantly reducing the background in the region below the diagonal, see Section 9.3.5.

We use the timing (TDC) information to remove random coincidences with a time
window of 100 ns. In the present case, we keep sub-threshold (. 550 keV) particles
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Figure 11.1: (a) Complete kinematics data from the 10B(3He, pααα) reaction. Only events that
satisfy momentum conservation and pass the partial time gate (see text for explanation) have
been included. The 12C excitation energy calculated from the momentum of the proton, E(p)

x , is
along the abscissa while the excitation energy calculated from the invariant mass of the three
α particles, E(3α)

x , is along the ordinate. (b) Projection of (a) on the abscissa. (c) The deduced
γ-decay spectrum of the 15.11 MeV state.

without timing information. Later, when we consider the γ decay of the 12.71 MeV
state, we apply a stricter time gate which excludes sub-threshold particles. We refer
to these two gates by the names “partial” and “complete”, respectively.

The γ transitions from the 15.11 MeV state to lower-lying unbound states form
a narrow vertical band at E(p)

x = 15.1 MeV. The background events away from the
diagonal are due to random coincidences which happen to survive the partial time
gate as well as the requirement of momentum conservation. Close to the diagonal,
the experimental response tails also contribute to the background. The two bands
that extend horizontally from the Hoyle state and the 9.64 MeV state in direction of
increasing excitation energy, are caused by protons that punch through the E detec-
tors. The group of five events indicated by the red circle probably represents the
detection of the 12.71→ 7.65 transition. However, the punch-through protons pre-
vent any clear conclusions to be drawn. We note that the observed intensity of five
events is consistent with the branching ratio of 2.6% obtained in the below study of
the 11B(3He, dααα) reaction.

Projecting the 15.11 MeV band onto the ordinate, we obtain the γ spectrum shown
in Fig. 11.1 (c). In line with previous observations [Hyl09], the “10.3 MeV state” is
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Table 11.1: Details on the γ decay of the 15.11 and 12.71 MeV states in 12C.

Transition Events Det. eff. (%) γ branch [Alb72] (%) γ branch present (%)

15.11→ 12.71 39 0.74 1.4(4) 1.2(2)
11.83 8 0.57 · · · 0.32(12)
10.84 <7.3a 1.30 · · · <0.13
10.3 65 1.09 1.6b 1.4(2)
7.65 70 0.36 2.6(7) 4.4(8)
0 and 4.44 40 344 9.9 94(2) 92.7(1.0)

12.71→ 10.3 3 0.40 · · · 0.9(+6
−5)

7.65 4 0.18 · · · 2.6(+1.6
−1.2)

0 and 4.44 11 660 13.9 100 96.6(+1.7
−1.3)

aUpper limit valid at 90% C. L. .
bThe 15.11→10.3 transition was not observed by [Alb72]. The intensity of 1.6% is an estimate derived

from the measured β-decay branching.

seen to decay mainly through the 8Be ground state. The unnatural parity of the 11.83
and 12.71 MeV states prevents them from decaying via the 8Be ground state. This
is indeed the case for the group of eight events identified with the 11.83 MeV state,
proving that these events do not belong to the high-energy tail of the broad “10.3 MeV
state”.

The relative γ-ray branching ratios of the 15.11 MeV state derived from the present
work are given in Table 11.1 and compared to earlier measurements. The uncertain-
ties given are 1σ confidence intervals and include the uncertainty on the detection
efficiency.

11.2.2 Detection Efficiency

The probability that we detect all four charged particles in the γ-delayed 3α breakup
of the 15.11 MeV state depends on the decay path. Calculating the probability is
complicated and has been done through Monte Carlo simulations (Section 9.4).

The broad “10.3 MeV state” and the Hoyle state are assumed to decay through
the narrow ground state of 8Be. Due to the similarity between M1 γ decays and
Gamow-Teller β decays, to be discussed in Section 11.3, we may use the β-delayed
3α spectrum measured by [Hyl09] corrected for detection efficiency and phase space
to describe the shape of the “10.3 MeV state”, provided we scale the spectrum by
a factor of E3

γ to account for the phase-space factor of M1 γ transitions. The result-
ing spectrum is consistent with the measured one. For the unnatural-parity states at
12.71 and 11.83 MeV, the detection efficiencies are rather insensitive to the particular
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model adopted for the 3α breakup. A phase-space simulation predicts detection effi-
ciencies that differ by less than 5% from those obtained assuming a sequential decay
through the broad 2+ first excited state in 8Be, taking into account all of the effects
mentioned in [Fyn03]. This can be understood as the result of (i) the experimental ac-
ceptance being fairly uniform throughout the 3α phase space, and (ii) the breakup of
the unnatural-parity states covering a large region of the 3α phase space. In contrast,
decays via the narrow ground state of 8Be cover a very limited region of phase space.
This results in a complete kinematics detection efficiency that is—all other factors
taken out—somewhat larger.

By comparison with experimental data, we find that the efficiencies predicted
by the simulations are correct within 10%. However, in the particular case of the
12.71→7.65 transition we assume an uncertainty of 20% on the efficiency estimate to
account for an increased sensitivity to the ADC thresholds. The detection efficiencies
are given in Table 11.1.

11.2.3 γ Decay to Bound States

Transitions to the ground state and the 4.44 MeV state can be identified in the experi-
mental data by looking for events where the proton and the 12C nucleus are detected
in coincidence. The proton tells us which excited state in 12C was populated. A γ

transition to one of the bound states can then be identified as a deficit in the energy
balance, δE = Q+Ebeam− (Ep,d+E12C), equal to the excitation energy of the state popu-
lated. This method does not distinguish between transitions to the ground state and
the 4.44 MeV state.

Due to their low energy and high Z, the 12C ions are easily stopped in the DSSSDs
preventing identification by the ∆E-E method. Therefore, a large background due to
e.g. p+α coincidences is present. By imposing momentum conservation in the plane
normal to the beam axis, the background is significantly reduced. For the 15.11 MeV
state, the surviving background is negligible. For the 12.71 MeV state, some back-
ground remains (signal-to-background ratio of 3:1) which we are able to reproduce
on an absolute level with simulations, as shown in Fig. 11.2 (c).

The γ transitions to the bound states enjoy a much higher detection efficiency
than the transitions to the unbound states because their identification only requires
the detection of two particles.

11.2.4 γ-Delayed 3α Breakup of the 12.71 MeV State

Very few γ decays are observed from the 12.71 MeV state so we must treat the back-
ground due to random coincidences with great care. Timing information is used to
separate real coincidences from random ones. If timing information is lacking due
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(a)

(b)

(c)

Figure 11.2: (a) Complete kinematics data from the 11B(3He, dααα) reaction. Only events that
satisfy momentum conservation and pass the partial time gate have been included. The 12C
excitation energy calculated from the momentum of the deuteron, E(d)

x , is along the abscissa
while the excitation energy calculated from the invariant mass of the three α particles, E(3α)

x ,
is along the ordinate. The dotted line 1.5 MeV below the diagonal marks the extent of the
response tails. (b) Projection of (a) on the abscissa. (c) Energy deficit in d + 12C coincidences
gated on the deuteron to single out the 12.71 MeV state.

to sub-threshold particles, event mixing is used to estimate the background due to
random coincidences.

The complete kinematics data from the 11B(3He, dααα) reaction is presented in
Fig. 11.2 (a). Only d+3α events that satisfy momentum conservation and pass the
partial time gate have been included. Due to the reduced Q value, we do not reach as
high excitation energies as in the 3He+10B→p+12C reaction in spite of the increased
beam energy. The dotted line 1.5 MeV below the diagonal marks the extent of the
response tails. Events in the region below this line are either γ decays to unbound
states or random coincidences that happen to satisfy momentum conservation and
the requirements of the partial time gate.

We find seven events neatly aligned on a vertical string at E(d)
x =12.71 MeV. Below,

we refer to this as the “12.71 MeV string”. Four events are clustered together at E(3α)
x =

7.65 MeV, appearing as a single dot in the figure. Two additional events are found
below the dotted line, one at E(d)

x =11.3 MeV and another at E(d)
x =13.9 MeV.

If the partial time gate is removed, eleven additional events appear below the dot-
ted line. Together with the single event already present at E(d)

x = 13.9 MeV, they form
a vertical band about 1 MeV wide centered at E(d)

x = 14 MeV. These events originate
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from random coincidences between (i) two ∆E particles (ii) a deuteron along with the
heavy fragment from one of the following reactions1

3He + 12C → d + 13N(g.s.) ,
3He + 10B → d + 11C(6.34, 6.48) .

If we require all four particles to be inside the 100 ns coincidence window (complete
time gate, cf. Section 11.2.1), the eleven events that appeared when the partial time
gate was removed obviously disappear, but the single event close to the diagonal
remains. If, instead, we require at least one particle to be outside the coincidence
window, the number of events grows from one to five. With a data taking window
(ADC window) of 2.15 µs and a coincidence window of 100 ns we expect 20.5 times
as many random coincidences outside the coincidence window as inside. This is
consistent with the observed outcomes of five outside and one inside.

The method of event mixing has been applied to the experimental data to estimate
the background rate from random coincidences and yields a number that is consis-
tent with the observed background of twelve events. (The extraction of an unbiased
sample of events of type (i), i.e. consisting of two ∆E particles, from the data for use in
event mixing was complicated by the fact that the two forward-angle DSSSDs were
not included in the trigger. To obtain an unbiased sample it was necessary to con-
sider multiplicity-six events resulting from random coincidences between d+ 3α and
events of type (i). Energy and momentum conservation was used to separate out the
two ∆E particles.)

The single event at E(d)
x = 11.3 MeV disappears when the complete time gate is

imposed suggesting that it is also a random coincidence.
The three isolated events on the 12.71 MeV string represent the detection of the

12.71→ 10.3 transition. All three events survive the complete time gate making it
highly improbable that they should be random coincidences. The 90% confidence
limits on the physics signal are 0.869–6.81 [Rol05], showing that the data is consistent
with the hypothesis of a non-zero physics signal. The absence of background due to
random coincidences is consistent with estimates obtained through event mixing.

The four remaining events of the 12.71 MeV string clustered together at E(3α)
x =

7.65 MeV represent the detection of the 12.71 → 7.65 transition. They all disap-
pear when we impose the complete time gate because sub-threshold α particles are
present. We would like to stress that all four events survive the partial time gate, i. e.
the deuteron and those α particles that do have timing information are indeed inside
the coincidence window. We use event mixing to estimate the background due to
random coincidences in the region of Fig. 11.2 (a) occupied by the four 12.71→ 7.65
events. We obtain an upper limit of 0.2 at 90% C. L. making it highly improbable that

1The 11B target contains 19.8% 10B and rests on a carbon foil.
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they should be random coincidences. Using [Rol05], we calculate the 90% confidence
limits on the physics signal to 1.40–8.25.

It is worth noting that the seven events of the 12.71 MeV string all survive the 8Be
ground-state gate consistent with expectations. The relative γ-ray branching ratios of
the 12.71 MeV state derived from the present work are given in Table 11.1.

11.2.5 α Branches

Using detection efficiencies derived from simulations, we convert the observed ratio
of α to γ decays of the 12.71 MeV state into branching ratios. The results are Γα/Γ =
(97.4 ± 0.3)% and Γγ/Γ = (2.6 ± 0.4)%, in agreement with the value of Γγ/Γ = (2.22 ±
0.14)% adopted in [AS90].

The detection of the isospin-forbidden α decay of the 15.11 MeV state is compli-
cated by a large continuum background. Yet, the p+α coincidence spectrum exhibits a
clear signal of 500±100 events on top of a background of about 4 000 events. Only p+α
coincidences in which the α particle is emitted at laboratory angles larger than 60◦, are
considered. This is done to suppress the large signal from p+12C coincidences. Simu-
lations have been used to determine the contribution from the γ-delayed 3α breakups
of the 15.11 MeV state. Using the present γ-ray branching ratios, we determine the
contribution to 280±30 events, leaving a residual α-decay signal of 220±100 events.
This translates into a branching ratio of Γα/Γ= (2.8±1.2)%.

The complete kinematics spectrum (Fig. 11.1) does not exhibit a clear peak at
15.11 MeV. However, the large continuum background could easily be hiding a small
α-decay signal. Energy conservation is imposed to eliminate the contribution from
the γ-delayed 3α breakups. We assume a linear background and establish an upper
limit on the Gaussian signal hiding in the background. Correcting for detection effi-
ciencies, we obtain an upper limit of 3.3% on the α branch of the 15.11 MeV state at
90% C. L., in good agreement with the value of (2.8±1.2)% obtained above by consid-
ering p+α coincidences.

The value measured by Balamuth et al. [Bal74] and adopted in [AS90] is Γα/Γ =
(4.1±0.9)%. However, the 0.32% γ branch to the 11.83 MeV state and the 1.4% γ branch
to the broad “10.3 MeV state” were not accounted for in the analysis of [Bal74]. By
subtracting these contributions from their value, one obtains Γα/Γ = (2.4±0.9)%, in
good agreement with our numbers.

In the framework of two-state mixing, the charge-dependent matrix element con-
necting the 15.11 and 12.71 MeV states, 〈HCD〉, can readily be determined from the
α widths [Bal74]. Using our new smaller value of Γα(15.11), we obtain 〈HCD〉 =
260±60 keV, in better agreement with the results obtained with electromagnetic and
pionic probes [NC00].
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Figure 11.3: Energy-level diagram showing the relative γ-ray branching ratios, in percent of
the total γ width, from the 15.11 and 12.71 MeV states in 12C measured in the present work.
Uncertainties are given in Table 11.1. Also shown are the α-decay branching ratios, in percent
of the total width. Uncertainties are given in the text.

11.3 Connection to β Decay

From the γ-ray branching ratios in Table 11.1, partial γ widths, Γγ , can be calculated
assuming2 Γγ0 = (36.9±0.8) eV for the transition to the ground state and using the rel-
ative γ-ray branching ratio of (2.3± 0.9)% to the 4.44 MeV state measured by [Alb72].
The reduced transition strength, B(M1), can be calculated from Γγ through the for-
mula of [Boh69],

Γγ = 1.76× 1013
~E3

γ B(M1) , (11.1)

if we assume that the decays are purely M1, as is indeed the case for 1+→ 0+ transi-
tions. For the 1+→ 1+ and 1+→ 2+ transitions, single-particle estimates suggest that
the E2 contribution is below one percent. The B(M1) values can be directly compared
to theoretical calculations providing a valuable test of the theory, complementary to
other observables such as level energies and radii.

Further insight into the relative importance of the spin and orbital terms of the
M1 matrix element as well as the importance of meson exchange currents (MEC) can
be gained by comparing the B(M1) values to the B(GT) values of the analog Gamow-
Teller (GT) β decays of 12B and 12N, which were recently measured by our collabo-

2Weighted average of the three most recent measurements, (37.0± 1.1) [Che73], (38.5± 0.8) [Deu83] and
(35.9 ± 0.6) eV [NC00], with the error raised to compensate for the large spread.
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ration. The major component of the two transition types (M1 and GT) is the spin
term (στ). In addition, both transitions are equally affected by the ∆-isobar current.
For M1 transitions, the orbital term (lτ) also contributes. Finally, both transitions can
be affected by MEC; large contributions are expected for M1 transitions, while G-
parity conservation strongly suppresses this effect for GT transitions [Tow87]. The
combined effect of MEC and the orbital term is measured by the ratio [Ric90],

R(M1/GT) =
B(M1)/2.643µ2

N

B(GT)
.

In their absence R(M1/GT) is unity.
The ratio R(M1/GT) has been studied for sd-shell nuclei. Relying on theoreti-

cal calculations of the orbital contribution to R(M1/GT), the MEC contribution was
found to be modest [Ric90]. Alternatively, by assuming the MEC contribution known,
conclusions can be made regarding the orbital contribution [Fuj03].

In the p-shell, one is limited to the five T= 0 nuclei 6Li, 8Be, 10B, 12C and 14N. The
low number of states in the β-decay window further limits the number of available
cases (though charge-exchange reactions with high-energy radioactive beams may
overcome this limitation in the future). The A = 12 case is the only one giving the
possibility of studying several transitions in the same system. The link between M1
and GT transitions for A = 12 was previously explored in [Alb72] where the orbital
contribution to the M1 transitions were estimated with the shell model calculations of
Cohen and Kurath. The orbital contribution was found to be less than one percent for
the transitions to the 12.71 MeV state and the ground state and 10% for the transition
to the 4.44 MeV state. The MEC contribution was later calculated for the transition to
the ground state and found to account for about 10% of the strength [Gui82].

Recently, new experimental B(GT) values for the decays of both 12B and 12N have
become available [Hyl09]. For the 7.65 and 12.71 MeV states, the new B(GT) values
are lower than previous measurements by factors of 2–3 which makes it interesting
to revisit the A= 12 case. In Table 11.2 we give our B(M1) values, the corresponding
B(GT) values of [Hyl09] and the ratio R(M1/GT). Results for the bound-state transi-
tions are included for completeness. We also give the theoretical B(M1) predictions
of the antisymmetrized molecular dynamics (AMD) approach [KE07] which is sug-
gested to be able to describe both shell-model and cluster-type states.

Evidently, the AMD approach tends to overestimate the transition strength by an
overall factor of about two. Tolerating this overall factor, the agreement with the
experimental data is reasonable. The AMD approach gives R(M1/GT) ≈ 1, indicating
a negligible orbital contribution to the M1 strength (MEC are not included in AMD).
For the transitions to the 4.44 MeV state and the “10.3 MeV state”, the experimental
value of R(M1/GT) is consistent with unity; within 2σ this is also the case for the
transition to the Hoyle state. However, for the transitions to the ground state and the



11.4. Isoscalar and Isovector Parts of the M1 Decay of the 12.71 MeV State 171

Table 11.2: Comparison of B(GT) and B(M1) values. The experimental B(GT) values are from
[Hyl09], the AMD results from Y. Kanada-En’yo, private communication (2010). B(M1) values
are in units of µ2

N. The experimental transition strengths to the broad “10.3 MeV state” have
been obtained using the phase-space factor of a narrow state at 10.3 MeV.

Final state Γγ B(GT) B(M1) R
(MeV, Jπ) (eV) Exp. AMD Exp. AMD Exp. AMD

12.71, 1+ 0.49(10) 0.450(11) 0.85 3.0(6) 2.5 2.6(5) 1.1
10.3, 0+ 0.55(10) 0.154(3) 0.080 0.43(8) 0.19 1.1(2) 0.90
7.65, 0+ 1.8(3) 0.090(2) 0.20 0.37(7) 0.47 1.6(3) 0.89
4.44, 2+ 0.9(4) 0.0270(4) 0.066 0.07(3) 0.19 0.9(4) 1.1

0, 0+ 36.9(8) 0.2952(14) 0.64 0.92(2) 1.5 1.18(3) 0.89

12.71 MeV state, R(M1/GT) deviates significantly from unity. For the ground state
the deviation from unity was discussed in [Gui82] where the MEC contribution was
calculated and found to account for about 10% of the strength.

It would be interesting to calculate R(M1/GT) for the 15.11 → 12.71 transition
(and the transitions to the bound states) within the no-core shell-model (NCSM)
of [Nav07]. Since the initial and final states both are shell-model-type states, one
would expect the NCSM approach to give reliable results. Unfortunately, B(M1) val-
ues from this approach are not yet available. It would also be interesting to see the
predictions of the fermionic molecular dynamics (FMD) approach, which claims to
give an improved handle on shell-model-type states compared to AMD by allowing
for a variable width of the Gaussian packets [Che07].

One word of caution regarding the experimental numbers given in Table 11.2: For
the transition to the “10.3 MeV state”, the B(GT) and B(M1) values were obtained
using the phase-space factor of a narrow state at 10.3 MeV even though this state
is, as discussed in the beginning of the present chapter, very wide and composed of
more than one state [Hyl10b].

11.4 Isoscalar and Isovector Parts of the M1 Decay of the

12.71 MeV State

Ideally, the transitions from the 12.71 MeV state to the “10.3 MeV state”, the Hoyle
state and the bound states would be purely isoscalar (∆T = 0). However, large isovec-
tor (∆T = 1) impurities are present due to isospin mixing with the 15.11 MeV state.
In the framework of two-state mixing, we may write

|12.71〉 = α|T = 0〉 + β|T = 1〉 , α2
+ β2

= 1 .
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Table 11.3: M1 γ decay of the 12.71 MeV state. The AMD results are from Y. Kanada-En’yo,
private communication (2010). B(M1) values are in units of µ2

N. The values enclosed in square
brackets are not very meaningful and have only been included for completeness. See the text
for explanation.

Final state Γγ Exp.
AMD

(MeV, Jπ) (eV) B(M1)12.71 |M0|2

10.3, 0+ 0.0034(21) 0.021(13) 0.013(11) 0.011
7.65, 0+ 0.010(5) 0.007(4) 0.003(2) 0.027
4.44, 2+ 0.048(6) 0.0073(10) [0.0053(13)] 0.017

0, 0+ 0.32(2) 0.0135(8) [0.0048(6)] 0.072

The mixing coefficient has been determined to β = +0.0491(34) [NC00]. The isovector
contribution to the M1 strength is large despite the small amount of mixing because
the M1 isovector transition matrix elements are intrinsically faster than isoscalar ones
by a factor ≈ 13.7, as argued by [Ade77]. In terms of the pure isoscalar and isovector
matrix elements, M0 and M1 , we may write

B(M1)12.71 = |αM0 + βM1|2 , B(M1)15.11 ≈ |M1|2 .

Given β and the transition strengths, B(M1)12.71 and B(M1)15.11 , we may solve for the
unknown isoscalar strength, |M0|2.

Experimental and theoretical transition strengths are given in Table 11.3. Note
that the theoretical value should be compared to the total strength, i.e. B(M1)12.71.
The γ widths, Γγ , were calculated from the branching ratios of Table 11.1 using the
γ width to the ground state Γ0 = 0.32(2) eV given in [NC00] and the ratio Γ1/Γ0 =

0.150(18) given in [Ade77]. B(M1)12.71 was calculated from Eq. 11.1. AMD overesti-
mates the transition strength to the ground state by as much as a factor of five. It
overestimates the transition strength to the 4.44 MeV state and the Hoyle state by fac-
tors of two and three, respectively. Within the experimental uncertainty, AMD gets
the transition strength to the “10.3 MeV state” right.

The mixing parameter β was determined from (e, e′) measurements of the g.s.→
12.71 and g.s. → 15.11 transition strengths, relying on a shell-model calculation of
the isoscaler contribution [NC00]. Thus, the isoscalar strength to the ground state
given in table 11.3 is essentially the shell-model value. For the 4.44 MeV state, the
situation gets complicated due to isospin mixing in the final state [Ade77], e.g. with
the 2+, T = 1 state at 16.11 MeV. For these reasons, the isoscalar strengths obtained for
the 12.71→ g.s. and 12.71→ 4.44 transitions are not very meaningful and have been
enclosed in brackets.
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11.5 Summary and Perspectives

Detection of multi-particle breakups in complete kinematics allows for the study of
electromagnetic transitions between broad particle-unbound nuclear states with an
efficiency comparable to standard γ spectroscopy (on the order of 1%), but in an
essentially background-free environment.

We have looked at the γ decays of the 15.11 and 12.71 MeV states in 12C to lower-
lying states that break up into three α particles. The following transitions were de-
tected: 15.11→ 12.71, 11.83, 10.3, 7.65 and 12.71→ 10.3, 7.65. The partial γ widths
obtained in the present work are in agreement with previous measurements when
such exist. The value of Γα/Γ = (2.8 ± 1.2)% obtained for the isospin-forbidden α

decay of the 15.11 MeV state is in good agreement with the literature value when
corrected for the new γ branches.

We have explored the relation between the M1 γ decays of the 15.11 MeV state
and the analog β decays of 12B and 12N. The reduced transition strengths have been
compared with AMD calculations which, it is found, tend to overestimate the actual
strength by a factor of about two. Similar calculations within other frameworks such
as NCSM or FMD are desirable. For the 12.71 MeV state, calculations which are able
to separate the M1 transition strength into its isoscalar and isovector parts would
be of interest. Finally, we note that AMD predicts transitions from the 15.11 and
12.71 MeV states to a lower-lying 2+2 state with tiny strengths of B(GT) = 0.002µ2

N and
B(M1) = 0.006µ2

N, respectively, which may be the reason why no clear signature of
this state is seen in the experiments.

Looking to the future, we see a number of physics cases that could be studied with
an experimental method like ours. One nearby example is the 16.11 MeV state in 12C
(Jπ=2+, T=1) which has γ branches to the 12.71 and 9.64 MeV states at the 10−5 level
[Ade77], slightly below our sensitivity. Naturally, one would also expect γ branches
to the broad states. It is interesting to note that a 2+, T = 0 state should be favored
over 0+ states in γ decays of the 16.11 MeV state because isovector M1 transitions are
considerably stronger than isovector E2 transitions, as seen for transitions to bound
states. Therefore, γ decays from the 16.11 MeV state provide a promising method to
look for the 2+ rotational excitation of the Hoyle state. Recently, such an experimental
study has been undertaken at the 400 keV Van de Graaf accelerator in Aarhus, using
the p + 11B reaction to populate the 16.11 MeV state.

Two other examples are the lowest T= 3
2 levels of 9Be and 9B. They have γ branches

of 2.1 and 2.5%, respectively, to the ground state [McD76], but γ transitions to excited
states have not been observed yet. (In 9B the T= 3

2 level is found at Ex = 14.67 MeV.
It is energetically accessible in the 3He + 10B → α + 9B reaction at 4.9 MeV but is not
observed due to the reaction being isospin-forbidden.)

Another example is 8Be. The 4+→2+ transition was recently measured by [Dat05]
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who used an experimental technique similar to ours with the additional advantage
of also detecting the emitted γ ray. A measurement of the 2+→0+ transition might be
within reach despite an expected branching ratio of only 6 × 10−9. With the inclusion
of γ and neutron detectors in the experimental setup, a wider range of physics cases
will become accessible.



CHAPTER 12

Dalitz Plot Analysis of the
12C → 3α Breakup

In the present chapter, we take a closer look at the 12C→ 3α breakup. We are, in par-
ticular, interested in the breakups that do not proceed via the ground state of 8Be. The
discussion focuses on the three unnatural parity states at 11.83, 12.71 and 13.35 MeV.
We make use of complete kinematics data from the 11B(3He, dααα) reaction (multiplic-
ity three and four) which offers the most statistics and the best signal-to-background
ratio for these three states.

Dalitz plots will be used to visualize and analyze the data. As we will see, the
intensity distribution in the Dalitz plot exhibits zero points characteristic of the total
spin and parity of the 3α system, allowing us to determine the spin and parity of
the 13.35 MeV state to 4− in a model-independent way. The Dalitz plot intensity
distributions of the 11.83 and 12.71 MeV states will be compared to the predictions of
a recent three-body calculation as well as to simpler models. We find that all models
are able to reproduce the gross structures of the Dalitz plot intensity distributions,
but none give an accurate description of the detailed profile.

There is a great amount of overlap between this chapter and [Kir10].

12.1 Introduction

In two-body decays, the decay fragments are emitted back-to-back, their energies
fixed by the conservation laws of energy and momentum. If the decaying nucleus has
been prepared in a polarized state, its spin and parity can be inferred from the angular
distribution of the decay. However, if the initial spin is randomly oriented or zero,
the only measurable quantities holding information on the structure of the initial state
are the decay width and, if several decay channels are open, the branching ratios. For
three-body decays, the situation is different. The energies of the decay fragments
are not fixed but may vary within bounds determined by energy and momentum
conservation thereby giving rise to measurable energy distributions which may or
may not hold additional information on the structure of the initial state. However,
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the interpretation of the measured energy distributions in terms of the initial structure
is complicated by final-state interactions of both nuclear and electromagnetic origin.

In the present context, the question we want to ask is: What can the energy dis-
tribution of the three α-particles from the decay of 12C teach us about the properties
of the initial nuclear state? In particular, we wish to test the hypothesis put forward
by [ÁR07] that the energy distribution of the three α-particles is completely deter-
mined by the symmetries of the 3α system and the effective forces acting between
the α particles. An alternative way to formulate the same hypothesis is to say that
the energy distribution is sensitive to the properties of the 3α system that forms in
the breakup process, while it is insensitive to the structure of the initial nuclear state
which does not necessarily resemble that of three interacting α particles.

As noted by J. Hans D. Jensen (1907–1973) in his Nobel lecture from 1963, a similar
hypothesis was put forward in the very early days of nuclear physics for ordinary
single-α decay:

It is remarkable that very little information about nuclear structure could
be gained from the study of alpha decay. Max von Laue has pointed this
out very clearly in a letter to Gamow in 1926; he congratulated Gamow on
his explanation of the Geiger-Nuttal law1 in terms of the tunneling effect
and then went on: “however, if the alpha decay is dominated by quantum
phenomena in the region outside the nucleus, we obviously cannot learn
much about nuclear structure from it.” [Jen63]

A few sentences below, Jensen concludes that “the alpha particles obviously only
form while emerging from the nucleus.”

The 3α-breakup process is not just an obstacle to be overcome in order to glimpse
into the structure of 12C but constitutes an interesting case in its own right: The fun-
damental quantum mechanical phenomena of interference and tunneling are central
to the description of the 3α breakup and manifest themselves in the shape of the mea-
sured energy distributions in a non-trivial way. Furthermore, the measured energy
distributions are sensitive to the effective forces acting between the α particles.

A number of experimental studies of the 3α breakup exist in the literature, see
e.g. [Ols65, Bro65a, Wag66, Wit72, Bal74, Fyn03], most of which have focused on the
1+, T = 0 state at 12.71 MeV and the states that can be populated in the p + 11B→ 12C
reaction. To advance our understanding of the 3α breakup, we must test the theo-
retical models against other states at different energies and with different constraints
from symmetry.

The 3α breakup of the 12.71 MeV state was first measured in complete kinematics
in 2003 by [Fyn03] who used the β decay of 12N to populate the 12.71 MeV state.

1That is, the fact that the lifetime of an α-emitter changes by 25 powers of ten when the alpha-particle
energy increases only by a factor of two.
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Dalitz plots were used to analyze the data. The intensity distribution was compared
to the predictions of the sequential and the democratic model, cf. Section 12.2. The
gross structures were correctly reproduced by both models. When considering the
detailed shape of the intensity distribution, the sequential model was found to be in
much better agreement with the experimental data than the democratic model. The
level of agreement was surprisingly good considering the short life time of the 2+

resonance in 8Be. It was pointed out that a genuine quantum mechanical three-body
calculation is needed to get a complete description of the data. Such calculations have
since become available for a number of states in 12C [ÁR08b] and will be compared
to our new measurements.

Unbound quantum mechanical three-body systems occur in many realms of phy-
sics ranging from molecular to particle physics and attract great interest. One well-
known example is the decay of mesonic resonances into three pions [Ams98], which
bears many similarities to the 3α breakup.

12.2 Breakup Models: Limiting Cases

Historically, two very different breakup models (and variations thereof) have been
employed to describe the experimental data. These are the sequential [Bal74] and the
democratic [Kor90] (also called direct) models which represent limiting cases of the
possible three-body decay modes.

In the sequential model, the three-body breakup is thought to proceed through an
intermediate long-lived two-body resonance thereby effectively reducing the prob-
lem to that of a succession of two two-body decays, the only correlations between the
two decays being those due to conservation of angular momentum and parity. The
central assumption is that of dynamical independence: At the time of the secondary
breakup, the particle emitted in the primary decay must have traveled far enough for
it not to feel the effects of the secondary breakup. The nuclear force quickly ceases to
be important, whereas the effects of the Coulomb force are significant up to at least
100 fm. The usefulness of the sequential model stems from the fact that we know
how to deal with nuclear two-body breakups. The appropriate formalism is that of
the R-matrix theory introduced in Section 7.6. The form of the angular correlations
depends on the spins and orbital angular momenta involved in the decay [Bie53]. In
the case of the 3α breakup, the decay amplitude must be symmetrized in the coordi-
nates of the three particles as required by Bose statistics causing sizable interference
effects.

For the low-lying resonances in 12C, two options exist. These are, as shown in
Fig. 12.1, the narrow 0+ ground state of 8Be and the broad 2+ first excited state.
Due to the long life time of the 8Be ground state (Γ = 5.6 eV, corresponding to
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11.83, 2−

12.71, 1+

13.35, 4−

7.37, 0+

10.40, 2+

7.27

12
C

8
Be

α + α + α

Figure 12.1: Sequential decay via the broad 2+ resonance in 8Be. Energies are in MeV with
respect to the ground state of 12C. Only the three 12C states considered in the present work are
shown.

τ = ~/Γ = 1.2 × 10−16 s), decays proceeding along this route may be regarded as
exclusively sequential. The energies of the α particles are fixed and angular correla-
tions absent due to the ground state having zero spin. Consequently, no dynamical
information may be extracted from the ground state channel. The 8Be(2+) channel is
much richer in information. For unnatural-parity states the ground-state route is not
allowed because it violates parity conservation.

The short life time of the 2+ resonance in 8Be (Γ = 1.5 MeV, corresponding to
τ = 4.5 × 10−22 s) casts serious doubt on the validity of the sequential model. One
may estimate the typical distance traveled by the first α particle at the time of the
secondary breakup to be only ∼ 5 fm, implying a Coulomb energy of ∼ 1 MeV. This,
clearly, is incompatible with the assumption of dynamical independence. Therefore,
we cannot expect perfect agreement between experiment and the predictions of the
sequential model. The Coulomb barrier for the secondary breakup ought to be mod-
ified from that assumed in the R-matrix formalism. One might even argue that the
concept of a two-body resonance becomes meaningless due to the strong perturba-
tion caused by the near presence of the third body. In any case great caution must be
exerted in the interpretation of the experimental data [Fyn09].

Democratic decays may be regarded as the counterpart of sequential decays. Put
somewhat simply, a breakup is characterized as democratic if it does not involve any
long-lived intermediate states. The α-α interaction is assumed to play an insignificant
role in the breakup, and the decay amplitude is calculated by expanding in hyper-
spherical harmonics functions (eigenstates of the grand angular momentum operator
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Figure 12.2: The Dalitz plot and associated projections, ρ and ϕ. εi denotes the energy of the
ith α particle normalized to the total decay energy, i.e. εi = Ei/

∑

kEk.

of the three-body system, characterized by the hypermomentum K) retaining only
the lowest order term permitted by symmetries. This procedure may be regarded as
the three-body equivalent of a well-known procedure applied to two-body breakups:
Expand the amplitude in spherical harmonics functions (angular momentum eigen-
states) and neglect higher-order terms suppressed by the enhanced centrifugal bar-
rier. Since three-body configurations of small relative two-body momentum are asso-
ciated with large values of the hypermomentum K, such configurations are excluded
from the democratic model. The democratic decay amplitude must be symmetrized
in the coordinates of the three particles as required by Bose statistics.

12.3 Dalitz Plot Analysis Technique

Assuming an unpolarized initial state, the measurement of two energies, E1 and E2,
gives complete kinematical information. The data are best visualized in a Dalitz plot
[Dal53], see Fig. 12.2. Since the density of final states is proportional to dE1 dE2, the
intensity of the Dalitz plot will be proportional to the matrix element squared. Conse-
quently, pure phase-space decays result in flat distributions. Structures in the Dalitz
plot may be manifestations of symmetries of the three-body system, or they may orig-
inate from final-state interactions such as a two-body resonance. Two-dimensional
plots are ill-suited for visual comparison of experimental and theoretical distribu-
tions at the detailed level. For this purpose, one-dimensional projections like the
radial (ρ) and angular (ϕ) projections shown in Fig. 12.2 are much more useful. Other
projections may be more instructive depending on the circumstances.

The role of symmetries in three-pion decays was studied by C. Zemach in 1964
[Zem64]. Solely on the grounds of Bose statistics and conservation of spin, isospin
and parity, he was able to show that the decay amplitude takes on certain general
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Figure 12.3: Regions of the 3α Dalitz plot where the intensity must vanish (forbidden regions)
due to the symmetries of the 3α system, are shown in black. The vanishing is of higher order
where the black lines and dots overlap. The pattern for a spin J + 2n (J ≥ 2 and n = 1, 2, 3, . . . )
is identical to the pattern for spin J except that the vanishing at the center is not required for
spins ≥ 4.

forms depending on the spin, isospin and parity of the system, forcing the amplitude
to vanish in specific regions of the Dalitz plot which we shall refer to as forbidden
regions. Zemach made no assumptions about the interactions involved except that
they have to conserve isospin and parity. Pions and α particles are both spin-zero
bosons but have opposite parities (negative and positive, respectively) and, in con-
trast to α particles, pions posses a non-zero isospin of T = 1. The results of Zemach’s
analysis can readily be applied to the 3α system as long as we account for the dif-
ference in parity and restrict ourselves to three-pion systems of total isospin T = 3.
The regions of the 3α Dalitz plot forbidden by symmetry are shown in Fig. 12.3. In
general, the restrictions imposed by the symmetries of the 3α system are more severe
for the unnatural-parity states. While severe constrains may facilitate spin-parity as-
signments, mild constrains make it easier to study the effects of interactions.

In a sequential decay of 12C through a two-body resonance, the first α particle gets
two-thirds of the energy released in the primary decay. The center of mass energies
of the two secondary α particles depend on the orientation of the secondary breakup
relative to the first. Consequently, the intensity of the Dalitz plot will be confined
to bands like those shown in Fig. 12.4, whose width and distance to the sides of the
triangle reflect the width and energy of the two-body resonance. The lateral inten-
sity distribution of the bands depends on the profile of the two-body resonance as
well as the penetrabilities associated with the Coulomb and centrifugal barriers of
the entrance (α + 8Be) and exit (α + α) channels, while the longitudinal structure is
determined by the angular correlations. Where bands overlap, interference effects
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11.83 MeV 12.71 MeV 13.35 MeV

Figure 12.4: Sequential band structure associated with the decay of the three 12C states consid-
ered in the present work. The dotted lines indicate the maximum of the band’s lateral intensity
distribution; the gray area its width (FWHM).

may be expected.

Fig. 12.3 and Fig. 12.4 are useful points of reference when inspecting the two-
dimensional Dalitz distributions measured in experiment or calculated from theory.
Conceptually, the separation of structures in two distinct groups, namely, those due
to the general symmetries of the 3α system and those caused by final-state inter-
actions, is very useful: Any theoretical model possessing the correct symmetries is
bound to reproduce the gross structures of the Dalitz distribution irrespective of its
assumptions about the dynamics of the 3α system. The forbidden regions identified
in Fig. 12.3 also have a more “practical” application. As we shall see, they serve as
a model-independent spectroscopic tool which allows us to determine or at least im-
pose constraints on the spin-parity of 12C resonances. See [Gas08] for an example of
such application in particle physics. Notice that the mere existence of a zero point in
the Dalitz plot (i.e. a region of vanishing intensity) cannot be used as conclusive evi-
dence for a particular spin-parity assignment because there could also be dynamical
reasons for the suppressed intensity. However, the absence of a zero point can always
be used to falsify a proposed spin-parity assignment.

12.4 Results

The 12C excitation spectrum separated into decays that proceed via the ground state
of 8Be (dashed) and decays that do not (solid) is shown in Fig. 12.5. The intensity
present in addition to the five visible peaks does not constitute background in the
usual sense of the term but is understood as broad overlapping resonances in 12C,
possibly with contributions from the two very broad 1+ and 2+ T = 0 states in 6Li
through the 3He + 11B → 8Be + 6Li → d + 3α channel (reactions via the narrow 3+,
T = 0 state in 6Li were easily removed by gating on the corresponding peak in the
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Figure 12.5: 12C Excitation spectrum separated into decays that proceed via the ground state
of 8Be (dashed) and decays that do not (solid).

d+ α relative energy spectrum). Nonetheless, we shall refer to these broad structures
as “background” when we discuss their contribution to the Dalitz plots displayed in
Fig. 12.6. We adopt the heuristic approach of using the regions adjacent to the peaks
to determine the characteristics of the background below the peak. The background
fractions are 11%, 8% and 50% for the 11.83, the 12.71 and the 13.35 MeV state, re-
spectively.

Shown in Fig. 12.6 are the experimental Dalitz distributions obtained by gating on
the three unnatural-parity states in Fig. 12.5. Both multiplicity four and multiplicity
three events have been used, giving 3.5× 104 events for the 11.83 MeV state, 1.2× 105

events for the 12.71 MeV state and 9.9 × 103 events for the 13.35 MeV state.

12.4.1 Spin-Parity Assignment

The Dalitz distributions of the 11.83 and 12.71 MeV states clearly exhibit the forbid-
den regions dictated by symmetry (Fig. 12.3). What can we say about the spin and
parity of the 13.35 MeV state? Since it is not observed to decay via the ground state
of 8Be, it is likely to have unnatural parity. The absence of a zero point at the center
of the Dalitz plot excludes the spin-parity assignments 1+, 2−, 3+. As noted in the
caption of Fig. 12.3, the pattern for a spin J + 2n (J ≥ 2 and n = 1, 2, 3, . . . ) is iden-
tical to the pattern for spin J except that the vanishing at the center is not required
for spins ≥ 4. Therefore, we conclude that the correct spin-parity assignment for the
13.35 MeV state is 4− (though spins ≥ 5 cannot be excluded based on the present
study alone). The radial projection of the Dalitz distribution is shown in Fig. 12.7
demonstrating with all clarity that the intensity at the center of the Dalitz plot is not
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Figure 12.6: Dalitz plots obtained using the experimental data. The spin and parity of the
13.35 MeV state is given as 4− as established by the present work, contradicting the tentative
2− assignment that appears in the most recent A = 12 compilation [AS90].

due to background, the contribution of which is indicated by the hatched histogram.
The radial projection also confirms the vanishing of the intensity at the circumference
as expected for all unnatural-parity states.

12.4.2 Model Comparison

The Dalitz distributions of the 11.83 and 12.71 MeV states will now be compared
to the predictions of four models: The sequential and democratic models outlined in
Section 12.2, a slightly modified version of the sequential model conceived by [Fyn03]
and the full three-body calculation of [ÁR08b]. The predictions of the four models are
shown in Fig. 12.8. Their radial and angular projections are compared with the exper-
imental data in Fig. 12.9 and 12.10. “Sequential I” refers to the standard formulation
of the sequential model [Bal74] and “Sequential II” to the slightly modified version
of [Fyn03].

Sequential I. In the sequential model, we use the R-matrix parameters of [Bha06]
for the broad 2+ resonance in 8Be: An excitation energy of E0 = 3037 ± 5 keV and
a reduced width of γ2 = 1075 ± 7 keV. The channel radii were computed as a =
1.42 fm (A1/3

1 + A1/3
2 ). The orbital angular momentum in the secondary breakup is

always l′ = 2. In the primary breakup, l depends on the spin of 12C. For the 12.71 MeV
state, only l = 2 is compatible with conservation of spin and parity, whereas l = 1, 3
are possible for the 11.83 MeV state.

Sequential II. The modification introduced by [Fyn03] consists in adding extra bar-
rier penetrabilities for each of the secondary α particles as an approximate treatment
of final-state Coulomb repulsion. Further details are given in [Fyn03].
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Figure 12.7: Radial projection of the Dalitz plot for the 13.35 MeV state normalized to unit area.
The radial coordinate, ρ, runs from 0 (center) to 1 (circumference). The hatched histogram
represents the background contribution.

Democratic. The democratic model was briefly reviewed in Section 12.2. For fur-
ther details, see [Kor90].

Three-body. The full three-body calculation of [ÁR08b] treats 12C as a 3α-cluster
system at all distances. The three-body problem is solved in coordinate space us-
ing the adiabatic hyperspherical expansion method. The complex scaling method is
used to compute resonances. The phenomenological Ali-Bodmer two-body interac-
tion (tuned to reproduce the low-energy two-body scattering phase shifts) is used.
In addition, a three-body short-range interaction adjusted to reproduce the correct
excitation energies in 12C is included.

To compare model calculations against the data, we must account for experimen-
tal effects. For this purpose, Monte Carlo simulations have been employed, see Sec-
tion 9.4. The simulated distributions contain ∼1.5×105 events. Varying the geometry,
the detector resolution and the deuteron angular distributions used in the simulation
within their respective uncertainties, we find no visible effect on the final distribu-
tions.

As discussed in Section 8.3, the 12C resonance formed in the 3He + 11B → d + 12C
reaction is likely to be polarized to a lesser or larger extent, which may affect the
Dalitz distributions since the experiment does not cover full 4π. The form of the
polarization is not easily extracted from the measurements. However, through sim-
ulations (based on the sequential model) we find that the Dalitz distributions of the
11.83 and 12.71 MeV states are insensitive to polarization, which may be explained
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Figure 12.8: Simulations of the Dalitz distribution for the 11.83 and 12.71 MeV states based on
four different theoretical models.

as follows: Owing to the small angular momenta involved, only spherical harmonics
of low order contribute (see. Eq. 2 in [Fyn03]) whose variation on the angular scale
of the detectors is relatively small. For the 13.35 MeV state, the effects of polarization
are no longer negligible, which is the reason why we chose to focus on the 11.83 and
12.71 MeV states for the model comparisons.

We note that the statistical uncertainties on the experimental and simulated dis-
tributions shown in Fig. 12.9 and 12.10 are essentially zero.

12.4.2.1 The 12.71 MeV State

All models reproduce the forbidden regions dictated by symmetry. However, they
all fail in reproducing the detailed shape of the distribution as revealed by the ra-
dial and angular projections. The inclusion of final-state Coulomb repulsion in the
sequential model is seen to shift the radial projection toward smaller values of ρ, con-
sistent with suppression of coaxial emission2, whereby perfect agreement with the
data is achieved. The angular projection is shifted toward larger values of ϕ, but the
agreement with the data remains rather poor. The deviation is far too large to be
accounted for by the uncertainties on the R-matrix parameters.

The three-body model and the democratic model in particular give poor fits to the
radial projection. On the other hand, they predict angular projections in reasonable

2The circumference of the Dalitz plot corresponds to the situation where all three momenta lie along
the same axis.
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Figure 12.9: Radial and angular projections of the Dalitz plot for the 12.71 MeV state. Owing to
the six-fold symmetry of the Dalitz plot, the angular projection only runs from 0 to 60 degrees.
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Figure 12.10: Radial and angular projections of the Dalitz plot for the 11.83 MeV state. Ow-
ing to the six-fold symmetry of the Dalitz plot, the angular projection only runs from 0 to 60
degrees. For legends, see Fig. 12.9.
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agreement with the data even though both are too wide and slightly displaced. As
is evident from the sequential band structure of the 12.71 MeV state, cf. Fig. 12.4, the
centroid and width of the angular projection directly reflects the energy and width
of the two-body resonance, whereas the radial projection is, to a first approximation,
independent of these parameters. If we were able to modify the α-α potential used
in the three-body calculation so as to increase the energy and simultaneously reduce
the width of the two-body resonance, near perfect agreement with the data could
probably be achieved for the angular projection. The shifts needed are on the order
of 100 keV which is not unrealistic3. However, this would not improve the situation
in the radial projection.

12.4.2.2 The 11.83 MeV State

It was noted by [Kor90] that the democratic model ought to work better the lower the
energy. However, when compared with the data, the democratic model is seen to give
bad fits also for the 11.83 MeV state. The three-body model is in perfect agreement
with the data in the radial projection, but it gives a poor fit in the angular projection.

An additional complication arises in the sequential model because the α + 8Be
breakup may proceed both through a p wave and an f wave. In contrast, the decay
of the 12.71 MeV state proceeds exclusively through a d wave. The two amplitudes
must be added coherently, i.e. f = α fl=1 ± β fl=3 with α2 + β2 = 1 and α, β ≥ 0. The two
amplitudes may interfere constructively (+) or destructively (−). The best fit to the
data is achieved by assuming roughly equal weights, α ≈ β ≈ 1/

√
2, and destructive

interference. Note that the f -wave amplitude, fl=3 , is suppressed by a factor of ≈ 5
relative to the the p-wave amplitude, fl=1 , due to the increased centrifugal barrier.

The inclusion of final-state Coulomb repulsion in the sequential model is, again,
seen to shift the radial distribution towards smaller values of ρ thereby improving the
agreement with the data. The fit to the angular projection is also improved though
deviations remain.

3R. Álvarez-Rodríguez, private communication (2010).
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12.5 Final-State Coulomb Repulsion

The importance of final-state Coulomb repulsion may be crudely estimated by nu-
merically solving the classical equations of motion of the 3α system subject only to
the Coulomb force from a fixed distance and outwards, see e.g. [Nor68,Tho72]. Given
the positions, xi(t) , and the momenta, pi(t) , of the three α particles at a given time, t,
we compute the positions and momenta at time t + ∆t as

pi(t + ∆t) = pi(t) + Fi(x1, x2, x3)∆t ,

xi(t + ∆t) = xi(t) +
pi(t + ∆t)

mα
∆t . (12.1)

Here, Fi(x1, x2, x3) is the Coulomb force on the ith α particle, and ∆t = 10−25 s is the
chosen time step. Energy conservation is used to check the numerical precision.

First, we look at the Coulomb repulsion between the first emitted α-particle and
the secondary α particles in the decay of the 12.71 MeV state in 12C. The three-body
energy is E3b = 12.710 − 7.275 ≈ 5.4 MeV. The two-body energy is fixed to E2b =

2.4 MeV. The 3α configuration at the instant of the 8Be→ 2α breakup (t = 0) is shown
in Fig. 12.11 (a). x is the distance between the secondary α particles and y is the dis-
tance from their center of mass to the first α particle. The secondary α particles are
emitted at angles θ and 180◦ − θ relative to the recoil axis. At t = 0, the energy so
far liberated in the form of kinetic energy to the first α particle and the recoiling 8Be
nucleus is E3b − E2b − VC , where VC is the Coulomb energy of the 3α configuration
at t = 0. Using Eq. 12.1, we calculate the evolution the 3α system out to several thou-
sand fm. The energy shift of the first α particle is shown in Fig. 12.11 (a) for three dif-
ferent choices of starting distance, y = 10, 20, 30 fm. Our calculations confirm what
one naturally expects: For coaxial emission, the first α particles gets an additional
“kick”, so its energy increases. For emission angles close to 90◦, the Coulomb repul-
sion weakens because the secondary α particles move apart, so the first α particle
gets less energy. Our calculations suggest that for coaxial emission, the extra energy
imparted to the first α particle could easily be several hundred keV. Also, the angle
measured at infinity could change as much as 10◦ compared to the actual emission
angle.

Second, we look at the Coulomb repulsion between the deuteron and the α parti-
cle and the 8Begs nucleus in the reaction 3He + 11B → d + 12C(10.84)→ d + α + 8Begs.
Using numbers from Chapter 8, the three-body energy is computed to E3b = 9.8 MeV
and the two-body energy to E2b = 3.5 MeV. From the width of the 10.84 MeV state
(Γ = 272 keV) and the kinetic energies involved, it is easily shown that, on average,
y ≈ 65 fm at the instant of the 12C(10.84) → α + 8Begs breakup. The result of the
calculation is shown in Fig. 12.11 (b). The shift in deuteron energy is on the order of
5–10 keV.
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Figure 12.11: (a) Energy shift of the first α particle in the decay of the 12.71 MeV state due to
final-state Coulomb repulsion, versus the 8Be → 2α breakup angle, θ, for three choices of the
starting distance, y. (b) Energy shift of the deuteron from the population of the 10.84 MeV state
due to final-state Coulomb repulsion, versus the 12C(10.84)→ α+ 8Begs breakup angle, θ, for a
realistic choice of starting distance, y.

12.6 Extension to Broad Resonances

It is the presence of very broad states with a strong coupling to the 3α continuum
that makes the study of the 12C excitation spectrum interesting as well as challeng-
ing. Nevertheless, the present discussion has focused exclusively on three relatively
narrow states, while the broad underlying (and as of yet unresolved) structures have
been treated merely as a background. The obvious and challenging next step will
consist in applying the Dalitz plot analysis technique4 to the regions in between the
peaks in Fig. 12.5. In particular, it may be possible to determine or at least constrain
the spin and parity of the broad states by examining the gross structures of the Dalitz
plot. However, as we consider 12C states of increasing width (and hence shorter life
time), we will eventually be confronted with a four-body problem in which dynam-
ical correlations between the deuteron and the three α particles must be taken into
account.

One indicator of the necessity of a four-body treatment is the Coulomb energy
stored in the d + 12C system at the time of the 3α breakup. The distance separating
the deuteron and the 12C nucleus at the time of the 3α breakup may be estimated as
vτ, where τ = ~/Γ is the life time of the excited state in 12C and v is the relative speed
of the deuteron and the 12C nucleus at infinite separation. If we require the Coulomb
energy to be less than 10% of the energy released in the 3α breakup, we arrive at an

4See [Agu80] for an example from particle physics of a systematic approach in which the Dalitz plot
intensity distribution is decomposed into certain moments.
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upper limit of Γ < 0.6–1 MeV (for 12C excitation energies in the range 10–14 MeV).
Another indicator of the necessity of a four-body treatment is the de Broglie wave
length, λ = h/p, at infinite separation. If we picture the deuteron and the 12C nucleus
as freely propagating wave packets, λ gives a measure of their spatial extension. In
this naïve picture, a four-body description becomes necessary when λ is comparable
to the distance separating the deuteron and the 12C nucleus at the time of the 3α
breakup. This happens when Γ exceeds 1–2 MeV.

Even though these estimates are very crude, they demonstrate that dynamical
four-body correlations may become important when Γ & 1 MeV. In order to avoid
four-body correlations all together, alternative ways of populating excited states in
12C must be found, e.g. through the β decay of 12B and 12N or γ decays from higher-
lying states in 12C.

12.7 Summary and Perspectives

The breakup of 12C resonances into three α particles constitutes an interesting and
challenging physics case both from the point of view of theory and experiment. The
fundamental quantum processes of interference and barrier tunneling play a central
role in the breakup, so does the α-α potential, its influence made most evident by
the observation of sequential decays proceeding via the narrow ground state of 8Be.
They all leave their imprint on the energy distribution of the α particles. The extent to
which the structure of the 12C resonance affects the energy distribution is unknown.

The experimental data is best visualized in two-dimensional Dalitz plots which,
in the absence of polarization, contain the complete kinematical information. The
unique symmetries of the 3α system play a central role in the description of the
breakup because they cause the intensity to vanish in certain regions of the Dalitz
plot, thereby inducing structures that do not depend on the decay mechanism but
are characteristic of the total spin and parity. This provides a model-independent
spectroscopic tool that allows us to determine or at least constrain the spin and par-
ity of the 3α system.

Dalitz plots for the three unnatural-parity states at 11.83, 12.71 and 13.35 MeV,
which are prevented from decaying sequentially through the narrow ground state of
8Be due to spin-parity conservation, were presented and analyzed. The gross struc-
tures of the Dalitz plot, in particular the absence of a zero point at the center, allowed
us to assign spin-parity 4− to the 13.35 MeV state in disagreement with the tentative
2− assignment of the most recent A = 12 compilation [AS90] but in agreement with
recent experimental findings [Fre07b] and favored by theoretical considerations.

The Dalitz distributions of the 11.83 and 12.71 MeV states were compared to the
predictions of four theoretical models. All were found to reproduce the gross struc-
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tures dictated by the symmetries of the 3α system, but none were able to reproduce
the detailed shape of the distributions. The sequential model modified to accommo-
date final-state Coulomb repulsion (Sequential II) gives the best fit to the data. As
previously pointed out by [Fyn03], the sequential model in its standard form (Se-
quential I) gives a surprisingly good fit for the 12.71 MeV state considering the very
short life time of the 8Be(2+) resonance. However, for the 11.83 MeV state we do not
find the same high level of agreement. We may understand this as a result of the re-
laxed constraints from symmetry leaving more room for the dynamics of the breakup
process to affect the final energy distribution of the α particles.

We hinted at one possible explanation for why the full three-body computation
of [ÁR08b] is unable to give an accurate description of the data, namely, the α-α two-
body potential which has been tuned to reproduce the measured α + α scattering
phase shifts. Following this procedure, the excitation energy of the 8Be(2+) state is
computed5 to 2.8 MeV whereas the experimental value is 3.0 MeV. However, we also
argued that the discrepancies cannot be explained by this effect alone. This raises the
intriguing possibility that we may be seeing the effect of the short-distance twelve-
nucleon structure on the energy distribution of the α particles at large distances.

Full three-body computations have also been performed for other states in 12C
such as the 13.35 MeV state and the 4+ state at 14.08 MeV. The latter may prove a
particularly interesting case due to the absence of constraints from symmetry. This
leaves plenty of room for the dynamics of the breakup to affect the energy distribu-
tion of the α particles, providing a most challenging case to theory. However, in view
of the present analysis, the need for an improved theoretical model which connects
the three-body breakup to an ab initio twelve-nucleon description of the resonance
structure at small distances, is already clear.

The potential of the experimental data is far from exhausted: The 3He + 10B reac-
tion gives the possibility to study the decay of the 14.08 MeV state as well as the 16.11
and 20.55 MeV states. Another interesting project would be to look at the decay of
the 9.64 MeV state through the ghost of the 8Be ground state.

5R. Álvarez-Rodríguez, private communication (2010).





CHAPTER 13

Conclusion and Outlook

The results were presented and discussed at length in Chapters 10–12. Summaries
were given at the end of Chapters 11 and 12; future perspectives were discussed as
well. Below, concluding remarks of a more general character are given.

An experimental investigation of the nuclear reactions induced by few-MeV 3He
ions on targets of 10B and 11B has been performed with the purpose of studying the
properties of resonances in 12C. The reactions lead to the four-body final states, p+ 3α
and d + 3α, which were measured in complete kinematics using a setup consisting of
four finely segmented silicon detectors.

Energies and widths were extracted for a number of resonances in 12C and com-
pared to literature values. In a few cases, inconsistencies were found. α-Decay
branching ratios to the ground state of 8Be were determined and compared to the
predictions of the α-cluster model of [ÁR08b].

An indirect method to detect γ transitions between unbound states in 12C was
described. A number of γ transitions not previously observed were identified. With
the present experimental setup, the detection efficiency was on the order of 1% and
the background essentially zero. The method is particularly well adapted for detect-
ing γ transitions to broad final states. γ Transitions connecting shell-model states
with α-cluster states provide a clean way to study α clustering in that both the ini-
tial state and the transition operator are well understood. The measured γ-decay
strengths were compared to calculations performed within the microscopic cluster
model of [KE07]. If scaled by a factor of 0.5, the calculations are, at best, in reasonable
agreement with the measurement. The connection between the γ decays observed in
the present study and the β decays of 12B and 12N was explored. The ratio of γ-decay
strength to β-decay strength is, in principle, sensitive to the presence of mesons in the
nuclear medium, i.e. effects beyond the classical paradigm of nuclear physics.

The Dalitz plot technique was used to study the breakup of 12C resonances to three
α particles. Structures in the intensity distribution of the Dalitz plot were divided
into two categories: Those due to the general symmetries of the 3α system and those
due to final-state interactions. This division was found to be conceptually useful but
also had “practical” applications. It allowed us to, in a straightforward and model-
independent way, establish the correct spin-parity of a state at 13.35 MeV. The 3α

193
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breakups of two unnatural parity states at 11.83 and 12.71 MeV were studied in detail.
Simulations based on four different breakup models were performed, but none of
them gave a perfect match to the data. Possible reasons for the discrepancies were
given.

No sign of the long-sought 2+ rotational excitation of the Hoyle state was seen.
This, of course, does not rule out its existence. Given its supposedly similar structure
to the Hoyle state and the fact that the Hoyle state was clearly observed, the lack-
ing observation of the 2+ state should probably not be attributed to it being weakly
populated in the 3He + 10,11B reactions. More likely, its broad nature makes it ex-
tremely difficult to resolve, e.g. from the competing 5,6Li + 8Be channel discussed in
Chapter 10. No indication of the 2+ state being populated in the γ decays was seen
either.

The potential of the experimental data is far from exhausted: The 12C → p + 11B
decay branch was only briefly discussed. We barely looked at the α + 9B channel and
the data from the 3He + 7Li reaction was not mentioned at all. We looked at the 3α
breakup of the 11.83 and 12.71 MeV states but did not have time to look at the 3α
breakup of a number of other states in 12C for which there is also data. The γ-decay
study constitutes the only branch of the analysis which, from an experimental point
of view, may be considered completed, but from a theoretical point of view, there is
still work to do. The results have been compared to calculations performed within
the microscopic cluster model of [KE07], but the implications of this comparison for
the model are unclear.

To end with, a picture of the 12C→ 3α breakup:

Figure 13.1: CCD camera image of the ionization tracks left by the three α particles from the
breakup of 12C following the β decay of 12N (coming in from the right). Adapted from [Mie07].
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