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When I consider your heavens,
the work of your fingers,
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landa Prezado, Karsten Riisager, Sami Rinta-Antila, Olof Tengblad, Manu-
ela Turrion, Youbao Wang, Leonid Weissman, Katarina Wilhelmsen, Juha
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Wang, Katarina Wilhelmsen and Juha Äystö, Influences on the triple alpha
process beyond the Hoyle state Proceedings of the International Symposium
on Nuclear Astrophysics—Nuclei in the Cosmos—IX, Proceedings of Sci-
ence PoS(NIC-IX)25 (2006).

S.G. Pedersen, C.Aa. Diget, H.O.U. Fynbo, J. Bücherer, P. Van Dup-
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CHAPTER 1

Introduction

Selvfølgeligt er kun ét gode:
at fødes p̊a en beboet klode.1

Piet Hein

1.1 Carbon primer

In all living organisms that we know of, including ourselves, molecules such as
water, carbon dioxide, oxygen and various organic molecules—as for example
fat, sugar and proteins—are essential building blocks and participants in the
processes by which organisms breathe, move, grow etc. This is why the current
search for life (or the traces of life) on Mars has such a strong focus on water and
organic molecules. Though very different all these molecules have one thing in
common: They all consist of hydrogen, carbon and oxygen and smaller amounts
of other elements. This can for example be seen in figure 1.1.1 where a small
fraction of our dna is illustrated. Here it is evident, that carbon is one of the
most important elements in us. It is fair to say that carbon is “the spine of
our dna”. Apart from this, carbon is the element that hardens steel and the
sole element in diamonds. The burning of carbon in the form of coal and oils is
what made the wheels turn in the development of industrial societies. In all this,
the carbon was originally created in massive stars extinguished billions of years
ago. In the following chapters I will investigate the structure of the nucleus in

1Certain is only one good: To be born on an inhabited planet.
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Figure 1.1.1: Atomic constituents of our dna (Weaver, 2002, pg. 25).

the carbon atom, and describe the effects of this structure on the way carbon is
created in stars.

In nature three different isotopes of carbon exist: Carbon 12, carbon 13 and
carbon 14. The three behave in the same way chemically, but the nuclei are
different, and the numbers denote the total number of nucleons (protons and
neutrons) in the nucleus. Of these three isotopes carbon 14 (14C) is probably the
most well known. This stems from the fact that it is radioactive, that is, it decays.
With a half life of 5730 years (Pfennig et al., 1998) it decays to nitrogen 14, which
means if we imagine having for example a small piece of wood containing a certain
amount of 14C, after 5730 years half of this will have decayed. Because of this
property one can determine the age of materials by determining the amount of
14C still present in the material. This is the so-called carbon 14 dating. Most of
the carbon present in nature however is of the other two kinds. They are both
stable and of those two 12C is by far the most abundant. This carbon isotope is
what I will focus on in the following.

From the 12 nucleons (6 protons and 6 neutrons) the 12C nucleus can be
pieced together, like a puzzle. Here however, the puzzle is a bit complicated.
Not only is it three dimensional, the individual nucleons move around inside the
nucleus, and even overlap. Furthermore the nucleons can be assembled in more
than one way as if the puzzle could be pieced together to form more than one
picture. In the nucleus, these different “pictures” are called states and can have
very different properties. One very important property of those states is their
energy, and the state having the lowest energy of all is called the ground state.
The ground state is the state present in nature, in other nuclei as well as in the
case of 12C. In this dissertation however I will focus on the properties of some of
the excited states (states with higher energy than the ground state) in 12C, the
states that determine how 12C is produced in massive stars.
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1.2 Historical preamble

Before we turn to the hard-core physics, we will for a moment look back at
two times when advances in physics important for this work have been made.
Firstly the identification of a very important state in 12C by Fred Hoyle and
collaborators in the fifties, and secondly the discovery by Thomas Young that
light can interfere.

The anthropic principle

In 1953 Fred Hoyle used observations of the cosmic abundances of the elements;
helium, carbon and oxygen to argue that the most abundant carbon isotope
12C should have a state at an energy of 7.68MeV. The level was indeed found
at that exact position (Dunbar et al., 1953) and it is now known to have an
energy of 7.65MeV and is denoted the Hoyle state. What can be concluded—
taking the argument a bit further than Hoyle did—is that: Had there not been
a state at this energy, the cosmic abundances of elements would have been much
different, so different that life as we know it could probably not have existed.
This is the essence of the anthropic principle, that our physical description of the
universe and its constituents may not be in conflict with observations, including
the observation that we exist. The physics behind Hoyles argument will be
introduced in the following.

When elements are produced in stars the protons (p) combine to give helium,
in particular 4He. This can proceed via the PP-chains. The simplest example is
the PP-I chain (Kippenhahn & Weigert, 1990):

p + p → 2D + e+ + νe

2D + p → 3He + γ
3He +3 He → 4He + 2p

At this stage the shown sequential buildup of larger and larger nuclei runs into a
problem, since neither of the nuclei 5He, 5Li and 8Be are bound. This means that
immediately after being formed from a 4He nucleus and a n, p or 4He respectively
they break up again.

However, stellar environments do overcome this problem. Since 8Be exists
roughly 7 · 10−17 s (0.00000000000000007 second) according to Audi et al. (2003),
a 4He nucleus (alpha particle) “just” has to combine with it within this period.
The resulting process is called the triple-alpha process :

4He + 4He → 8Be
8Be + 4He → 12C(7.65 MeV)

12C(7.65 MeV) → 12C + γ

where the two first steps obtains a statistical equilibrium, as will be discussed
thoroughly in chapter 9. After this step heavier elements such as oxygen can be
produced.
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What Fred Hoyle argued was the following (Hoyle et al., 1953):

It is assumed that oxygen and carbon are produced in stars, that have
largely exhausted their central hydrogen, by the reactions 2He4 → Be8;
Be8 +He4 → C12; C12 +He4 → O16. The observed cosmic abundance
ratio of He:C:O can be made to fit the yields calculated for these re-
actions if the reaction: Be8(α, γ)C12 has a resonance near 0.31 MeV,
corresponding to a level at 7.68 MeV in C12.

The state should therefore have an energy just above the energy required for
a breakup into three 4He nuclei, the triple-alpha threshold. Hoyle even argued
that if the process is assumed to proceed without involving such a resonance,
as was done earlier by Salpeter (1952) and Öpik (1951), the ratio could not
be reproduced.2 Since this state has an energy higher than the triple-alpha
threshold, we say that it is situated in the triple-alpha continuum.

Interference of light

About two hundred years ago Thomas Young discovered that rays of light can
interfere, they behave like waves, producing either constructive or destructive
interference. For waves on a string this is seen as the nodes and anti-nodes
respectively where the interference between the waves traveling back and forth
in the string is destructive and constructive. In a lecture to the Royal Society of
London (Young, 1804) he therefore states the following:

The proposition on which I mean to insist at present, is simply this,
that fringes of colors are produced by the interference of two portions
of light; and I think it will not be denied by the most prejudiced, that
the assertion is proved by the experiments I am about to relate, which
may be repeated with great ease, whenever the sun shines, and without
any other apparatus than is at hand to every one.

In Youngs experiment a beam of light was split in two by a card, after which it
hit a wall behind the card. Now the two components of light hitting the wall does
not just add up, but interfere just as was the case for the waves on the string.
Here the interference was seen to be constructive or destructive depending on
the position on the wall and the distance between the card and the wall. This
caused the fringes seen by Young.

Interference however is an even more general property of physical processes,
and many other processes show similar effects. These are the processes, where two
different paths contribute significantly, and where it is impossible to distinguish
between the two paths. An interesting example of this is an experiment very
similar to that of Young, but with the difference that carbon is used instead

2The historical background behind the current understanding the nucleo-synthesis in stars
is nicely described by William A. Fowler in his Nobel lecture of 1983, published in (Fowler,
1993).
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of light (Arndt et al., 1999). And not just carbon but large molecules with 60
carbon atoms in each (the so-called C60 buckyballs). In this experiment as well
the interference pattern is clearly seen.

In the experiment presented in the following chapters, the situation is much
the same, though here the contributing paths are not physical positions in space
but different 12C states. These 12C states mediate the process that we measure,
and if the different “paths” cannot be distinguished physically, the interference
arises. In contrast to the experiments of Young and of Arndt et al., the distri-
butions are in this case not spatial distributions seen on a screen, but measured
energy distributions in 12C—the 12C excitation energy distributions. The con-
cept however remains the same: the two “paths” interfere either constructively
or destructively, distorting the distributions that one would expect to see if no
interference was present.

1.3 Excited states of 12C

In the preceding, one excited state of the 12C nucleus has already been presented,
namely the Hoyle state. This however is not the only excited state in 12C. As will
be seen in the following chapter, at least 9 states in addition to the ground state
have been confirmed experimentally within the first 15MeV above the ground
state. What we do as experimental nuclear physicists is to provide information
on the individual state properties. This information will in turn allow a better
theoretical understanding of the physical processes and interactions determining
the state properties and the degrees of freedom that effectively exist in the system.

Different theoretical models are used to describe the properties of such states,
models that have different strengths and weaknesses and thereby complement
each other. One such model is the shell model. In this model the nucleons are
described as trapped in a common potential, just like we are trapped by the
gravitational potential of the earth. The individual nucleons in this potential
can position themselves in different single particle states where the properties of
the states differ. Furthermore, according to the Pauli exclusion principle3, two
protons (or two neutrons) cannot occupy the same single particle state, and we
must therefore fill the states one by one with the available protons and neutrons.
These states turn out to be grouped making a shell like structure where many
states have similar energy and a gap in energy occur with no states before the
next shell of states comes at higher energies. Because of that the model is denoted
the shell model. With all nucleons thus placed in their respective single particle
states, the global properties of the nucleus can be found by combining the single
particle state properties. Another model, fundamentally different from the shell
model is the cluster model. Here the nucleons are assumed to be grouped into
clusters, and the nucleus is described in terms of these clusters, their interaction
with each other and their positions relative to each other. This model of course
only gives a good description of the nuclear states if they resemble such a cluster

3For which Wolfgang Pauli received the Nobel prize in 1945 (Pauli, 1964).
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structure, which is not the case for all nuclear states. For 12C however many
states in the triple alpha continuum can be described in this manner. For the
Hoyle state for example, the cluster state description dates back to 1956 at which
time Morinaga for the first time described the Hoyle state as an elongated triple
alpha cluster state. That is, three alpha particles (clusters of four nucleons) in
a row. This idea has been elaborated on since then, and similar descriptions of
other states have been attempted. Most of the states that will be examined in
the following chapters are in fact best described in the cluster models.

With the shell model and the cluster model complementing each other very
well, many nuclear states can be understood. There is however a third group of
models worth mentioning. In a sense these are cluster models with an extreme
amount of clusters, since they take the individual nucleons and describe their
positions relative to each other and the interactions between them. These models
are the ab initio models where the only input to the model are the interactions
between the individual nucleons. One such model is the quantum Monte-Carlo
model as used by e.g. Pieper (2002) to describe light nuclei. This model is valid
more generally than the other two, and in principle covers both. It has however
the disadvantage of introducing many additional degrees of freedom, of which
many may be irrelevant for the understanding of the particular nuclear state
one attempts to describe. Furthermore the extra degrees of freedom causes the
amount of computing time to increase drastically with the number of nucleons,
which is why the model is only feasible for the nuclei with few nucleons—the low
mass nuclei. For these nuclei the model can be used as a test of other models to
gain a further understanding of the models that can reach the nuclei with 12 or
more nucleons.
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CHAPTER 2

Probing the 12C continuum

An experiment aimed at studying the triple alpha continuum states in 12C must
necessarily consist of two parts. Firstly a method for populating the states in
question and secondly a setup measuring properties of the states in question by
detection of particles emitted in the decay of the states. For both parts, different
methods have been applied depending on which states and which properties of
those states one wishes to describe. In the following we will look at two methods
of production and furthermore focus on the detection of alpha particles from the
breakup of the studied states.

2.1 Different probes

In recent years two studies of the triple alpha continuum has been performed using
inelastic alpha scattering on the 12C ground state 12C(α, α′)12C∗ as a probe of
the excited states in 12C (Bency John et al., 2003; Itoh et al., 2004). In these
experiments the outgoing alpha particle (α′) is detected and from the angular
distribution of this as a function of energy the spin of the probed states are
deduced. With knowledge of the spin, the parity of the state is known as well
since only natural parity states are produced (both 12C and 4He are 0+ nuclei).

As can be seen in figure 2.1.1, many states in 12C are easily produced in this
way, with a production method involving only a 4He beam impinging on a thin
12C target. This reaction can populate states in 12C of natural parity, that is
states for which the spin (j) and parity (π) satisfy π = (−1)j. These and other
states in 12C are listed in figure 2.1.2. Furthermore if other reactions are used,
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Figure 2.1.1: Inelastic scattering 12C(α, α′)12C∗ at a center of mass angle of 5.1 ◦,
measured by Bency John et al. (2003).

the remaining states can be populated. This gives a glimpse of the strength of
using reaction studies in nuclear physics, since the reaction is not very selective
in populating the states, and a few reactions can therefore probe all states in a
single nucleus.

This very small selectivity however can as well be seen as a drawback in
certain cases, namely those where we are interested in only a few of the produced
states. In the study of Bency John et al. for example, the interest is not only
in the rather well known 7.65MeV 0+ Hoyle state; the 9.64MeV 3− state; and
the 10.84MeV 1− state that dominate the spectrum. The interest is as well in
the broad 0+ component (indicated as a wide state contributing in the 10MeV
region) and a 2+ component they suggest around 11.5MeV. With the very
dominant states in the reaction, the results on the 0+ and 2+ components are
less conclusive. We would therefore prefer a more selective probe of the states.

This is where beta decays prove valuable. For the purposes of the studies
presented in the following chapters there are two types of beta decays: beta
minus (β−) and beta plus (β+)1. In a β− decay a neutron is converted to a

1The third possibility is the electron capture, and alternative to the β+ decay. Here an
electron is transformed to a neutrino instead of the usual double lepton emission. This decay
mode however is only important when the Q value is very small which, as we will see in the
following is not the case for the two beta decays to 12C.
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Figure 2.1.2: States in 12C up to about 16MeV according to the evaluation
by Ajzenberg-Selove (1990). Apart from the typical decay channels of α and γ
decays, emission of a e+e− pair (π) is observed for the 7.6542MeV Hoyle state.
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Figure 2.1.3: The valley of stability (figure from: Lunney, 2006). The isotopes in
black are stable, whereas the remaining decay. Beta decay transform the nuclei
on either side of the valley so they “fall” towards the floor of the valley.

proton under the emission of a pair of leptons:

A
ZX → A

Z+1Y + e− + ν̄e + Qβ− (2.1.1)

where A is the total number of nucleons in the mother nucleus X and Z is the
number of protons. In a β+ decay it is the opposite:

A
ZX → A

Z−1Y + e+ + νe + Qβ+ (2.1.2)

To determine which of the two decays (if any) will take place we have to look at
the energy—or mass, according to E = mc2 (Einstein, 1905)—available in the
decaying nucleus and the energy required by the daughter nucleus Y and the
emitted leptons. The Q value for the decays is the difference between the two
and must be positive for the decay to occur. The energy surplus in the decay
(the Q value) is given as kinetic energy to the three particles created in the decay.
The Q value for the two decays can be found from the atomic masses of the two
nuclei:

Qβ− = MXc2 − MYc2 (2.1.3)

Qβ+ = MXc2 − MYc2 − 2me (2.1.4)

where c is the speed of light and me is the mass of the electron. All beta decaying
nuclei will therefore decay towards nuclei of lower mass. This results in the so-
called valley of stability where the stable nuclei are those with the lowest mass
for a given nucleon number A. This is illustrated in figure 2.1.3. The isotopes on
the right decay through β− decay whereas the isotopes on the left decay through
β+ decay until stability is reached. 12C with 6 protons and neutrons (not in the
picture) lies at the bottom of this valley with both neighboring nuclei 12N and
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12B sufficiently high in energy (sufficiently heavy) to allow both beta decays to
12C. The two beta decays furthermore have so high Q values that the decays can
populate higher lying states in 12C. For 12N Qβ+ is thus 16.316MeV whereas for
the 12B decay Qβ− is 13.370MeV.

In general beta decays can be classified as being either allowed (l = 0); forbid-
den (l = 1); doubly forbidden (l = 2); etc. depending on the angular momentum
the two leptons carry away from the nucleus. The classification stems from the
observation that forbidden decays are strongly suppressed with respect to the
allowed decays, which means the allowed decay mode will dominate if it is pos-
sible. There exist two different types of allowed decays, the Fermi decay and the
Gamow-Teller decay. The two decays differ in respect to the lepton spins. For

Fermi decays the spins of the two leptons (~12 + ~1
2 ) couple to ~0 whereas for the

Gamow-Teller decay the two couple to ~1. The selection rules for the two decays
are therefore different.

The Fermi decay simply changes a neutron(proton) to a proton(neutron) leav-
ing the latter in exactly the same single particle state as the original nucleon
occupied. This means the spin, parity and isospin of the daughter nucleus are
identical to those of the mother nucleus. The decay is restricted to the so-called
isobaric analogue state in the daughter nucleus, the state that have exactly the
same quantum mechanical wave function as the mother nucleus, in this case the
12C 1+ state at 15.11MeV. For the Gamow-Teller decay on the other hand, the
spin and isospin of the nucleus are not necessarily conserved, and the only selec-
tion rule in the spin of the nucleus is that: |jX − 1| ≤ jY ≤ |jX + 1|. The parity
however is still conserved, as long as the decay is an allowed decay. Since the
two nuclei 12N and 12B both have jπ = 1+ this means the only states populated
in the decays are 0+, 1+ and 2+ states in 12C. As illustrated in figure 2.1.4 this
introduces a strong selection among the 12C states.

2.2 Single particle detection

After the discovery of the Hoyle state, the low energy region of the triple-alpha
continuum was investigated by Cook et al. (1957, 1958). He and his collaborators
used the method of beta delayed particle emission to study the states in the triple
alpha continuum, in particular the Hoyle state. The term beta delayed particle
emission comes from the observation that beta decay is a weak process and is
therefore in general very slow compared to other decay processes. When beta
decay in this way populates continuum states, the particle emission (in this case
triple alpha breakup) is delayed by the beta decay. In the case of decays to
the Hoyle state, the beta decays have a typical time scale of some milliseconds
(thousands of a second) whereas the typical life time of the Hoyle state itself is of
the order of 10−16 s, hence the name beta delayed triple alpha breakup. With this
method they used decay of 12B to gain the strong selectivity and through this
study found that the Hoyle state was a 0+ state. In addition to that they saw
an indication of a level at 10.1(2)MeV. This was confirmed by Schwalm & Povh



12 Chapter 2 - Probing the 12C continuum

Figure 2.1.4: 12C states populated in the beta decays of 12N and 12B. Branching
ratios are stated according to Ajzenberg-Selove (1990).
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(1966), who concluded that the state was either 0+ or 2+ and that the energy
was 10.3(3)MeV.

In the studies of Cook et al. as well as in that of Schwalm & Povh, the states
were detected through their breakup into three alpha particles. These alpha par-
ticles were detected and from this single alpha spectrum properties of the states
was deduced. From these single particle spectra for example, Schwalm & Povh
concluded that the 10.3MeV state decayed by a sequential breakup, first into an
alpha particle and the 8Be ground state after which the 8Be ground state would
break up into two alpha particles. Of the three possibilities for jπ: 0+, 1+ and
2+, only 0+ and 2+ is consistent with this breakup channel.

With the results of these two groups, Morinaga (1966) could describe the
10.3MeV state in the same framework as his description of the Hoyle state
(Morinaga, 1956). When understanding the Hoyle state as a prolate triple alpha
cluster, one can imagine to make this state rotate around an axis through its
center. The first such rotation would yield a spin of 2 of the resulting 12C state
and keep the positive parity. Such a 2+ state is only the first of a number of
rotational excitations of the Hoyle state, with the remaining coming in at higher
and higher energies. We therefore describe it as the first member of the rotational
band build on the Hoyle state.

For that reason, Morinaga assigned a spin-parity of 2+ to the 10.3MeV state.
This interpretation has later on been quantified (Descouvemont & Baye, 1987),
resulting in the prediction of a 2+ state at 9 MeV in 12C corresponding to 1.7MeV
above the triple alpha threshold. Following this prediction, the state has been
included in a compilation of astrophysical nuclear reaction rates (Angulo et al.,
1999), as will be discussed in detail in chapter 9. Because of this it is crucial,
not only for the development of precise cluster calculations in the triple alpha
continuum, but as well for the triple alpha reaction rate calculations, to obtain
an experimental validation of the spin assignment of this particular state.

2.3 Multi particle detection

A very important goal for the studies presented in this dissertation is therefore
to examine the so-called 10MeV state and determine experimentally, which of
the two possible assignments 0+ and 2+ is the correct one. These studies make
use of a detection method where we—as in the previous experiments—detect
the individual alpha particles from the breakup. Though in this way resembling
the Schwalm & Povh (1966) experiment, an important development in detec-
tion methods (Bergmann et al., 2003b; Tengblad et al., 2004) makes it possible
to detect all three alpha particles, their energies and directions, from the same
12C breakup. Such experiments have been performed by our collaboration dur-
ing the last five years at Igisol (Jyväskylä, Finland) and at Isolde (Cern,
Switzerland). In all these experiments we have used segmented silicon detec-
tors to detect the alpha particles. In the first two experiments (presented in:
Fynbo et al., 2003, 2005) the setups consist of two detectors facing each other,
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which allows us to detect all three alpha particles from the breakup if one of the
three has sufficient energy to thrust the remaining two into the opposite detector
when itself hitting one of the detectors. This gives a very high triple coincidence
detection efficiency when the breakup proceeds through the ground state of 8Be.
Because the sum of the three energies is the energy in 12C above the triple al-
pha threshold, this yields a direct measurement of the 12C spectrum for breakup
through the 8Be ground state.

Though I analyzed the data from the Isolde experiment, this dissertation
however will not include this analysis, since it is presented elsewhere (Diget,
2004; Diget et al., 2005). The focus will rather be on a new experiment where an
improved setup is used. This setup consists of tree segmented silicon detectors,
with which the detector setup covers a larger solid angle. This property of the
improved setup is one of the main motivations for this new experiment, since it
made possible the triple alpha coincidence detection of breakups through higher
energies of the intermediate 8Be nucleus. As will become evident in chapter 7,
this will yield important information on this yet unseen breakup channel for the
studied 12C states.

2.4 Probing isospin (a)symmetry

Another key motivation for this experiment is to test the isospin symmetry (or
asymmetry if present) between the two decaying nuclei 12N and 12B and their
decay to the 12C states. The two nuclei have opposite number of protons (Z)
and neutrons (N) with Z = 7 and N = 5 for 12N. In the shell model, mentioned
in section 1.3, the single particle states for neutrons and protons are very similar.
This means the two nuclei 12N and 12B look very similar on the quantum me-
chanical level, the two are isobaric analogue states. The effect of this is in turn,
that the two beta decays are very similar. This symmetry is an example of the
isospin symmetry, since the difference between the number of protons and neu-
trons sets the third component (T3) of the isospin. As will be described in section
4.1 the aim of comparing these two decays was the prime motivation for using
the Igisol separator in Finland. The results of this comparison are presented in
chapter 8.

2.5 Calorimetry

In the spring of this year, an alternative and completely different detection
method has been applied (Pedersen et al., 2006) for such beta decay studies.
In this experiment performed at Kvi (University of Groningen, the Netherlands)
a finely segmented detector was used as a calorimeter for the alpha particle en-
ergies.2

2Though our group is deeply involved in this experiment I did not participate in the actual
data taking.
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The beta decaying nuclei were implanted in the active part of the detec-
tor. When the nuclei decay, the beta delayed alpha particles deposit all of their
energy in the detector, whereas the emitted beta particles escape the detector
without depositing much energy, because the detector is thin and because of the
segmentation. For a beta particle of for example 1 MeV, the average amount
of energy deposited in the detector is thus only about 10 keV. This amount is
found through a Geant4 simulation (Agostinelli et al., 2003). During my stay
at Katholieke Universiteit Leuven (Belgium) in the spring of 2005, I made such
simulations for the same detector which we used in other beta delayed parti-
cle emission experiments. In these we used the same method to study the beta
decays of the two halo-nuclei 6He (Crc, Louvain-la-Neuve, Belgium) and 11Li
(Triumf, Vancouver, Canada). Both decays have decay branches to continuum
states that break up. With this method of detection, it is possible to measure
the beta delayed triple alpha continuum spectrum all the way down to the Hoyle
state. Though the data is very promising, however with the experiment being
this recent, the analysis is still in its preliminary phase.
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CHAPTER 3

R-Matrix theory

Ghosts, we tend to think, actually shouldn’t be
here but still once in a while they simply pop up
somewhere. We often forget them but from time to
time they get really nasty and interfere with us.

The challenge for theoretical nuclear physics is to understand and describe the
structure of the excited 12C states in terms of quantum mechanical wave func-
tions. This structure however is not what we measure in an experiment. What
we measure is a quantum mechanical observable, such as e.g. Esum = Eα1

+
Eα2

+ Eα3
. What is done in the following is to interpret the distribution of this

observable in terms of states in 12C, the decay of 12N and 12B to these states and
the subsequent breakup of the states. To be more precise we use the R-Matrix
theory to parameterize all processes that take place within a spherical reaction

region with a radius of ac = r0·(A1/3
1 +A

1/3
2 ) where A1 and A2 are the number of

nucleons in the two participating nuclei (in this case 4He and 8Be) as illustrated
in figure 3.0.1. Here r0 must be chosen so large that anything else but Coulomb
interactions can be neglected outside the sphere. There is no universal size for
the channel radius ac, and it may thus differ for different breakup channels. One
natural choice however for r0 is the pion Compton wavelength, since the pion is
the primary mediator of the nucleon-nucleon force (Feshbach & Kerman, 1967).
For the charged pions this yields h̄/mπc = 1.41 fm (Eidelman et al., 2004). With
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Figure 3.0.1: Reaction region for 12C
breakup to a 8Be nucleus and an α par-
ticle. Channel radius ac illustrated.

Figure 3.1.1: High energy tail of pene-
trability corrected Breit-Wigner distri-
bution for the 8Be(g.s.). Total distribu-
tion is normalized to 1.

this confinement of the reaction region the evolution of the wave function in the
outer region can be described analytically using the Coulomb wave functions,
while on the other hand some very complicated processes take place in the inner
region with unknown wave functions and reaction mechanisms. For that reason
the processes in this region cannot be described in the same exact manner, as
is the case for the outer region, but must be parameterized in some way. The
point of the R-Matrix theory is that it provides such a parameterization that is
both successful in reproducing spectra for the observables and has parameters
that can be interpreted physically in terms of state energies and transition matrix
elements.

The success of quantum mechanics is to a large extent based on its precise
predictions of such states and transition probabilities. These predictions are
determined unambiguously, at least in principle. However because of the com-
plexity of the quantum mechanical many body system approximations must be
made and thus different competing theoretical descriptions may be available as
is the case for the excited states of 12C. Thus the goal for the experimental
study is to provide restrictions on the states and involved transitions that may
rule out some theories and favor others. When the states in question are well
separated in energy, providing such information may be straight forward. When
the states on the other hand are broad and overlapping or close to a threshold,
the interpretation of experimental data can be more complex, and a model, such
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as the R-Matrix theory, is needed.1

3.1 Interference and ghosts

As described in the introduction (section 1.2) interference is important if a pro-
cess has two or more paths to proceed through and there is no way of gaining
information on which of the paths were actually used. That is, if no (quantum
mechanical) observable contains such information. This is exactly what happens
if two states with no distinguishing quantum numbers in an intermediate nucleus
overlap in energy and thereby both contribute significantly to the total reaction
amplitude at a given energy. If this is the case, the two must be added coherently
resulting in constructive or destructive interference depending on their relative
phase in the complex plane.

Another issue regards the threshold effects appearing when a decaying state is
very close to a threshold. The most striking threshold effect is the appearance of
ghosts, where the shape of the state as seen in for instance a resonant scattering
experiment is no longer the simple Breit-Wigner form:

σ(E) ∝ Γ2

(Eλ − E)
2
+ (Γ/2)

2 . (3.1.1)

The ghost arises when the width (Γ) of the state is heavily energy dependent. In
the high energy tail of the 8Be ground state Breit-Wigner distribution (around
1 MeV), the width will for example increase drastically, since the Coulomb bar-
rier can no longer confine the state so easily and the decay probability—i.e. the
width—increases. As is seen from figure 3.1.1, this means the state at these
energies behaves as a broad state, blowing up the tail of the distribution at
the high energies where the width overcomes the decrease from the (Eλ − E)

2

denominator. Note that the exact position of this ghost depends on the en-
ergy dependence of the involved Coulomb barrier penetrabilities, and thereby
depends on the probing reaction. It is therefore not surprising that Barker et al.
(1967) and Becchetti et al. (1981) with their 9Be(p, d)8Be reaction experiments
and Szczurek et al. (1991) using a 9Be(d, t)8Be experiment find a slightly different
position of the ghost.

This effect is a general threshold effect and therefore applies to the 12C
Hoyle state as well. This will become evident in the following section, where
it is seen that the Hoyle state besides dominating the low energy region has
an important ghost. The Hoyle state ghost has previously been discussed by
Wilkinson et al. (1963), and a general description of these threshold effects is
given by Barker & Treacy (1962), a formalism that was as well applied in the
analysis of the mentioned reaction experiments.

The effect of the strong energy dependence of the width is actually the same
as that seen for the alpha decay in general, where the lifetime τ = h̄/Γ is the

1Parts of the R-Matrix introduction given in this chapter can as well be found elsewhere
(Diget, 2004).
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most convenient observable. The alpha decay lifetime (τ) can be very long when
the decay has a very low Q value, since the lifetime is determined primarily by
the probability of penetrating the Coulomb barrier. This penetration depends
strongly on energy, yielding a very wide span of the lifetimes ranging from micro
seconds up to billions of years as is for instance seen in the thorium isotopes
(Pfennig et al., 1998). The difference is that in the case of the Hoyle state and the
8Be ground state the difference in lifetime is seen within a single state depending
on at which energy the state is populated.

3.2 Beta delayed particle emission

The description of R-Matrix theory given in this section will follow the notation
and description by Buchmann et al. (2001) and deals with beta decay to broad
states and their subsequent breakup through a narrow exit channel, in this case
the 91.8keV (Tilley et al., 2004) ground state of 8Be. A very detailed description
of R-Matrix theory has been written by Lane & Thomas (1958). The theory will
be described in the most general case and the connection between the general
description and the well known Breit-Wigner shape of a state will be indicated.

The most general case is the case where 12B and 12N decay to several inter-
fering levels in 12C (denoted by Greek letters) the decay being either Fermi or
Gamow-Teller decay (x = F, GT ). These levels may then decay through several
narrow channels (c). For this case the transition probability distribution for the
channel c is given by:

wc(E) = C2fβPc

∑

x=F,GT

∣∣∣∣∣∣

∑

λµ

gλxγµcAλµ

∣∣∣∣∣∣

2

. (3.2.1)

Here C is just a normalization constant that we have no need to worry about at
the moment, Pc is the penetration factor for the decay through the channel c at
the energy E, gλx is the quantum mechanical matrix element for the x transition
from 12B to the state λ and γλc is the reduced partial width of the state λ to the
channel c. Just as is the case for gλx, γλc is basically the matrix element between
the state λ and the final state 8Be+α. Aλµ is the (λ, µ) entry in the level matrix
A, which is defined at each energy E by its inverse as:

(
A−1

)
λµ

= (Eλ − E)δλµ −
∑

c

γλcγµc(Sc − Bc + iPc), (3.2.2)

where Eλ is the R-Matrix energy parameter2 of the level λ, Sc is the shift function
at the energy E and Bc is the boundary condition parameter, a constant typically
chosen such that Sc − Bc = 0 at one of the level energies Eλ. Both Pc(E),
Sc(E) and Bc are real numbers and depend on the choice of r0. They are found
from the regular and irregular Coulomb wave functions and their derivatives. It

2Eλ is not necessarily the observed level energy, as will be discussed in section 3.2.1.
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should not be surprising that the Coulomb wave functions are used since the basic
assumption in the theory is that the only long range interaction is the Coulomb
interaction.

A simple case is the case where the decaying nucleus being either 12N or 12B
decays to only one level λ in 12C with only one transition type (here Gamow-
Teller). For this decay type the level matrix has only one entry, and the partial
transition probability distribution is given by:

wc(E) = C2fβg2
λ,GT

Pcγ
2
λc

|(Eλ − E) −∑c γ2
λc(Sc − Bc + iPc)|2

=
1

2
C2fβg2

λ,GT

Γc

(Eλ − E + ∆)
2

+ (
∑

c Γc/2)
2 , (3.2.3)

with the definitions (Lane & Thomas, 1958): Γc(E) = 2Pcγ
2
λc and ∆(E) =

−∑c γ2
λc (Sc − Bc). This reduces to the well known Breit-Wigner distribution

with the corrections from ∆ and the energy dependence of Γc. These corrections
are small when the state is narrow.

Equation 3.2.3 may be used for two non-interfering states by simply adding
the contributions from the different levels incoherently. This is the case if we
assume only one state besides the 0+ Hoyle state to contribute to the decay
spectrum, and furthermore assign spin and parity 2+ to that state, since such
two states cannot interfere. On the other hand if the second state is a 0+ state
or if at least three 0+ and 2+ states in total contribute, two or more states will
have the same spin an can thus interfere with each other. In which case the
general formalism (equation 3.2.1) must be used to find the contribution from
each individual spin component after which they are added incoherently.

3.2.1 Observed parameters

When the formalism presented in equation 3.2.1 has been used to identify the
states fed in the decay and the properties of those states, we are in a position to
extract the physical energies and widths of the states from their corresponding
R-Matrix level parameters.

The first step in doing so is to be able to transform the R-Matrix parameters
between different choices of the boundary condition parameter Bc. That is we
wish to transform the parameters Eλ, γλc, and gλx corresponding to Bc into
the parameters E′

λ, γ′
λc, and g′λx corresponding to B′

c. The reason why this is
necessary can be seen in equation 3.2.3, where it is seen that peak of the state
λ is positioned at the energy where Eλ − E + ∆(E) = 0. What is done in the
following transformation is to find Bc such that ∆(E) = 0 at the transformed
peak energy E′

λ, and for this boundary condition parameter find the new set of
R-Matrix parameters. The transformation is deduced and described in detail by
Barker (1972) and the results are given by Buchmann et al. (2001) as well. The
transformation is given here for the most general case, that is many level, many
channel.
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To perform the transformation we let C be the matrix with the following
entries:

Cλµ = Eλδλµ −
∑

c

γλcγµc (B′
c − Bc) . (3.2.4)

Since the matrix is a real symmetric matrix we may find a real orthogonal matrix
K that diagonalizes C, that is: K C K̃ = D where D is diagonal. The rows of
K are the normalized eigenvectors of C and the diagonal elements of D the
corresponding eigenvalues.3 From this the new parameter values may be found
using:

E′
λ = Dλλ , γ′

c = Kγc , g′x = Kgx, (3.2.5)

where γc and gx are the column vectors with entries γλc and gλx respectively.
What we need is to find the parameters corresponding to the boundary condition
parameter that fulfills: Sc(E

′
λ) − B′

c = 0. By construction the fitted parameters
fulfill this requirement for the energy of the first state (λ = 1), and what we
should find is the corresponding parameter set for B′

c = Sc(E
′
µ) for µ 6= λ. But

since we do not know a priori what this new level energy is, we must find it
iteratively. The first choice for B′

c is: B′
c = Sc(Eµ) resulting in a new value E′

µ.
After this we choose: B′′

c = Sc(E
′
µ) and find the value E′′

µ etc. This turns out to
converge rapidly towards the energy that fulfills the requirement. The limit of
this iteration is therefore the observed level energy Eo

µ.

To find the observed width we make use of the description of Barker & Treacy
(1962) where the basic assumption is that the shift function Sc is linear around
the observed resonance energy. From this one may find the observed partial
width:

Γo
λc = 2Pc(E

o
λ)γ2

λc

(
1 + γ2

λc

d

dE
Sc(E)

)−1

E=Eo
λ

, (3.2.6)

where Γλc = 2Pc(E
o
λ)γ2

λc is the “true width” of the state. This method is used in
the following to find the values and uncertainties of the observed quantities Eo

µ

and Γo
λc.

It should be noted that this relation between R-Matrix level parameters and
the observed parameters for the states opens up for an alternative to fitting the
level parameters. Namely to have the observed parameters as fitting parameters
and making the reverse translation from observed parameters to level parame-
ters before calculating the theoretical spectrum. This method yields the same
results, but can be more convenient for estimating errors on observed parame-
ters and applying restrictions on the individual parameters. The application of
such a parameterization of the R-Matrix theory has been described by Brune
(2002). In the analysis presented in the following chapters however the standard
parameterization will be used.

3No requirements are needed on the sign of the eigenvectors in K. This is because changing
the sign of e.g. eigenvector λ would only change the sign of γ′

λc
and g′

λx
as seen from equation

3.2.5 and because only the sign of γ′

λc
·g′

λx
is of physical importance.
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3.2.2 Branching ratios and BGT values

There exist two fundamentally different ways of describing the way a beta decay
populates individual states in the daughter nucleus, namely branching ratios to
different energy regions and BGT values to different states. The direct counting
of measured intensity in different energy regions of the spectrum is completely
model independent but it cannot necessarily be compared directly to theoretical
models. The division of strength into different spin components and the individ-
ual contributing states on the other hand is much more interesting as seen from
a theoretical point of view. The extraction of this information from the exper-
imental spectrum however can be model dependent, as is seen in the following
where two broad interfering states both give important contributions. When the
involved states in the daughter nucleus are narrow, the two methods however are
directly related namely through the ft value.

The partial half life t1/2;λ for a beta decay to a state λ is directly related to
the beta decay phase space fβ and the transition matrix elements MF and MGT

for Fermi and Gamow-Teller decay respectively by:

fβt1/2;λ =
B

|MF |2 +
g2

A

g2
V

|MGT |2
=

B

BF +
g2

A

g2
V

BGT

, (3.2.7)

where the constants B = 6145(4) s and |gA/gV | = 1.266(4) have been determined
for example by Towner et al. (1995) and Schreckenbach et al. (1995). Further-
more since the investigated 12C states are isospin 0 states and the decaying nuclei
have isospin 1, the Fermi transition does not couple the states to any of the two
mother-nuclei.4 Because of this, BF in equation 3.2.7 is 0 and the relation sim-
plifies to

BGT =
g2

V

g2
A

B

fβt1/2;λ
(3.2.8)

allowing us to easily calculate the BGT value for these decays.

The phase space factor fβ is very energy dependent (fβ ∝ Q5 for Q ≫ mβc2)
but can be calculated to an accuracy of one per mill by using the parameter-
izations given by Wilkinson & Macefield (1974). This relates to the branching
ratios through

fβt1/2;λ = fβ

t1/2

BRλ
(3.2.9)

when the branching ratios to the individual levels BRλ are well defined experi-
mentally, that is when the contributing states are narrow. This is for instance
the case for the 12.7MeV state.

With this in hand, we can proceed to the case where the states are broad
and possibly even interfering and therefore cannot be easily separated. The first

4The lowest lying T = 1 state is at 15.11 MeV, and is not detected here. The branching ratio
to this state in the 12N decay is 4.4 · 10−3% and it primarily decays through gamma decay.
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possibility of dividing the spectrum into individual energy regions is done by
simply integrating the total decay probability defined as:

w(E) =
∑

ja

wja (E) =
∑

ja,c

wja
c (E) (3.2.10)

where ja is the 12C spin, and wja
c (E) is defined for each spin as in equation 3.2.1.

For convenience when calculating BGT values in the following, we choose the
global normalization constant C such that:

ln 2

t1/2
=

∫ ∞

0

w(E)dE, (3.2.11)

as done by Barker (1969). With this we get the branching ratios by integrating
over the region of interest (∆E) as:

BR∆E =

∫

∆E

w(E)dE
/∫ ∞

0

w(E)dE =
t1/2

ln 2

∫

∆E

w(E)dE (3.2.12)

Or for a single spin component ja:

BRja =
t1/2

ln 2

∫
wja (E)dE (3.2.13)

For branching ratios relative to a known state we scale with the partial half life
to that state instead of the total half life.

For contributions from individual states we will follow Barker & Warburton
(1988) in defining the decay probability to a state λ as:

wja

λ (E) = C2fβ

∑

c

Pc

∣∣∣∣∣
∑

µ

gja

λ,GT γja
µcA

ja

λµ

∣∣∣∣∣

2

(3.2.14)

where the summation over x = F, GT (equation 3.2.1) has been omitted for
simplicity, since the decays here are purely Gamow-Teller decays. As noted by
Barker & Warburton gλ,GT , γµc and Aλµ as used here must be calculated for the
set of R-Matrix parameters corresponding to Bc = Sc(Eλ). How to get these
values was described in section 3.2.1. The branching ratio to the state λ is then
calculated by integration of equation 3.2.14:

BRja

λ =
t1/2

ln 2

∫
wja

λ (E)dE (3.2.15)

This corresponds to the integral of the two dashed lines (λ = 1) and (λ = 2) in
figure 3.2.1. Note however that this is not an exact division of the total strength,
as can be seen in the figure, where the sum of the two is not an exact reproduc-
tion of the total strength function. In this case however the correspondence is
very good. Though not fully, equation 3.2.15 does take interference into account
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Figure 3.2.1: An example of two interfering states. The Hoyle state with its ghost
(1) and state at higher energy (2), both with Jπ = 0+. Dotted lines are the two
states in the single level approximation and an incoherent addition of the two; the
dashed lines are the individual state contributions as described in equation 3.2.15
and the sum of the two; whereas the solid line is the total intensity including the
full interference (equation 3.2.1). Note that this is not the best fit description
of the experimental spectrum, but should merely illustrate the properties of the
interference.

to some degree. This can be seen if we from the parameters corresponding to
level λ find its contribution to the total strength using the single level approxima-
tion (equation 3.2.3). This is shown in figure 3.2.1 where for example the Hoyle
state ghost (dotted line 1) is very pronounced. This has previously been used to
describe the individual level branching ratios (Barker, 1969), but as has more re-
cently been noted this is not a good approximation (Barker & Warburton, 1988),
which can as well be seen from the figure where it is evident that the two dotted
lines do not at all sum up to the total spectrum.

To the extent that
∑

λ BRja

λ ≈ BRja as described in equation 3.2.15 is a good
approximation, we can use this to calculate approximate values for the Gamow-
Teller matrix elements for the two beta decays to the individual levels. This is
also described by Barker & Warburton (1988). Following their argument5 we can

5Slightly modified to explicitly state the parameters we will need in the following analysis.
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see that the branching ratio (equation 3.2.15) can be rewritten to:

BRja

λ =
t1/2

ln 2
C2
(
gja

λ,GT

)2
∫

fβ

∑

c

Pc

∣∣∣∣∣
∑

µ

γja
µcA

ja

λµ

∣∣∣∣∣

2

dE

=
t1/2

ln 2
C2
(
gja

λ,GT

)2

f ja

λ Jja

λ (3.2.16)

with

Jja

λ =

∫
Pja

c

∣∣∣∣∣
∑

µ

γja
µcA

ja

λµ

∣∣∣∣∣

2

dE. (3.2.17)

if we define the average phase space factor f ja

λ for the state as:

f ja

λ =

∫
fβ

∑

c

Pc

∣∣∣∣∣
∑

µ

γja
µcA

ja

λµ

∣∣∣∣∣

2

dE
/

Jja

λ = Ija

λ

/
Jja

λ . (3.2.18)

Ija

λ will turn out to be convenient in section 8.6. When rearranging equation
(3.2.16) this yields the following relation for the “ft” value:

1

f ja

λ t1/2;λ

=
BRja

λ

f ja

λ t1/2

=
C2

ln 2

(
gja

λ,GT

)2

Jja

λ . (3.2.19)

When interpreting this “ft” value as an inverse of the BGT value according to
equation 3.2.8 we get the following BGT values:

Bja

GT ;λ =
g2

V

g2
A

C2 BJja

λ

ln 2

(
gja

λ,GT

)2

(3.2.20)

Each of these is again calculated for each level using the R-Matrix parameters
corresponding to Bc = Sc(Eλ) for that particular level. This means the BGT

value for a state µ relative to that of a state λ is found as:

BGT ;µ

BGT ;λ
=

|MGT ;µ|2

|MGT ;λ|2
=

Jja
µ

Jja

λ

g 2
µ,GT

g 2
λ,GT

. (3.2.21)

In the preceding the BGT were found by assigning an average f value for the
level λ and using this to calculate an “ft” value for the decay to that particular
level. We should however be aware that since the f -factor of the beta decay to
this state varies a lot over the energy range of the state, the ft value is not really
the beta phase space factor times the partial half life of the decaying nucleus to
that particular state as in the traditional understanding of the ft value. So the ft
value should rather be seen as just the inverse of the BGT to the state apart from
the scaling factor, and the most appropriate parameter to discuss for these broad
states is thus the BGT value. The final results presented in chapter 8 however
will be presented as absolute values of log ft, to allow a direct comparison with
previous measurements.
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3.2.3 Parameter restrictions

The BGT values denotes the strength of the coupling between two states by
the Gamow-Teller operator. The total Gamow-Teller strength from a nucleus is
denoted:

S(GT, β+) =
∑

λ

BGT ;λ(β+) and S(GT, β−) =
∑

λ

BGT ;λ(β−), (3.2.22)

for beta plus and minus respectively summed over all final states λ. Note here,
that it is the total strength, not only the strength within the available energy
window for beta decays, so for example strength for neutrino induced reactions
with negative Q value should be taken into account as well. The total strength
will always comply with the Gamow-Teller sum rule:

S−
GT − S+

GT = 3(N − Z) (3.2.23)

where N is the number of neutrons in the initial nucleus in the decay (or reaction)
and Z is the number of protons. This relation is exact as described for example by
Gaarde et al. (1980) and Goodman (1990) as long as all final states are included.

If we are to use this to place restrictions on one of the transitions, we must
know something about the other transition. This is the case for example for very
neutron rich nuclei, where there are no available single particle states for the β+

transition. Because of this, the β+ strength is very close to zero and the total
β− strength can be found from the Gamow-Teller sum rule.

In the decay of 12N, the situation is just the opposite though not as extreme.
This nucleus has N = 5 and Z = 7, and has therefore 3(N − Z) = −6. The
nucleus has in its ground state a filled 1s shell for both protons and neutrons
and furthermore 3 neutrons and 5 protons in the 1p shell, where 6 single particle
states are available for each of the two kinds of nucleons (4 × 1p3/2, 2 × 1p1/2).
This means that three states are available in the 1p shell for the β+ transition
whereas only one is available for the β− transition. This makes it reasonably safe
to assume that the β+ strength is significantly larger than the β− strength. To
be conservative, we will assume it to be a factor of two: S−

GT ≤ 1
2S+

GT , in which
case we get the following inequality for the β+ strength:

S+
GT = 2(S+

GT − S−
GT + S−

GT − 1

2
S+

GT ) = 2(6 + S−
GT − 1

2
S+

GT ) ≤ 12. (3.2.24)

This will prove useful in section 6.3.5.
The Gamow-Teller sum rule described above regards the beta decay into

12C states. For the decay of these states on the other hand, we can similarly
place restrictions on the decay matrix elements, the reduced widths: γ′

λα. The
reduced width of a state can be converted to the dimensionless reduced width
(Lane & Thomas, 1958, pg. 324):

(θ′λα)2 =

(
h̄2

µca2
c

)−1

(γ′
λα)2. (3.2.25)
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Here µc is the reduced mass of the two particle system in the outgoing channel
(in this case the 8Be + α system) and ac is the channel radius. This dimension-
less reduced width (θ′λα) cannot exceed 1 (the Wigner limit), since it may be
understood as the probability for decaying into this final state channel, when all
effects of phase space factors are removed. This restriction will as well be helpful
in section 6.3.5.

3.3 Broad exit channel

Having dealt with the case of a narrow outgoing breakup channel, we will pro-
ceed to the case where the breakup of a narrow state proceeds through a broad
intermediate state. This is for instance the case for the beta decay to the 12C
1+ state at 12.7MeV. This state cannot breakup through the 0+ ground state
of 8Be, since such a breakup would imply an L = 1 angular momentum for the
8Be+α pair yielding a change of parity in contradiction with all involved parities
being positive. The description here will largely follow that of Balamuth et al.
(1974) and Fynbo et al. (2003), though the notation has been adjusted to ease
the generalization to the description of a broad state in 12C decaying into a triple
alpha final state through broad intermediate levels of 8Be.

For a three body breakup it is convenient besides the laboratory system
~r1, ~r2, ~r3 to define a coordinate system ~R,~s1−23, ~s2−3 as done by Ohlsen (1965).
Here the three vectors respectively are the center of mass of the three particles;
the position of the first emitted alpha6 with respect to the remaining two; and
the position of the second alpha relative to the third. With these definitions, the
energy corresponding to the latter two coordinates are E1−23 and E2−3, yielding
E1−23 = Eλ −E2−3 with Eλ as the total energy of the three alpha particles, that
is the energy of the decaying 12C state. Ohlsen also describes how the pure three
particle phase space determined entirely by the statistical energy distributions
is proportional to

√
E2−3E1−23, if we assume that no physical interaction or

intermediate two particle states play a role.

With this we are ready to proceed to the interaction altering the three particle
phase space distribution. This can be described as a weight associated with any
point in phase space. This weight factor is found as

W (E2−3, Ω1, Ω1−23) ∝
∑

ma

|fjama,λ(E2−3, Ω1, Ω1−23)|2

where the point in three particle phase space is defined by the energy in the
secondary breakup, the direction of the first emitted alpha particle Ω1 and the
direction of the second breakup with respect to the first emitted alpha particle

6We will soon deal with the problem of defining which of the three was emitted first.
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Ω1−23. In this the amplitude f consists of an angular part and an energy part:

fjama,λ =
∑

mb

φ (Ω1, Ω1−23) ξ (E2−3)

φ (Ω1, Ω1−23) = (lmjbmb|jama)Y m
l (Θ1, Φ1)Y mb

l′ (Θ1−23, Φ1−23) (3.3.1)

ξ (E2−3) = (E1−23E2−3)
−1/4

ei(ωl−φl)
√

2Pl (E1−23)γ
ja

λα

· ei(ωl′−φl′) ρ
1/2
jb

(E2−3) ,

where ρ should be interpreted as

ρ
1/2
jb

(E2−3) =

√
2Pl′ (E2−3)γ

jb
καAjb

κκ (E2−3)
[∫∞

0 2Pl′
(
E′

2−3

) (
γjb

κα

)2 ∣∣∣Ajb
κκ

(
E′

2−3

)∣∣∣
2

dE′
2−3

]1/2
, (3.3.2)

Here ja, ma and γjb

λc refers to the spin and reduced width of the 12C state in play,
whereas jb, mb and γjb

κc refers to the properties of the intermediate state in 8Be
through which the breakup proceeds. In both cases we assume for the time being
that only one state contributes in each case. For convenience these are denoted
λ and κ for 12C and 8Be respectively. The angular momenta l and l′ are those
of the first and second breakup respectively. l′ is of course just the spin jb of
the intermediate state. For both angular momenta ωl −φl is the Coulomb minus
hard sphere phase shift corresponding to the two particle scattering. The Clebsch-
Gordan coefficients (lmjbmb|jama) and the spherical harmonics Y m

l (Θ, Φ) as a
function of the polar (Θ) and azimuthal (Φ) angles are both calculated using

the Cernlib program package (Shiers, 1996). With the above definition of ρ
1/2
jb

and because we assume only one contributing state with spin jb, ρjb
=
∣∣∣ρ1/2

jb

∣∣∣
2

is

simply the Breit-Wigner distribution of the 8Be state (equation 3.1.1) normalized
and taking into account the corrections from ∆ and the energy dependence of the
width as seen in equation 3.2.3. The energy at which the penetrability should
be evaluated is still the available energy of the first breakup, but since this now
depends on the energy available in the secondary breakup it depends on which
pair is assigned to be the 8Be alphas, and it must therefore be included in the
amplitude before taking the norm squared to get the weight.

3.3.1 Symmetrization and simulation

Usually the angular part and the energy part uncouple, and we are left with an
energy distribution and an angular distribution in the final weight. This is the
case in the decay through the 8Be ground state and was the reason why there was
no reason to worry about the angular distributions, since they uncoupled from the
energy distribution and furthermore they were isotropic since the intermediate
8Be state was a spin 0 state.

In the present case however the two distributions couple. This is because
there is one element missing so far in the description of the weight. This has to
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do with the question: Which of the three alphas are the first emitted alpha. The
answer to this is: There is no way of telling. This means that for a given triple of
alpha energies E1, E2, E3, any pair among the three can be identified as the 8Be
pair, so for any observed event we have three possible paths contributing to the
overall amplitude, and since they must be added coherently, the contributions
from the three paths interfere. For this reason the weight is actually given by:

W (Ei
2−3, Ω

i
1, Ω

i
1−23) ∝

∑

ma

∣∣∣∣∣

3∑

i=1

fjama,λ(E; Ei
2−3, Ω

i
1, Ω

i
1−23)

∣∣∣∣∣

2

, (3.3.3)

where i denotes the choice of the first emitted alpha, and all energies and angles
are defined according to that choice. The positive signs in this sum stems from
the fact that the alpha particles are bosons. Because of this the amplitude (under
the norm squared) must be symmetric under interchange of any pair of the alphas.

Because of this entanglement between the angular and energy distribution,
we cannot describe the weight as a simple product of one dimensional distribu-
tions, but must treat the entire three particle phase space at once. The total
weight distribution is here the product of W and the pure three particle phase
space, and is scaled to have a maximum of 1. This weight is best investigated
using a Monte-Carlo simulation where the three particle phase space is sampled
with the Von Neumann sampling method (Eidelman et al., 2004). Three parti-
cle breakups are therefore generated using the Cernlib routine Genbod. To
each generated breakup Genbod assigns the corresponding pure three particle
phase space weight allowing a calculation of the total weight at that point of
phase space. With this in hand we are ready to use the Von Neumann sampling
method where a random number x is generated from a uniform [0, 1] distribu-
tion. If the weight exceeds x the breakup is accepted as a physical breakup event.
Though not very efficient for distributions where sharp peaks come into play, the
Von-Neumann sampling is the best choice here, since the distributions are gen-
erally broad. Furthermore the distributions depend on the assumptions made on
the involved spin and angular momenta (ja, jb and l), so a sampling optimized
for one specific distribution is not applicable.

3.4 Phase space integrated spectrum

With the phase space distributions in hand, we are ready to proceed towards an
understanding of the spectrum in 12C for such a broad breakup channel. That
is, the spectrum for broad interfering states in 12C.7 As in the preceding section,
we will need the weight at any point of phase space but now for any sum energy
E of the three alpha particles. Once again we have fjama

as:

fjama
=
∑

jblmb

φ (Ω1, Ω1−23) ξ (E, E2−3) (3.4.1)

7In the development of this application of R-Matrix theory, I owe special thanks to Fred
Barker for his important help and feed back in the description as well as in notation.



3.4. Phase space integrated spectrum 31

except we must now as well sum over all possible spins (jb) in the intermediate
nucleus 8Be and different values of l in the case that more than one angular
momentum of the first breakup can contribute. From this we can again derive
the weight now as a function of the sum energy E as well, as long as we remember
the distortion from the beta decay phase space (fβ) and the possibility of more
than one contributing spin of 12C:

W (E, E2−3, Ω1, Ω1−23) ∝ fβ (Q − E)
∑

jama

|fjama,λ(E2−3, Ω1, Ω1−23)|2 , (3.4.2)

where the different spins of 12C are again summed incoherently. With this we
can calculate the 12C spectrum as a function of E by integrating over all the
other parameters.

In equation 3.4.1 the angular part (φ) is exactly as in the preceding section
whereas the energy dependent part (ξ) must now as well take into account the
energy distribution in 12C with contributions from different interfering states:

ξ (E, E2−3) = ei(ωl−φl)
∑

µλ

gja

λ,GT γja

µjblA
ja

λµ (E)
√

2Pl (E1−23)

· ei(ωl′−φl′) ρ
1/2
jb

(E2−3) . (3.4.3)

Here the dependence on E is through the penetrability Pl and the level matrix
Aλµ as was the case in the decay through the narrow 8Be ground state (equation
3.2.1). The level matrix however is not quite the same as before (equation 3.2.2).
It still has the same structure, but the channels c that we sum over are more
complicated. For the level matrix we will therefore use:

(
Aja(E)−1

)
λµ

= (Eλ − E)δλµ (3.4.4)

−∑jbl

∫∞

0 γja

λjblγ
ja

µjbl (Sl(E1−23) − Bjbl + iPl(E1−23)) ρjb
(E2−3)dE2−3,

where once again the boundary condition parameter is chosen such that ∆jbl is
zero at an energy E = Eλ for one of the 12C levels λ. In this case −∆jbl is the
real part of the integral.

3.4.1 Integration and symmetrization

We are now ready for the integration over the five coordinates, one energy and
four angles: E2−3, Θ1, Φ1, Θ1−23 and Φ1−23. This could be a terrible integral to
evaluate, since it is five dimensional and the integrated function is itself heavy to
calculate. There are however ways to make it at least somewhat simpler. Firstly,
we should note that since the 12C nucleus is not populated in a polarized su-
perposition of ma values, the first alpha is emitted isotropically, when averaging
over ma. This makes the integral over Θ1 and Φ1 contribute by just a factor
of 4π. Similarly the second breakup is uniform over the azimuthal angle Φ1−23,
contributing with just a factor of 2π. To ease the calculation further, tables are
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made of the real and imaginary parts of the integral in equation 3.4.4 for all pos-
sible combinations of ja, jb and l, excluding the constants γja

λjblγ
ja

µjbl, that may
differ from one level to the other. During the integration, the values are found
from interpolating in these tables, using a linear interpolation for the shift func-
tion (∆) and logarithmic interpolation for the penetrability (P). Similarly the
penetrability Pl(E1−23); the penetrability and shift function hidden in ρjb

(E2−3);
and the phase shifts ωl, φl are calculated using interpolation in tables created
before the integration is initiated. The remaining two-dimensional integration is
performed using dcuhre, an adaptive multidimensional integration routine by
Berntsen et al. (1991a,b).

As noted in the preceding, this integration is performed without symmetriza-
tion of the amplitude. What should actually be done is to symmetrize the am-
plitude and only then do the integration. The reason why this is not done is that
the integration is most conveniently formulated as an integration over E2−3, Θ1,
Φ1, Θ1−23 and Φ1−23, which assumes a specific alpha particle as the first emit-
ted, precluding the symmetrization. Though this has not yet been done, it could
prove possible to change the integration parameters by substitution, and thereby
integrate over the parameters x =

√
3 (E1 − E2) /E and y = (2E2 − E1 − E3) /E

these two parameters describe uniquely the three particle breakup, apart from
three angles describing the orientation in space which as above can be integrated
out by hand. The two parameters x and y will be discussed further in section
4.2.2 and chapter 7, since they are essential in the definition of the so-called
Dalitz plot.
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CHAPTER 4

Experimental setup

4.1 Production of radioactive isotopes

To use beta decay as a probe of the triple alpha continuum, we must be able
to produce the beta decaying isotopes and be ready to detect the breakup when
the nuclei decay. This is not straight forward since the half lives are just 11ms
and 20ms for 12N and 12B respectively (Ajzenberg-Selove, 1990). To handle such
short lived nuclei we use a technique developed during the last half of the 20th

century, the Isol method an acronym for Isotope Separation On-Line. The first
development of this method took place in Copenhagen at the Niels Bohr Institute
55 years ago (Kofoed-Hansen & Nielsen, 1951) where neutron rich Kr isotopes
were produced in fission, separated and the half lives of the isotopes and their
daughters measured. This was done for half lives down to 10 s and activity was
seen even for isotopes with a faster decay.

This method was in sharp contrast to the so-called Srafap technique1 where
the isotopes were handled by hand from production through separation to the
detection of their decay. Just two years earlier (Koch et al., 1949) the same group
was therefore limited to studying isotopes with half lives of the order of half an
hour, since this was the shortest time in which such a separation could be made.

1Students Running As Fast As Possible (Herrmann, 1988; Kronenberg, 2001).
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Reaction Target Beam Ions Time Yield
12C(p, n)12N 1400µg/cm2;12C 28MeV;25µA;p 0.11G 103h 300/s
11B(d, p)12B 500µg/cm2;11B 10MeV;10µA;d 0.85G 58h 4000/s

Table 4.1.1: Production reactions for 12N and 12B. Produced number of ions,
effective beam time and estimated yield is given for the part of the data presented
in the following chapters.

4.1.1 The Ion Guide technique

The Igisol separator at Jyfl in Jyväskylä (Äystö, 2001) is optimal for an ex-
perimental probing of the 12C continuum with beta decays of 12N and 12B. The
reason for this is that Igisol is the only Isol facility (figure 4.1.1) where beams
of both isotopes have yet been produced. Igisol is an abbreviation for Ion Guide
Isotope Separator On-Line and builds on an ion guide, where the isotopes are
produced as ions and guided directly to the experimental setup, avoiding the
typical ion source design where boron and nitrogen are easily trapped. Igisol

was therefore the first Isol facility to produce a 12N beam, and for 12B it is at
other Isol facilities (see e.g.: Diget et al., 2005) necessary to produce 12B via the
beta decay of 12Be.

The isotopes of interest are produced in a thin foil upon which a beam of a
light stable nucleus impinges. The production can therefore be very selective,
when target, beam and beam energy is chosen properly. The used reactions2 are
listed in table 4.1.1.

The primary beam is therefore accelerated in the k130 cyclotron at Jyfl to
the appropriate energy and shot on the thin target, as shown in figure 4.1.2. With
the thin target, the reaction recoil is enough to make the produced nuclei leave
the target as ions after which they are stopped in a helium buffer gas. When
stopped they are guided to the acceleration chamber by subsequent acceleration
voltages, where the beam is accelerated to a total of 25 keV. After this the
accelerated beam is led through a mass separator to the experimental setup as
shown in figure 4.1.1.

4.2 Detection: Coincidence measurements

The primary detector system (Äystö et al., 2002) consists of three detectors sur-
rounding a 12C foil of thickness 33 µg/cm2 and a diameter of 2 cm (figure 4.2.1)
in which the beam is stopped. When the stopped nucleus decays it will break
up into three α particles, if the 12C nucleus is populated above the threshold. In

2Besides the two isotopes decaying to 12C, 20Na nuclei were produced using the
24Mg(p, αn)20Na, with a 40MeV proton beam. Since beta decay of 20Na in some cases re-
sult in beta delayed alpha particles, this decay is used for testing calibration and geometry of
the setup as described in section 5.1.1.
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Figure 4.1.1: The Igisol separator (figure adapted from: Penttilä, 1998). Of
importance in this context is: 1) Ion guide; 2) Cyclotron beam line; 3) Beam
dump; 4) Acceleration chamber; 5) Dipole magnet; 6) Switch yard; and 11)
Experimental setup.

this case we make use of the fact that the three detectors are segmented and as
well have a good energy resolution. This allows us to detect more than one alpha
particle from a single breakup. The three detectors are furthermore placed close
enough to the foil to allow detection of all three alpha particles from the beta
delayed triple alpha breakups as indicated in figure 4.2.2. The efficiency of the
triple coincidence detection is around 2% as described in the following chapters.
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Figure 4.1.2: Igisol ion guide layout (figure from: Äystö, 2001). Note that in
our experiment the total acceleration energy was only 25 keV.

4.2.1 Detectors

The three detectors positioned roughly 3 cm from the decay point are all double
sided silicon strip detectors (DSSSDs) constructed of a 50mm×50mm silicon
wafer of a thickness around 60µm. All three have a thin implantation layer
on each side, doped to make front and back p-type and n-type respectively.
Here “front” refers to the side of the detector facing the foil. The implants are
separated in 16 strips on both sides of width 3.0 mm, where the front strips
are vertical and the back strips are horizontal. When a charged particle hits
the detector electron-hole pairs are created and the holes are attracted to the
front side by a negative voltage giving rise to a signal in the front strip that
was hit, likewise for the back strips in which the electrons give a signal. A thin
contact grid of aluminum has been deposited on each strip, and the amplitudes
of the resulting signals are transformed to energy signals and stored along with
parameters identifying in which strip the hit occurred. Typically several strips
are hit by different particles and the information describing those hits are stored
as a single event in the data structure. We can afterwards in the offline analysis
identify the position and energy of the measured alpha particles in the event as
described in chapter 5. For the two detectors facing each other, the contact grid
covers only 2% of the detector, making the detector dead layer dominated by
the doped inactive region of the silicon wafer. This yields an effective dead layer
equivalent to 100 nm of silicon. A detailed test of these DSSSDs have been carried
out recently by Tengblad et al. (2004) and is published along with a description
of the DSSSDs. The third detector is somewhat older and of a different design
where the contact grid covers the active regions completely yielding a total dead
layer of 630 nm. The response of this detector has been analyzed in detail by
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Figure 4.2.1: Detector setup, three thin DSSSDs backed by thicker beta detectors
surrounding a thin carbon foil. The arrow illustrates the incoming beam.

Thaysen (1999).

4.2.2 Three particle phase space coverage

As shown in figure 4.2.2 there are basically two ways of making a setup of three
such detectors. One where the three detectors are positioned like three sides of a
horseshoe and one where the two are positioned opposite to the third as indicated
in the figure. Before deciding which of the two setups to use it is good to get an
idea about the advantages and drawbacks of the two.

Such a comparison can be made using a Monte-Carlo simulation (Eidelman et al.,
2004), where three particle phase space is sampled allowing us to test the prob-
ability of detecting all three alpha particles with the two setups. The result of
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Figure 4.2.2: Two possible setups for three DSSSDs. Left: “horseshoe” setup,
right: “house” setup (top view).

this sampling is a scatter plot over three particle phase space for the phase space
distributed events as well as for the triple coincidence detections corresponding
to the two setups. For simplicity the detectors are assumed to have a 100%
efficiency and are placed 3.2 cm from the foil for the lower of the three (figure
4.2.2) and at a distance of 2.8 cm for the two remaining, making the solid angle
coverage identical for the two compared setups. No effects of low energy cutoffs
and identification of the alpha particle positions in the detectors are included.
Only the effect of the detector geometry.

To describe this detection efficiency over the entire three particle phase space
we need a convenient set of coordinates to plot. For this Dalitz (1953) has used a
plot of the two coordinates3: x =

√
3 (E1 − E3) /E and y = (2E2 − E1 − E3) /E

which has very nice properties, especially for three particle decays where the
three particles have the same mass. The breakup studied by Dalitz bears strong
similarities with the breakup presented here since what he studied was the decay
of a K meson into three pions whereas in this case we have an excited 12C state
decaying into a three alpha final state. In both cases a three particle breakup
and in both cases the three particles have identical mass. Though his description
is as well useful in other three particle breakups, this is why it is of particular
value in this case.

The so-called Dalitz plot seen in figure 4.2.3 have three very useful properties.
Firstly when y versus x is plotted, all possible three particle breakups will fall
in the equilateral triangle drawn on the central Dalitz plot. This property is
determined by energy conservation alone, because with his definition of x and y,
the distances to the three sides are exactly the three individual energies scaled by
the total energy as indicated. This allows us to directly identify how the energy is
shared between the three particles from just looking at the point in the Dalitz plot
corresponding to a given breakup the center will therefore correspond to an equal

3Note that Dalitz uses the convention E1 > E3 > E2 in his plotting. For convenience
E1 > E2 > E3 has been used here, resulting in an interchange of E2 and E3 compared to the
definitions of Dalitz.
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Figure 4.2.3: Dalitz plot for pure three particle phase space and triple coinci-
dences detected by the horseshoe and house setup respectively. The intensity
scale on the left plot is arbitrary, whereas for the two remaining it follows the
indicated scale.

sharing of the energy whereas the outer regions correspond to one or two of the
particles taking the most of the energy as illustrated in the plot to the right. Note
that this is a general characteristic of the Dalitz plot and thus applies to all three
particle decays no matter how the masses of the three particles are relative to each
other. The second property derives from momentum conservation which requires
for a breakup to three identical mass particles that all breakups must fall within
the circle which is clearly visible in the plots. Furthermore with this symmetry,
it is clear that the six slices of which one is shown in the rightmost Dalitz plot
are actually identical and correspond to just a different numbering of the three
particles. The third property is as well valid for three identical masses, and is
equally important. As Dalitz states, the distribution of the decays over the circle
is uniform if it is determined by a pure three particle phase space distribution.
This can as well be seen in the left plot where this phase space distribution is
plotted. This means that any deviation from a uniform distribution in the two
plots to the right are because of differences in detection efficiency.

As seen in the two efficiency plots, the overall triple coincidence detection
efficiency of the two setups are quite similar. There are however differences in
the efficiency when comparing individual regions of phase space. For the region
with equal sharing of the energy the house setup is the best whereas for an uneven
sharing the horseshoe is preferable. This in itself does not give any preference
to any of the two, but since the house setup has a more uniform efficiency over
three particle phase space the simulated efficiencies can be said to favor the
house setup. This is because one of the channels that we want to investigate
is the breakup through higher energies of 8Be and since we cannot a priori say
how such breakup events are distributed over phase space, we need a significant
efficiency at all possible energy sharings. In favor of the horseshoe setup is the
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fact that it is more efficient in the region of phase space where one alpha takes
as much of the energy as allowed by momentum conservation (the 8Be ground
state channel). This channel will be important to determine the degree of isospin
symmetry between the decays of 12B and 12N. Another more practical concern
is that it is easier to mount the horseshoe setup along with the other detectors
to be mounted (see the following).

The conclusion is that the reduction in detection efficiency in the central
region of the Dalitz plot of about a factor of two for the horseshoe setup is
acceptable compared to the other advantages of the setup, and the horseshoe
setup is therefore chosen as shown in figure 4.2.1.

4.2.3 Additionals

Backing the DSSSDs as indicated in figure 4.2.1, three silicon detectors are placed.
These have no segmentation and are of a sufficient thickness to allow detection
of the beta particles that go straight through the DSSSDs. Furthermore a ger-
manium gamma detector is placed outside the vacuum chamber as close to the
decay point as possible. The combination of these two makes it possible to not
only study the beta delayed alpha emission, but as well detect the beta delayed
gammas from the beta decays to the bound 4.44MeV 2+ state in 12C (see figures
2.1.2 and 2.1.4). In section 8.4 this will be used to identify the absolute branching
ratios from the known branching ratios to the 4.44MeV state.

In addition to these detectors, a segmented silicon hemisphere is included
in the setup (Bergmann et al., 2003a).4 The hemisphere has a radius of about
20 cm, and segments of 2 cm×2 cm and a thickness of 1 mm. With the distances
between decay point and detectors applied in this experiment, the hemisphere
has an angular resolution similar to that of the DSSSD pixels. During the data
analysis however it was concluded that the hemisphere has too significant beta
response to allow for a sufficient discrimination between alpha and beta particles.
Though it could be done, it was judged that the gained statistics was insufficient
to justify the systematic uncertainties introduced by the ambiguity in particle
identification.

To determine which data events to store on disk, different trigger settings are
applied during the experiment. In the greater part of the beam time the front
strip signals are triggering the data acquisition system, whereas from a small
part of the experiment, the backing beta detectors are as well used. The former
is the data described in the following chapter and analyzed in chapters 6 to 8
while the latter is only used for the beta-gamma coincidence detection yielding
the absolute normalization of branching ratios as will be mentioned in section
8.4. For all events, the energy signals are stored as well as are the timing signals
from the DSSSD front strips.

4Used as well in an experiment at Igisol immediately after our data taking
(Kankainen et al., 2006).
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CHAPTER 5

Data analysis

The data analysis contains two conceptionally different parts. Firstly the hand-
ling of the raw data set in which important physical distributions are extracted
(this chapter), and secondly the interpretation of these distributions in terms of
states in 12C and their breakup to the triple alpha continuum (chapter 6–8).

The first part given in the following is rather technical and includes calibration
of the detectors, single particle identification, triple coincidence detection and a
thorough analysis of the applied cutoffs.

5.1 Calibration

The response of each of the individual 3x2x16 strips in the setup must be cali-
brated, taking into account the dead layer of the detector. The calibration and
test of the calibration will be described in the following.

5.1.1 Online and offline sources

Three different alpha sources are used in the calibration, to ensure that all sys-
tematics are under control. A 148Gd source and a 241Am source are used for the
actual calibration, while a 20Na source is used for testing the calibration as well
as the setup geometry and the dead layer corrections derived from this geometry.

These three sources cover the range of alpha energies from about 2 MeV to
5.5MeV. The decay of 148Gd yields a single alpha, whereas alphas with many
different energies are emitted in the 241Am decays (Firestone & Shirley, 1996).
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Decaying nucleus 148Gd 241Am 241Am
α-energy (MeV) 3.182787(24) 5.44290(13) 5.48560(12)
Absolute branching 100% 12.8(2)% 84.2(8)%

Table 5.1.1: Calibration α energies: 148Gd and 241Am.

α-energy (MeV) 2.1504(19) 2.4796(21) 3.799(3) 4.4322(29)
Relative branching 100% 3.65(43)% 1.510(27)% 17.31(9)%

α-energy (MeV) 4.673(3) 4.885(3) 5.249(4) 5.698(6)
Relative branching 0.553(15)% 1.09(3)% 0.165(11)% 0.010(2)%

Table 5.1.2: Calibration test α energies: 20Na.

Of these only the dominating one is used in the calibration. However when
determining the energy channel corresponding to the dominant peak, knowledge
of the lower peak is included. In the 148Gd data as well as in the 241Am data, the
central energy channel of the peak is identified in a Gaussian fit to the individual
strip spectra. For the 20Na calibration test on the other hand eight different
alpha groups are used (Clifford et al., 1989). The 148Gd and 241Am sources are
standard offline sources placed in the chamber in front of the three detectors one
by one, while 20Na with a half life of 446 ms must be produced online as described
in section 4.1.1. When produced the 20Na beam is implanted in the same foil
as the one afterwards used for stopping the 12B and 12N beams. In this way
we can test that we understand the energy loss in foil and detector dead layers,
not only for the sodium decay data but for the boron and nitrogen data as well.
This emphasizes the strength of using an online calibration source, possibly in
addition to offline sources. Offline calibration was done at the beginning and end
of the experiment, while the online calibration was done between the boron and
nitrogen runs and repeated after the nitrogen run.

5.1.2 Source positions

Since the calibrations of all strips are very similar, the detector pixel being hit
by the alpha particle can easily be identified. At least for the calibration data,
where the typical event has one alpha hitting the detector in question besides
low energy noise in some of the strips not being hit by the alpha particle. This
can be seen in figure 5.1.1, where back strip energy channel is plotted against
front strip energy channel for the DSSSD3 241Am calibration data. To exclude
low energy noise a cut is placed around the diagonal, accepting only front-back
pairs that differ by less than 500 channels and have both front and back energy
channels above 700. For these identified hits, the pixel distribution is shown in
figure 5.1.2. This distribution can be described by assuming a isotropic emittance
from a point source somewhere in front of the detector taking into account the
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Figure 5.1.1: DSSSD3 241Am data, back strip energy channel vs. front strip
energy channel. Cutoff for front-back identification is shown.

Figure 5.1.2: DSSSD3 241Am data grid:
Number of events per pixel.

Figure 5.1.3: DSSSD1 148Gd data grid:
Number of events per pixel.
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Figure 5.1.4: DSSSD1 148Gd fit to data
grid: individual pixel contribution to
χ2

λ.

Figure 5.1.5: DSSSD1 148Gd fit to data
grid: fit excluding 4x4 pixels.

solid angle the individual pixel covers as seen from the point source. This solid
angle is proportional to z/r3 where z is the distance from the detector plane to
the source and r is the distance from the pixel to the point source under the
approximation that pixel dimensions are small compared to z. By fitting such
a distribution to the measured distribution, the position of the point source is
identified.

For DSSSD1 and DSSSD2 a few dead strips have been excluded from the
analysis. Apart from this, the analysis of the source position is analogous to that
of the DSSSD3 data. However one additional complication arises for DSSSD1.
As can be seen from figure 5.1.3, there are four 2x2 squares where the detected
intensity seems to be lower than what would be expected from a smooth distri-
bution. (Note that only 12 of the 16 pixels are actually seen, since the last 4
pixels lie in a malfunctioning strip.) And indeed if we fit the solid angle distri-
bution to this data set and investigate the contributions to the log-likelihood χ2

(χ2
λ), we see that these four regions have a significant contribution to the total

χ2
λ (figure 5.1.4). This effect has been studied by Thaysen (1999) and is caused

by the design of this particular DSSSD for which the inter strip separation is
larger in these four regions, resulting in these 16 pixels being slightly smaller.
This effect has been avoided in the design of the two new DSSSDs. Because of
this reduction the 12 pixels are excluded in the source coordinate fits as can be
seen in the fitted distribution shown in figure 5.1.5. With this fit in hand we can
estimate the reduction in active detector area for these pixels compared to the
remaining pixels. For the 241Am data the total number of counts for the 12 pixels
is 6021, whereas the number of counts expected from the fitted distribution is
6519, corresponding to an active area of only 92.4(17)% of the standard pixel
size. (The noted uncertainty neglects any uncertainties in the fitted distribution,
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Detector xi (mm) yi (mm) zi (mm)
DSSSD1 1.38(15) 7.72(20) 34.84(37)
DSSSD2 -3.09(10) 7.38(11) 28.79(19)
DSSSD3 2.46(7) 8.06(8) 25.28(13)

Table 5.1.3: Foil position relative to detector plane centers.

which is reasonable since the majority of the data lie within the fitted 212 pix-
els.) The 148Gd data has better statistics and is consistent with the 241Am data.
By combining the two the best estimate of the active area is determined to be
92.6(7)% of the standard pixel size.

In exactly the same way the source position in the three detector coordinate
systems can be found for the 20Na data, to illustrate the detector positions rel-
ative to the foil the coordinates are given in table 5.1.3. Here the xi and yi

coordinates are within the plane of the respective detector both relative to the
center of detector i, xi being the horizontal coordinate and yi the vertical. The
zi coordinate is perpendicular to the detector plane and is thus the distance from
the beam spot to the detector. The average precision of these is about 0.15mm,
significantly better than what could be achieved when measuring by hand.

5.1.3 Energy loss and dead layers

The energy deposited in the dead layer is about 25 keV for the new detectors
(DSSSD2 & DSSSD3) and 200 keV for the old detector (DSSSD1). This however
depends on energy as well as the impact angle of the alpha on the detector. In
addition to this, a similar energy loss is experienced when the decaying isotope
is implanted in the foil, yielding a foil energy loss of about 25 keV, with similar
variations as those of the dead layer corrections. To take these variations properly
into account, two different strategies are applied, one for the offline sources and
one for the online source.

To calibrate using the 148Gd and 241Am sources, we start by identifying an
effective position of the two peaks for each strip. Since we can assume that no
energy is lost in the sources, the first step in doing this is to calculate the dead
layer correction for each of the 16 pixels in the strip in question. From the source
position derived in the preceding, the impact angle of the alpha particle on the
detector is found, yielding the effective dead layer of the pixel as seen from the
source. From a Srim2003 (Ziegler et al., 2003) calculation, the stopping of the
alpha particle in the dead layer is found, yielding an effective peak position for
this pixel. By averaging over all 16 pixels, weighted by their solid angle coverage
as seen from the source, the effective peak position for the strip is found. Since
we now know the typical energy deposited in the active region of the strip, the
strip can be calibrated.

This calibration, is now used in the analysis of the 20Na data, to transform
the raw energy channel spectrum to a spectrum of the energy deposited in the
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Figure 5.1.6: 20Na alpha energy for
DSSSD1 and energy before foil energy
loss correction and dead layer correc-
tion. Tabulated energies shown as ver-
tical lines.

Figure 5.1.7: Total 20Na foil and dead
layer energy loss corrected spectrum.
Peaks used in the calibration test are
marked.

active region of the strip. By identifying which pixel was hit in the individual
event, the effective dead layer is known allowing dead layer correction on an
event-by-event basis. Similarly, from the impact point of the individual alpha
particle on the detector the angle of the emitted alpha with respect to the foil
can be deduced. From this and the energy of the alpha particle, the foil energy
loss can be deduced. It is important to consider the energy dependence of the
energy loss, so the alpha energy (Eα) after passing through a length x of material
is:

Eα(x) = Eα(0) −
∫ x

0

∣∣∣∣
∆E

∆x

∣∣∣∣
Eα(x′)

dx′

where ∆E
∆x is the energy loss per unit length for the material in question. Getting

this right is crucial for low energy particles especially, since the energy loss can
be a significant part of the total energy. This strategy is therefore applied to the
triple alpha breakup data discussed in the following chapters.

This correction is illustrated in figure 5.1.6, where the measured 2 MeV 20Na
alpha energy peak is compared to the energy loss corrected energies and the
tabulated energy. Since the effective thickness of both foil and dead layer is
different for the individual pixels in one strip, the correction for this on an event-
by-event basis, not only removes the energy loss bias in the raw data, but increases
the resolution as well, as can be seen by comparing the widths of the individual
peaks in the figure.
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5.1.4 Results

The total energy loss corrected data set for 20Na is shown in figure 5.1.7. All
energies are extracted from front strip energies and agree with the measurements
of Clifford et al. (1989) within 10–20keV. The peaks have been fitted to Gaussian
distributions yielding a root mean square (rms) width σ of 30 keV corresponding
to a single alpha full width at half maximum (fwhm) resolution of 70 keV. No
significant energy dependence in the resolution is seen.

In addition to the precision and resolution, directly used in the following data
analysis, a few important aspects of the 20Na data should be noted. Firstly, the
measured relative branching ratios of the eight alpha groups are consistent with
those listed in section 5.1.1, but since we have less statistics this data set gives
no significant improvement of the relative branchings. One thing however can
be concluded: As expected our single alpha energy detection efficiency is inde-
pendent of energy in the measured 2–6 MeV energy range. With regards to the
individual alpha groups, special attention should be drawn to the 2.5MeV group,
since it was measured by Clifford et al., but for some reason was not included in
the eighth edition of the Table of Isotopes (Firestone & Shirley, 1996). With this
confirmation it is unavoidable in future nuclear tables. A third characteristic of
the spectrum is the broad structure just above 3 MeV. This alpha group has a
very sharp low energy cutoff for a state as broad as the one giving rise to this
alpha group. As will be shown in the coming chapters such an abrupt cutoff of-
ten indicates interference between two broad neighboring states of identical spin
and parity. Thus for a proper description of the details of the 20Na spectrum,
inclusion of interference effects will most likely be needed.

5.2 Cutoffs and single particle identification

In this experiment we measure triple alpha coincidences in a 96 channel setup
only covering 4π solid angle partly. This makes detection efficiencies a bit difficult
to handle, and special care should be taken, since it will depend on the relative
directions of the three alpha particles. To describe these dependencies properly,
Monte-Carlo simulations will be made in chapter 6. For such a simulation to
be correct however, it is necessary to have all single particle detection cutoffs
and cutoffs introduced in the data analysis under control. In the following, the
different cutoffs will be determined or defined.

5.2.1 Geometric detector coverage

With the setup described in section 4.2 and the detector-foil distances in table
5.1.3 the three detectors each cover roughly 10% of 4π. From this 9 of the 96 strips
have been excluded, either because they were dead (section 5.1.2), because they
were partly shaded by the foil holder (figure 4.2.1) or because of bad resolution
or calibration, such as the strips identified in section 5.2.4 below.
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Figure 5.2.1: 12N data, uncalibrated
energy channel for a single strip. In-
set shows zoom at low energy and the
applied low energy cutoff for this par-
ticular strip.

Figure 5.2.2: Time relative to trigger
for one strip. The events around chan-
nel 650 are the events triggered by this
strip.

In addition to this, the reduction of the active detector region (section 5.1.2)
for the 16 pixels in DSSSD1 must be taken into account in the coming simulations.

5.2.2 Single strip low-energy cutoff

A low energy background is unavoidable, it arises from a combination of beta
response and electronic noise in the setup. For this analysis there is no need
to distinguish between the two, and it will be referred to simply as the low
energy noise. For each strip a proper cutoff is chosen to cut away the majority
of the noise. Such a cutoff is shown in figure 5.2.1 for a single strip. Choosing a
reasonable cutoff value is always a question of weighing the complications arising
from letting noise signals into the analysis against the drawback of cutting away
real data. As will be seen in the following, other methods can be used here
to distinguish between noise signals and physical data, so the implications from
noise can be dealt with, and the cutoff is chosen to accept some noise. As seen
in the figure, a typical cutoff is the channel with about ten times the number of
counts around channel 250.

5.2.3 Trigger levels from TDC gated events

Where the low energy cutoff defined above sets the lowest possible energy for a
detected particle, the trigger level basically sets the lowest possible energy for
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Figure 5.2.3: Energy in a single strip from events triggered by the strip. 12N and
12B data are compared for this strip.

the highest energy particle in the event. That is: both will influence the low
energy cutoff for the triple events, making it essential to have a well defined and
identical trigger level for data analysis and simulation.

To make sure the trigger thresholds are under control, the TDC time spectrum
is plotted. This spectrum shows the time of a given strip signal relative to the
trigger time of the event in question. For all events where the strip we are
investigating is the one triggering the event, the TDC signal will end up in a
very narrow peak. This is seen in figure 5.2.2, where the trigger peak is easily
recognized close to channel 650.

When it is known, that a given strip was the one triggering the event, the
energy of that strip is interesting from a triggering point of view, since that energy
must be above the trigger threshold. Such a single strip trigger energy spectrum
is shown in figure 5.2.3, for a strip in both 12N and 12B data. As illustrated, a
rather conservative value for the trigger threshold is applied.

TDC signals and triggers are included in the data acquisition for front strips
only, and not all front strips have as clean TDC spectra as the one showed in
the figure. The trigger peak however can be recognized for all the front strips
included in the analysis, and an upper limit for the trigger threshold is found
for all strips. Though not all strips exhibit as pronounced a difference when
comparing boron and nitrogen as the strip shown here, the effect is general and
comes from the fact that electronic noise was stronger during the days of nitrogen
data taking compared to the boron data taking. This noise difference results in a
lower triple alpha energy cutoff for the boron data as will be seen in the following.
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Figure 5.2.4: DSSSD2 calibrated front-back identification plot. 20Na data to the
left, 12N data to the right.

5.2.4 Front-back identification of alpha particles

With the calibration in place, the front-back identification of the activated pixel
can be performed with a stronger requirement on the difference between front
and back energy. Such an identification plot is shown in figure 5.2.4. The final
identification cut applied accepted only front-back pairs with an energy difference
less than 80 keV. As before, such an identified pair corresponds to a particle
depositing its energy in a single pixel. In the following this will be denoted a hit.

As noted in section 5.1.4 the single alpha energies are taken from the front
strip energies. Thus to test the back strip energies, we compare front-back en-
ergies on a strip by strip basis. Such a comparison is shown in figure 5.2.5 for
a single back strip. This 20Na plot includes only the dominating 2.15MeV peak
and is produced with a slightly larger acceptance in front-back energy difference.
The plot clearly shows a roughly 30 keV offset in the back strip in DSSSD1.
When investigating the corresponding plots for all DSSSD1 back strips for dif-
ferent parts of data set, it is seen that the effect is present for all strips and for
all parts of the data. Consequently the DSSSD1 back strip data is shifted up by
30keV.

No overall offset is seen for the back strip in DSSSD2 and DSSSD3, but for
two of the front strips the front and back energies do not coincide. This is as well
seen when investigating the other back strips, and since the effect turns out to
be less pronounced for the 4 MeV peak it indicates a nonlinear energy response
for the two front strips, consequently the two strips are discarded.
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Figure 5.2.5: 20Na data, 2.15MeV peak. For a single back strip in the three
detectors, the energy difference (∆E = Efront − Eback) between measured front
and back energies is plotted for individual front strips.

5.3 Triple alpha detection

With single alpha detection under control, the next stop in the analysis process
is identifying triple coincidences. If a given event has less than three hits, it is of
course irrelevant with regards to triple coincidences, but if it has three or more
hits, several different combinations may form possible triples. The following deals
with this ambiguity, using the sum momentum for the three alpha particles. This
sum should be zero for real triple alpha events when recoil from the beta decay
is neglected. As will be shown in the following (section 5.3.2) this recoil is indeed
small.

5.3.1 Momentum and beam spot positions

However before doing this, we will take a brief look at the three projections
of the sum momentum px, py and pz. In section 5.1.2 we identified the beam
spot position relative to the detectors from the 20Na data. With this position
relative to the pixels hit by the individual alpha particles and knowledge of the
amount of energy deposited in the pixel we can calculate the momentum of the
individual particles. Given these three momenta we can calculate px, py and pz

for their sum momentum, with x and y being horizontal and vertical in the foil
plane and z being perpendicular to the foil plane. The setup illustration in figure
4.2.1 gives an overview of how this foil plane is positioned relative to the three
detectors. The momentum projections with these assumptions are shown in the
upper frames of figure 5.3.1

The beam spot position discussed in section 5.1.2 however was for the 20Na
data and there is no reason to assume that the position should be exactly the
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Figure 5.3.1: Sum momentum projections px, py and pz for 12N data. Upper
row: Momentum reconstruction assuming same beam-spot position as for 20Na
data. Lower row: Beam spot moved within the foil plane.

same for the 12N data or the 12B data for that matter. Since the beta decaying
nucleus and thereby the intermediate 12C is at rest in the lab frame, at least
on average, all three momentum projections must be zero on average. This is
certainly not the case if we assume the beam spot positions to be identical, as can
be seen in the upper frames of figure 5.3.1. However if we allow a displacement
of the beam spot for the 12N data relative to the position for the 20Na data and
thus assume the beam spot to be shifted by 2 mm in the right direction within
the foil plane all three projections are zero on average as seen in the lower three
frames of figure 5.3.1. This demonstrates that the momentum projections are
very sensitive to the detailed assumptions on the geometry.

5.3.2 Total energy and momentum

Now returning to the total momentum: Since we will use the total momentum
of the three alpha particles to discriminate between true triple alpha events and
triples where at least one of the three is a background hit, we must be sure that
the intermediate 12C nucleus is essentially at rest before the breakup. “Essentially
at rest” is a very accurate description as will be seen in the following where we
will investigate the small recoil from the emitted beta particle and neutrino in
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the decay to the intermediate 12C state.
The recoil momentum distribution for a given Q value is found from the beta

energy distribution and the distribution of the relative angle between the two
leptons emitted in the decay. These two distributions should be integrated over
all energies and angles contributing to a given recoil momentum. The easiest
way to perform this integration is to sample the energies and angles according
to their distributions. To do this, the cumulative distribution function (cdf) for
the energy distribution must be found, and for any such energy the angular cdf
is as well needed.

For a given beta decay Q value, the beta energy distribution can be found
from the phase space of beta and neutrino. This distribution may be modified by
the Coulomb attraction (repulsion) between the nucleus and electron (positron).
For high Q values and low nuclear charges however the Coulomb interaction can
be neglected. When this is done, the probability density function (pdf) in kinetic
energy is proportional to:

W (Tβ)dTβ ∝ (T 2
β + 2Tβmc2)1/2(Q − Tβ)2(Tβ + mc2)dTβ (5.3.1)

where m is the electron mass, Tβ is the kinetic energy of the beta particle which
makes Q − Tβ the energy of the (anti)neutrino (Krane, 1988). The cdf is then
found by normalizing and integrating the pdf.

For any such energy Tβ , the angular correlation between the two leptons is
given by Hamilton (1947):

Wc(Ωβν)dΩβν ∝
(

1 + a
pβc

Eβ
cos (θβν)

)
dΩβν (5.3.2)

Where pβc =
√

E2
β − m2c4 is the beta particle momentum, Eβ = Tβ + mc2 is

the total energy of the beta particle and a, for a pure Gamow-Teller decay such
as this, is − 1

3 . Integrating over the azimuthal angle φβν , substituting to the
dimensionless variables x = cos(θβν), w = Eβ/mc2 and normalizing yields:

Wc(x)dx =
1

2

(
1 − 1

3

√
w2 − 1

w
x

)
dx

From this pdf the corresponding cumulative distribution function can be calcu-
lated by integration:

Fc(x)dx =
1

2
(x + 1) − 1

12

√
w2 − 1

w

(
x2 − 1

)
dx

With these two cdfs in hand, a uniform random number generator such as TRan-
dom in the Root package (Brun & Rademakers, 1997) can be used to sample
the energy-angle parameter space. This is straight forward since the inverse cdf
F−1

c (X) of a uniformly distributed stochastic variable X is distributed according
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Figure 5.3.2: Sampled distribution of recoil momentum of a mass 12 nucleus in
beta decays with Q values ranging from 1 MeV to 9 MeV.

to the corresponding pdf Wc. From any such pair of energy and relative an-
gle in the sample, the recoil momentum can be calculated. The sampled recoil
momentum distributions are shown in figure 5.3.2.

As will be seen in the following, a typical recoil momentum of 5 MeV/c, as is
read from the plot, does not dominate the total momentum distribution. The left
frame of figure 5.3.3 shows the total momentum distribution peaking around 15–
25MeV/c. The effect of daughter nucleus recoil is therefore modest, and the total
momentum may be an efficient parameter in discriminating between true triple
alpha events and false triples where at least one of the three was a background
hit.

In an event with at least three hits, the hit with the highest energy is as-
sumed to be a true alpha particle, and the other two particles are taken as two
of the remaining hits. For all possible choices of these last two particles, the
total momentum of the triple is calculated, and the different combinations are
compared. Such a comparison is shown in figure 5.3.3 where total momentum
versus total energy for the three particles are shown for the lowest momentum
triple and the second lowest momentum triple in any event. As seen in the figure,
the total momentum is a good parameter to discriminate between true and fake
triple alpha events, and the cut shown in the figure is applied. This cut requires:
Esum >1MeV and psum < 15 MeV/c + 160

8 Esum/c and psum < 80 MeV/c. This
will significantly reduce background in the final 12C energy spectra.
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Figure 5.3.3: 12N data, absolute value of sum momentum versus sum energy for
three hits in one event. Left frame shows the triple with lowest sum momen-
tum whereas the right frame shows the triple of second lowest momentum, both
requiring the highest energy hit to be one of the three.

5.3.3 Reconstructed 8Be energy

Since the 12C states in question may break up through the sequential breakup:
12C∗(, α)8Be(, α)α the intermediate 8Be energy is an important parameter. It
is therefore necessary to reconstruct this energy from the three individual alpha
particle energies.

The kinematics of reactions with a three body final state have been analyzed in
detail by Ohlsen (1965). With a slight modification of his arguments two different
coordinate systems are very useful: One is the center of mass system of the
original 12C∗ nucleus, another is the center of mass system of two of the emitted
alpha particles. The definition of the second coordinate system leads inevitably
to the question: Which two alphas should we choose? This question will be
addressed in a moment, since the answer is seen from the following analysis.

Assume a numbering (α1, α2, α3) of the detected alphas and that α1 is the
one being emitted in the 12C∗(, α)8Be decay. We may find the energy of the
intermediate 8Be relative to the triple-alpha threshold (E8Be) from the fact that
a 8Be nucleus and an alpha particle will share the available kinetic energy as 1:2,
that is:

Eα1
=

2

3
(E12C∗ − E8Be) . (5.3.3)

The two remaining alpha particles share the remaining energy, leaving on average

Eα =
1

6
E12C∗ +

1

3
E8Be (5.3.4)
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for each of the two. The second method uses the relative momentum of the
two alpha particles from the 8Be breakup. The momentum of both of the two
alphas in their common center of mass is ~p2−3 = 1

2 (~p2 − ~p3) (except from a sign
difference). From this we can find the available energy in the 8Be breakup as:

E8Be = 2
~p2−3

2mα

2

. (5.3.5)

With both methods we can reconstruct the 8Be energy, since the remaining pa-
rameters are direct observables in the triple coincidence measurements. The two
methods are compared in figure 5.3.4, where it is evident that although they
both reconstruct the 8Be energy to be the ground state energy of 0.0918 MeV
(Tilley et al., 2004), their response to the uncertainties in the measured energies
and positions are very different. This results in a bias for the first reconstruction
method and a significantly larger spread (a factor of 3–4) compared to the second
method. When comparing the upper right and lower left frames it is clearly seen,
that the 8Be ground state channel is a very important channel. And furthermore,
since the 8Be ground state energies (upper right frame) and the energies in the
lower left frame are clearly separated in energy, the assumption of the two low-
est energy alphas being the two 8Be alphas is a safe assumption to make when
identifying the events from 8Be ground state break up.

The events with a reconstructed 8Be energy within 60 keV from the ground
state energy are considered to be events from this breakup channel (illustrated in
the upper right frame), whereas events with a reconstructed 8Be energy higher
than 200 keV must originate from another breakup channel referred to as the 8Be
excited state channel.

5.4 Power and acceptance of cutoffs

In the following, the power and acceptance of the applied cutoffs will be ad-
dressed. The power of a cutoff being understood as a measure of how powerful
the cutoff is in rejecting background events: The part of background to be let
through the cutoff. The acceptance, on the other hand, should be understood as
the cutoff’s ability to accept the data of interest. This is basically a hypothesis
test as described by Barlow (1989). The relevant hypothesis being for example:
This triple is a physical triple of alpha particles. A cutoff can be seen as a test of
this hypothesis. As in any other hypothesis testing, errors will inevitably occur.
Both true events being rejected (type I errors) and false events being accepted
(type II errors). With this parallel in mind, the acceptance of the cutoff is basi-
cally the significance of the test, namely its ability to avoid type I errors. The
power of the cutoff on the other hand is its ability to avoid type II errors.

For an understanding of the power, the background data rejected by each
cut is described as well as the background let through to the final spectra. The
acceptance on the other hand is investigated by studying the individual cutoffs
effect on simulated data.
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Figure 5.3.4: Upper left frame shows the reconstructed 8Be energy as found from
equation 5.3.3 assuming the two lowest energy alphas to originate from the 8Be
breakup. The energies in the upper right and lower left frames are reconstructed
using equation 5.3.5. The same is the case for the energies plotted in the lower
right frame, with the difference, that the first alpha emitted in the decay is not
assumed to have the highest energy. The true energy of the 8Be ground state
(0.0918MeV) is indicated as a dashed line.
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Cutoff Exp. data Sim. 8Be(gs) Sim. 8Be(ex)
None 12,454,780 1,000,000 200,000
Low energy 657,949 186,462 76,463
Front-back id. 461,393 169,917 70,301
Trigger 149,861 169,917 70,092
At least 3 hits 16,048 30,727 3,572
Sum E and p 15,772 30,727 3,571
8Be ground state 12,225 30,694 17
8Be excited state 3,503 0 3,538

Table 5.4.1: Number of events accepted by individual cutoffs. Data as well as
simulations for both a breakup through the 8Be ground state with 3 MeV in total
energy and the breakup of the 12.7MeV 1+ state through the 8Be 2+ state.

The first step in understanding the cutoff power and acceptance is to under-
stand how much data is let through each cut until arriving at the final spectra. In
table 5.4.1, the total number of events is shown along with the number of events
let through each consecutive cutoff. This is shown for the actual 12N decay data
as well as for Monte-Carlo simulations of 8Be ground state events from a break-
ing 12C at 3 MeV above threshold and for the breakup of the 12C 12.7MeV 1+

state through the 8Be 2+ excited state. Though these simulations will not be
described in detail until sections 6.2 and 7.3, the individual cutoff acceptances
are given here for a coherent description of the cutoff effects. The effect of the
cutoffs on experimental data is used for determining the cutoff power, whereas
the effect on the simulated data is used to describe the cutoff acceptances and
in particular the total acceptance: The energy dependent triple alpha detection
efficiency.

5.4.1 Cutoff acceptances

For the simulated data, the number of events shown corresponding to no cutoffs
is the total number of generated events. It is clear from table 5.4.1 that the one
cutoff with the lowest acceptance is the requirement that a given event must have
at least three hits. This is the restriction to only analyze triple coincidence data.
Besides this, the identification of front strip — back strip pairs does cut away
some data, though not more than 10%. For these energies the trigger threshold
is not important, though for lower energies in 12C the acceptance of this cut is
decreased. The total detection efficiency is found by comparing the total number
of generated events to the number of events in the channel of interest. In the two
examples above the efficiencies are 2.7% for the 8Be ground state channel and
1.8% for the 8Be excited state state channel.
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5.4.2 Cutoff power and background estimates

From table 5.4.1 alone, the power of the triple coincidence method is clear: Much
of the inevitable background, as seen in the total number of analyzed events, does
not comply with the triple coincidence requirement and the other cutoff used.
The question is now: How much remains.

The background in the 8Be ground state data can be estimated by investi-
gating frame two of figure 5.3.4. In this plot we see a few events to the right
of the 8Be peak. This should be considered a potential background. However
since the distribution of these events seems to thin out when lowering the energy,
it is reasonable to assume we can give an upper limit to the number of such
background events in the 8Be ground state region. Between 200keV and 260keV
we have 25 events corresponding to an upper estimate of 50 events in the region
30keV to 150keV. This should be compared to the total number of 8Be ground
state events of: 12225. Furthermore it is seen by investigating the 12C energy
distribution of the 260–200keV events that this distribution is not too different
from the corresponding distribution of the 8Be ground state events. This shows
that, neglecting the effect of this background is a good approximation.

For possible background in the 8Be excited state channel the first approach is
to investigate the background indicated by the energy-momentum plot in the left
frame of figure 5.3.3. Since the momentum distribution for the removed events
is reasonably uniform, an estimate of the background in the accepted region
can be found by shifting the momentum down by 80MeV/c and applying the
sum energy-momentum cutoff to these shifted events. This gives the sum energy
distribution shown in figure 5.4.1.

Another way of estimating the background distribution is by mixing different
events, that is: For two given hits in one event taking the third hit from other
events. This can happen experimentally if two physical breakups are recorded as
one event by random coincidence because of too high count rate. The method of
event-mixing however has the additional advantages that mixing with low energy
background is included as well and that no true alpha triples are included, giving
a possible background spectrum. The intensity scale on such spectrum however
is of course arbitrary, and it will have to be scaled according to the data. This
can be done by comparing the energy-momentum plot for the actual data (figure
5.3.3) to the corresponding plot for the event mixed data. This has been done
for the momentum range from 80MeV/c to 100MeV/c. Yielding the scaled plot
shown in figure 5.4.2.

The first background distribution yields an estimate of roughly 150 whereas
the second gives an estimate of 75. Note that it is reasonable to assume these
estimates to be conservative. Assuming 100 to be a good estimate and comparing
this to the original 107 events, it yields a power of 1 − 10−5 for the complete set
of cutoffs.
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Figure 5.4.1: Background energy dis-
tribution estimate for the 8Be ex-
cited state channel, found from energy-
momentum data plot.

Figure 5.4.2: Scaled estimate of back-
ground energy distribution for the 8Be
excited state channel, found through
event mixing.

5.4.3 Triple versus double coincidence detection

If we only require two alpha particles to be detected we are dealing with double
coincidence events. With such an event, the energy and momentum of the unde-
tected alpha particle can be deduced from conservation of momentum since the
recoil from the beta decay is very little (as described in section 5.3.2).

As described in the analysis of a previous experiment (Diget et al., 2005)
however, triple and double coincidence events yielded consistent results, with the
main difference that the double coincidence events are more abundant, reducing
the statistical error. An analysis of such data however have no energy-momentum
cutoff, and the power of the applied cutoffs for triple coincidence events is there-
fore higher than the power of the cutoffs applied to get double coincidence data.
The systematic uncertainties in this data set is therefore expected to be higher
than those for the triple coincidence data. Since it will be clear in the following
(section 6.3) that the statistical uncertainties are in general not dominating, in-
cluding a data set with higher systematic uncertainties and better statistics will
not yield a significant improvement to the overall results. For that reason only
triple coincidence data will be analyzed in the following chapters.
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5.5 Energy spectra

The triple coincidence data is shown in figure 5.5.1 for 12N beta delayed breakup
and in figure 5.5.2 for 12B. The complete breakup data including both the 8Be
ground state channel as well as the 8Be excited state channel is shown. This
“Fynbo plot” was first used in 2000 (Fynbo et al., 2000), and is very illuminating
when studying a breakup where two or more breakup channels are possible. This
stems from the way kinematics are displayed in such a plot. The plot is a scatter
plot of the deduced 12C energy versus the three individual alpha energies. That
is: A single event will thereby yield three dots on a horizontal line. If the breakup
channel is a narrow state in 8Be, equation 5.3.3 shows the linear relation between
the 12C energy and the energy of the first emitted alpha, which is clearly visible
in the data. This relation is plotted in the figures as a line with slope 3/2 crossing
the Esum axis in 0.0918MeV. The two remaining alphas sharing the remaining
energy are visible as well, centered around a similar line with slope 6. With these
scatter plots, many of the physical properties examined in the coming chapters
can be seen by first glance. One aspect is the very pronounced structure around
10MeV in 12C clearly decaying through the 8Be ground state channel and in
addition to this the 12.7MeV 1+ state in 12C evident not only in the 12N data
but in the 12B decay as well. The fact that it is a 1+ state is immediately visible,
since it cannot decay through the 8Be 0+ ground state (conservation of spin and
parity), but must decay through another channel, seen by the completely different
sharing of the energy between the three alphas. A third group of breakup events
is seen between the two sloped 8Be ground state contributions around 10MeV
in 12C. This is the breakup through excited states of 8Be. The 7.65MeV Hoyle
state is not seen in any of the data sets because of low energy cutoffs.
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Figure 5.5.1: To the left: Fynbo plot of 12N beta delayed triple
alpha breakup. Right hand side is a projection onto the Esum
axis.

Figure 5.5.2: Equivalent to figure 5.5.1, but for 12B beta delayed
triple alpha breakup.
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CHAPTER 6

Breakup through the 8Be ground
state

6.1 Energy spectrum

As shown in section 5.3.3 the reconstructed energy of the intermediate nucleus
8Be can be used to select events with the 8Be 0.0918MeV 0+ ground state as
breakup channel. With this selection, we see two significant contributions to the
spectrum. One around 10MeV and one around 13MeV. Both broad contribu-
tions. This is shown in figure 6.1.1 and 6.1.2. The spectra on the right frames
are the ones to be compared to the R-Matrix description, which through fitting
will give information on the physical parameters of interest.

6.2 Monte-Carlo simulations

In any experiment, knowing the response of the applied detector setup is crucial.
A simple case, is detection of the energy of a single particle with a detector having
a constant known detection efficiency in the energy range of interest.

In coincidence detection experiments, such as the experiment presented here,
the situation is more complicated. The trigger and low energy threshold for
example are not identical. With these thresholds, and other cutoffs, we disturb
the spectrum. And even worse, since the energy of the three individual alpha
particles depend not only on the 12C energy but as well on the way the three
alphas share the energy, the way thresholds effect the detection efficiency depends
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Figure 6.1.1: Fynbo plot of 12N beta delayed triple alpha breakup
through the 8Be ground state.

Figure 6.1.2: Equivalent to figure 6.1.1, but for 12B beta delayed
triple alpha breakup.

on the breakup channel. Similarly for the geometry: Since our detector setup
does not cover all of 4π solid angle, the triple coincidence detection efficiency
depends on the relative angles between the three particles and thereby depends
on the breakup channel.

The only feasible method for dealing with these effects properly is Monte-
Carlo simulations, where triple alpha breakups are simulated for different 12C
energies and different breakup channels. This allows a quantitative analysis of the
response of the detector setup in combination with the cutoffs applied through the
analysis. In the following, such an analysis will be presented for the 8Be ground
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state channel. For the 8Be excited state channel the corresponding simulations
are presented in chapter 7.

6.2.1 Efficiency, resolution and bias

There are three important steps in such a Monte-Carlo simulation. Firstly a
physical description of the breakup process; secondly the effects of the experi-
mental setup; and finally the importance of the data analysis procedures applied
to the experimental data.

For a given 12C energy, the energy of the first emitted alpha particle can
be found from equation 5.3.3. The direction of this emission follows an isotropic
distribution in the laboratory system, since the 12N/12B beam was not polarized,
thereby producing a non polarized intermediate 12C state. The direction of the
subsequent 8Be breakup relative to the direction of the first alpha is isotropic as
well, because the intermediate 8Be ground state has spin 0 and can therefore not
be polarized. With this the energy of the two secondary alpha particles can be
found by transforming from the 8Be center of mass to the laboratory system i.e.
the 12C center of mass system.

When the energies and directions are calculated for all three alpha particles
the geometry of the setup allows us to analyze which strips were hit by the al-
pha particles. Before the detected energies are saved however it is necessary
to correct for the energy loss in the foil and the dead layer of the detectors.
The energy loss in the foil depends on the implantation depth of the decaying
nucleus. This implantation depth distribution is taken from a Srim2003 calcu-
lation (Ziegler et al., 2003) or rather an analytical form reproducing the overall
shape and especially the mean, width and skewness.

With the energy deposited in each strip have thus been calculated, the indi-
vidual strip calibration and resolution can be used to generate a simulated event.
Such events are then analyzed through the exact same analysis routines as was
the data, ensuring that all cutoffs are treated in the exact same way for simula-
tion as was the case for the data. This analysis gives for a 12C input energy of
3 MeV the simulated 12C energy spectrum seen in figure 6.2.1. From this and the
total number of simulated events at this energy, the efficiency, Esum resolution
and possible bias can be found. In addition, the acceptance after each cutoff can
be found by probing the number of events accepted by each cutoff throughout
the analysis as discussed in section 5.4. In figure 6.2.3 the efficiency, fwhm triple
alpha sum energy resolution and bias are shown as a function of energy for both
12N and 12B. The triple alpha detection efficiency is typically 3–4%, with impor-
tant energy dependencies. The strong energy dependence of the efficiency at low
energies is dominated by the low energy cutoffs and trigger levels. Because of
a higher noise level during the 12N data taking requiring an increase in trigger
levels this dependence is different for the 12N and 12B simulations. The fwhm

resolution is estimated to be around 80 keV with a small energy variation whereas
the bias estimate is in the range 0–10keV for the energies with a sufficient detec-
tion efficiency. For the lowest energies, the detection efficiency is so low that 107
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Figure 6.2.1: 107 simulated events for a
12C energy 3 MeV above threshold with
breakup through the 8Be ground state.
Detected 3α sum energies.

Figure 6.2.2: Triple coincidence resolu-
tion found from detected events from
12C 12.71MeV state. 8Be excited state
channel.

events is not sufficient for a good resolution and bias estimate. However because
of the low efficiency the amount of data in this energy region is very small, so a
good resolution and bias estimate is not crucial.

For comparison a different method for determining the triple coincidence en-
ergy resolution is important. Though this involves the data for breakup through
the 8Be excited state channel, it is presented here to complete the discussion on
the energy resolution. In figure 6.2.2 a part of the detected triple alpha sum
energy spectrum is plotted. This corresponds to the right frame of figure 5.5.1.
The peak shown here is the 12.71MeV 1+ state 12C. By fitting this to a Gaussian
distribution an estimate of the resolution and bias can be given. This yields a
fwhm resolution of 108 keV and a negative bias of 10 keV. This is in good agree-
ment with the results from simulations through the 8Be ground state channel,
and a general triple alpha detection efficiency is chosen as an average of the two,
with error bounds including both values.

6.2.2 Beta-neutrino recoil effects

The results shown in section 6.2.1 are simulated by including a β-ν recoil for the
12C nucleus corresponding to the distributions shown in figure 5.3.2. The recoil is
assumed to be isotropic relative to the first emitted alpha particle. The validity
of this assumption however depends on the spin of the intermediate 12C state,
since a 12C spin different from 0 will allow the direction of the beta particle to
be correlated to the 12C spin and through this correlated to the direction of the
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Figure 6.2.3: Efficiency, triple alpha energy resolution and bias found from
Monte-Carlo simulation (107 events).

first emitted alpha. To be sure that this effect does not introduce systematic
uncertainties it is important to have a small recoil.

The effect of the recoil on the detected sum energy and sum momentum is
plotted in figure 6.2.4. To make the Monte-Carlo simulations shown here, the
βν-recoil is either included or excluded in the generation of the simulated events.
The analysis routines on the other hand are the same in both cases, namely the
routines used for the analysis of the experimental data. From these simulations it
is seen that the βν-recoil effect is indeed modest. The change in the measured sum
energy, the energy bias, is less than 1 keV, whereas the average sum momentum
is increased by about 1 MeV/c. With a recoil effect this small we will not be
sensitive to any correlations between the recoil and the emitted alpha particles.

6.2.3 Beam spot size

Though the best approach for analyzing the experimental data was to neglect
the size of the beam spot on the foil, it must be taken into account for a proper
simulation of the efficiencies. As in section 6.2.1 it is important to keep the data
analysis method identical to the one used for the experimental data, and only
change the simulation itself. This is what is done in the following. For simplicity
the beam profile is assumed to be a symmetric two dimensional Gaussian distri-
bution, though the shape of the beam spot will most likely be more complicated.
The size of the beam spot is then determined from its effect on measured observ-
ables by comparing simulated spectra for different beam spot sizes to measured
data.

Two observables are especially important in this: The sum energy momentum
of the three particles is changed if we assume a wrong decay point, which is exactly
what we do for the decays on the rim of the implantation region. Another effect is
important as well for these misplaced decays namely the energy loss corrections.
Both those in the foil and those in the detector dead layer. If the decay point
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Figure 6.2.4: Beta-neutrino recoil effects in detected sum energy and momentum.
Monte-Carlo simulations with 106 events.

is shifted a small error is introduced in the calculation of the material traversed
by the particle, giving either too high or too low an energy loss. This is most
important for the low energy particles where the energy loss is highest. These are
the particles from which the 8Be ground state energy is reconstructed according
to equation 5.3.5.

A plot of these two observables is shown in figure 6.2.5. In these simulations
two different beam spot sizes are compared to the measured data. Unfortunately
the simulations turn out to be imperfect, since the 1.0mm beam spot does the
best job in reproducing the 8Be distribution whereas a 2.3mm beam spot gives a
better reproduction of the total momentum distribution. To take this discrepancy
into account properly we must accept to have an uncertainty in the beam spot
size. This gives rise to a systematic uncertainty in the efficiency as can be seen
in figure 6.2.6 and through this an uncertainty in the fitted spectrum. The
implications from this on the deduced 12C state properties will be dealt with in
section 6.3.7.

6.2.4 Uncertainties in setup geometry

As for the beam spot size, the overall geometry is only known to a certain pre-
cision. With the used mounting of the detectors the measured relative angles of
detectors, foil and beam has an uncertainty of approximately two degrees. In ad-
dition to this, the foil thickness is known to be 30µg/cm2 within 10–20%. These
uncertainties could potentially be an important contribution to the systematic
uncertainty in the fitted parameters, however we do have some additional restric-
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Figure 6.2.5: Beam spot size influence on detected triple alpha sum momentum
and reconstructed 8Be ground state energy. 106 events Monte-Carlo simulations
compared to data.

Figure 6.2.6: Beam spot size dependence of triple alpha detection efficiency.
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Figure 6.2.7: 20Na data corrected for foil energy loss and dead layer effects. Two
different foil thicknesses (τ).

tions on the geometry coming from the effect of changes in the geometry on the
energy loss corrections described in section 5.1.3.

In figure 6.2.7 it is shown how these energy loss corrections can be used to test
the foil thickness. The plot shows the alpha energy at the decay point calculated
from the detected alpha energy and the energy loss corrections calculated for two
different setup assumptions. One calculation assuming a 27µg/cm2 foil and one
assuming a 40µg/cm2 foil. Strip 1 is close to the foil plane whereas strip 16 is
almost perpendicular to the foil plane making the left strips in both plots very
sensitive to changes in the foil thickness. From the two plots shown here, it is
seen that for a foil width of 27µg/cm2, the applied energy correction is to small,
making a downwards bend in the plot. With a 40µg/cm2 foil on the other hand,
the energy correction is too large, giving the plot an upwards bend. With this
and similar plots for other foil thicknesses in between the two plotted here, we
find a best value of the thickness of 33 ± 3µg/cm2. This procedure can as well
be applied to place restrictions on the geometry, for this however we must use
the sum momenta for triple alpha events as well. The use of this was illustrated
in section 5.1.2, where it was shown how the beam spot position could be found
from requiring the three sum momentum projections px, py and pz to be zero
on average for the triple alpha coincidence events. This can be used again here,
since for some assumptions of the geometry this beam spot position would have
to be outside the foil plane to fulfill the sum momentum requirement, allowing
us to discard some geometries.

With these restrictions on geometry, the effects on the triple alpha detection
efficiency from varying the geometry is found through Monte-Carlo simulations as
in the previous sections. The result of these simulations is shown in figure 6.2.8
where four different geometry assumptions have been tested and the deduced
efficiency compared to the efficiency calculated in section 6.2.1. It is clearly
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Figure 6.2.8: Effect of uncertainties in setup geometry on the triple alpha detec-
tion efficiency.

seen that the efficiency is not altered as much as was the case for the variation
of the beam spot size. The systematic uncertainties arising from the geometry
uncertainties however will still be investigated in the following chapter.

6.3 12C states and their properties

With the experimental data under control we are ready to proceed to the physical
interpretation. That is, the fitting of our R-Matrix model of the beta delayed
alpha emission (section 3.2) to the data. In the following, the fitting procedure
will be explained and restrictions on the physical properties of the investigated
12C states will be deduced from the fits. In addition to this a thorough analysis
of systematic errors will be given.

6.3.1 Phase space and efficiency corrections

The first step in the fitting procedure is to compare the data sets for 12N and
12B to confirm that a combined analysis of the two spectra is reasonable. There
are however important differences between the two data sets both physically and
technically. The physical difference between the two decays is first and foremost
the Q value. Through this the beta phase space is different for the two decays
thereby making the f -factor differ for the two decays at any given 12C energy.

To compare the two data sets we must therefore correct the two by their
respective f -factors. Such a spectrum is shown in figure 6.3.1 where the overall
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Figure 6.3.1: 12N and 12B spectra cor-
rected for β-phase space f-factor.

Figure 6.3.2: 12N and 12B spectra cor-
rected for β-phase space and detection
efficiency.

consistency of two spectra is apparent. The only exception being the 3–4 MeV
range where the 12B data exceeds the 12N data by about 15%. This however
is hardly surprising, since this is exactly where the detection efficiencies (figure
6.2.3) differ for the two data sets. If we correct the spectra by the detection
efficiencies as well, we get the spectra shown in figure 6.3.2 where the consistency
is evident.

This shows two important aspects of the present data and analysis. Firstly
it shows very clearly the expected isospin symmetry of the two decaying nuclei.
This aspect will be elaborated on in chapter 8 where the branching ratios and
BGT values of the two decays are compared. Secondly it confirms that efficiencies
are well understood by showing that the differences between the two simulated
efficiencies are in fact reflected in the data sets. Though Monte-Carlo simulations
can be considered a well established method (Eidelman et al., 2004), it is an
important property of the data that the data itself confirms the validity of this
key method in our analysis.

6.3.2 Maximum likelihood fitting

Fitting is too often seen as just a formalized method for estimating a set of
parameters from a measured data set. In addition to the parameter estimation
however, two other aspects must be considered namely estimation of confidence
intervals for the parameters and goodness-of-fit tests. The maximum likelihood
fitting introduced in the following is capable of dealing with all three parts.
The notation here will essentially follow that used by Baker & Cousins (1984),
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whereas for a thorough description of the method and other statistical aspects of
data analysis the review of Eadie et al. (1971) is very recommendable.

First a bit of notation: Our goal here is to describe a binned data set of
nbin bins n = (n1, . . . , nnbin) by a model described by npar parameters α =
(α1, . . . , αnpar). On these parameters some constraints may be set, allowing only
some values of α. We will furthermore let y = (y1, . . . , ynbin) denote the number
of events in each bin as predicted by the model. With this in hand we can define
the Poisson likelihood function as the probability of measuring the actual data
set under the condition that bin i is drawn from a Poisson distribution of mean
yi. That is:

Lp (y;n) =
∏

i

exp (−yi)
yni

i

n!
(6.3.1)

the product of the corresponding likelihoods for the individual bins. This fac-
torization is only correct if the number of events in the individual bins are inde-
pendent. The best fit to the data is the set of parameters that maximizes the
likelihood function. It is however more convenient to work with the log likelihood
ratio:

χ2
λ = −2 ln (Lp (y;n) /Lp (n;n)) = 2

∑

i

yi − ni + ni ln

(
ni

yi

)
(6.3.2)

Where the likelihood Lp (n;n) is the likelihood of the observed data assuming
the best possible fit function with no restrictions on parameter space, namely the
function having yi = ni. The likelihood ratio is as well known as the likelihood
chi squared, since asymptotically it behaves as a χ2 distribution. This function
should then be minimized over the allowed parameter space. The minimization
is done using the Cern package Minuit (James, 1994).

The next step in the analysis is the confidence interval estimation. This is
where the likelihood chi squared shows its worth. It is clear that if the likelihood
(6.3.1) is very small compared to the best fit, the parameters must be far off
the best value, “far off” understood in terms of the uncertainties of the fitted
parameters. This can be quantified through the behavior of the likelihood chi
squared around its minimum. If the likelihood chi squared is parabolic in all
parameters, the 1σ limits (68.3% confidence interval) on a given parameter is
the value at which χ2

λ has increased by 1. In general an increase of k2 gives
the kσ confidence intervals. In the following however only the 1σ limits will
be given. For the general case, where χ2

λ is not parabolic, it is not as easy to
identify the confidence intervals, it is however still true that an increase of k2

gives the kσ confidence interval. In Minuit this is facilitated by the Minos

routine, which estimates the confidence interval on a parameter by changing the
parameter slightly and minimizing the others. This is done until the upper and
lower bounds on the parameter is identified. This method may be important to
use even for symmetric confidence intervals, since the parabolic approximation
can be very bad even for the symmetric case.
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It is worth noting that when two different models with identical npar are
fitted to the same data, the two models can be compared in exactly the same
way. That is if the minimum values for their respective likelihood chi squared
differ by e.g. 9 the one with the higher value is excluded at the 3σ level.

The last part of the fitting is the goodness-of fit test. There are many ways to
test the goodness of a fit. Here only one method is presented, since the maximum
likelihood method provides such a test as well. The reason for this is the fact
that the χ2

λ behaves asymptotically like a χ2-distribution. That is for different

data sets describing the same theoretical function,
√

2χ2 follows a Gaussian
distribution of standard deviation 1 around

√
2nd − 1, where nd = nbin − npar is

the degrees of freedom. This is very helpful when trying to reject a fit as a bad
fit, purely on grounds of its goodness.

6.3.3 Data fits

When fitting the parameterized R-Matrix model to the data, we first correct the
model by the detection efficiency and integrate over an experimental resolution
of 96 keV fwhm. Note that the corrections are not done on the data as in section
6.3.1. This is because correcting for the efficiency would prevent the bin values
from being Poisson distributed, in which case a different statistic should be used.
Unfolding the resolution from the data would be even worse, since this would
introduce correlations between the individual bins in the corrected histogram.

The R-Matrix model can deal with several states and interference between
the states of same spin and parity. As described previously we already know
from beta decay selection rules and spin-parity conservation in the subsequent
breakup, that only 0+ and 2+ states can contribute to beta delayed triple alpha
breakup through the 8Be(0+) ground state. Therefore only 0+ and 2+ states will
be included in the R-Matrix description. In addition to this we will as always
in R-Matrix theory try to describe the data with as few contributing states as
possible, reducing the number of fitting parameters as much as possible.

For one 0+ state and one 2+ state in addition to the 7.654MeV 0+ Hoyle
state, the describing function has 10 parameters in total for the two spectra. For
each of the two levels it has: The level energy Eλ; the reduced width γλ; and the
feedings to the level relative to the feedings to the Hoyle state gN

λ,GT and gB
λ,GT .

Note that the data presented here is not sensitive to the absolute value of these
feedings since we have no absolute normalization of the spectra. We know that
the energy and width of the levels cannot differ for the two spectra, whereas the
relative feedings for the levels may be different for the two. In addition to these
8 parameters we have the two factors CN and CB scaling the 12N and 12B decay
spectra respectively. Such a 10 parameter fit is shown in figure 6.3.3. Yielding
the parameters for the three levels (0+, 0+ and 2+) to be the ones shown in
table 6.3.1. Where the uncertainties are statistical uncertainties only, and the
values for the Hoyle state (*) are those given by Ajzenberg-Selove (1990). The
difference in the sign of γ1 and γ2 means the two states interfere constructively
in the energy region between the two.
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Figure 6.3.3: 12N and 12B spectra and a combined fit to both spectra.

λ Eλ (MeV) γλ (MeV
1
2 ) gN

λ,GT gB
λ,GT

1 7.6542(∗) 0.59803(∗) 1.0 1.0
2 12.33(6) −0.766(14) 0.217(16) 0.292(21)
3 13.59(13) 0.419(24) 0.470(32) 0.27(11)

Table 6.3.1: R-Matrix parameters (described in section 3.2) for an r0 = 1.87 fm,
0+0+2+ state fit. Uncertainties on Hoyle state parameters (∗) are discussed in
section 6.3.8.

As described in section 3.2, the R-Matrix parameters above must be trans-
formed to get the physical observables for the states, the observed energy and
width, along with the relative feeding matrix elements for the states compared to
that of the Hoyle state. Because of correlations between the individual parame-
ters, it turns out that the statistical uncertainties on the observed parameters are
in general smaller than the corresponding uncertainty of the R-Matrix parameter.
With this, however the statistical uncertainties are smaller than the systematic
errors found in the following, and only the values of the observed parameters are
stated in table 6.3.2. The observed width for the Hoyle state (λ = 1) is shown
as well to illustrate how similar reduced widths can reflect completely different
widths.
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λ Eo
λ (MeV) Γo

λ (MeV) MN
GT ;λ/MN

GT ;h MB
GT ;λ/MB

GT ;h

1 7.6542 7.65 · 10−6 1.0 1.0
2 11.19 2.47 0.45 0.52
3 13.59 1.58 0.47 0.27

Table 6.3.2: Observed parameters for an r0 = 1.87 fm, 0+0+2+ state fit. For
notation see section 3.2.

Fit Ranges (MeV) E2 (MeV) γ2 (MeV
1
2 ) E3 (MeV) γ3 (MeV

1
2 )

1 [1.5:7.0,1.2:5.0] 12.33(6) −0.766(14) 13.59(13) 0.419(24)
2 [1.5:7.0,1.2:3.6] 12.34(7) −0.775(16) 13.61(13) 0.417(25)
3 [1.5:7.0,1.5:5.0] 12.30(6) −0.756(14) 13.59(12) 0.422(24)
4 [1.5:7.0,empty] 12.15(7) −0.710(17) 13.63(16) 0.445(28)
5 [2.0:7.0,1.2:5.0] 12.33(6) −0.765(14) 13.59(13) 0.421(24)
6 [1.5:5.0,1.2:5.0] 11.85(7) −0.588(24) 10.44(11) 1.06(13)
7 [empty,1.2:5.0] 12.00(17) −0.654(49) 10.27(27) 1.14(28)
8 [empty,1.2:5.0] 12.54(11) −0.821(21) 13.60(∗) 0.41(∗)

Table 6.3.3: R-Matrix parameters for different fit ranges. See text for discussion
on fitted parameters.

6.3.4 Fit ranges

The fit above were carried out as a combined fit for the ranges [1.5:7.0] and
[1.2:5.0] in the 12N and 12B data respectively. To test the robustness of the fit,
fits for 7 different sub-ranges are done, including fits to only one of the two data
sets. Table 6.3.3 shows four of the estimated R-Matrix parameters and their
statistical uncertainty.

It is clear that we are not sensitive to the lower bounds on the ranges. For
the high energy bound in the 12N data on the other hand, a strong sensitivity is
seen. This is because this fit only includes the broad peak around 3 MeV. With
this assumption we have three states to describe this region instead of two. If
instead we require the third state to be defined from the full 12N data fit, the 12B
data (fit 8) gives parameter estimates not too different from those found from
the 12N data. The difference cannot be explained purely by the statistical errors,
but as will be seen in section 6.3.7 the two fits are consistent when taking the
systematic uncertainties into account, making a combined fit to the two spectra
meaningful.

6.3.5 Different 12C configurations

For up to three states in 12C of either 0+ or 2+ character, where the lowest
of the three (the Hoyle state) is known to be a 0+ state, there are 6 possible
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Fit States χ2
λ ∆χ States χ2

λ ∆χ Fit
1 0 5900 65.5 0 + 2 1698 15.3 8
2 0 + 0 3289 38.1 0 + 0 + 2 1280 7.7 9
3 0 − 0 1578 13.2 0 − 0 + 2 954 0.7 10
4 0 + 0 + 0 1715 15.6 0 + 0 + 2∗ 1206 6.2 11
5 0 + 0 − 0 1446 10.9 0 − 0 + 2∗ 1698 15.3 12
6 0 − 0 + 0 988 1.5 0 + 2 + 2 1673 14.9 13
7 0 − 0 − 0 1525 12.3 0 + 2 − 2 1184 6.0 14a

0 + 2 − 2∗∗ 923 0.0 14b
0 + 2 − 2∗∗ 946 0.6 14c

Table 6.3.4: Goodness-of-fit for all possible 12C state configurations.

combinations: 0+, 0+0+, 0+0+0+, 0+2+, 0+0+2+ or 0+2+2+. In addition to
this, for the 0+0+2+ configuration, it is possible to have either the 2+ or the 0+

as the lowest energy level of the two. A further complication when two or more
states have the same spin—which is certainly the case for three levels—is the
possibility of either constructive or destructive interference. In total this adds
up to 14 different possibilities as shown in table 6.3.4. The sign in front of a
state identification gives the sign of the reduced width of the state relative to
that of the lowest energy state of the same spin. As described in section 6.3.2,
for goodness-of-fit tests the difference:

√
2χ2 −

√
2nd − 1 is important since it

can be used to describe how good (or bad) a fit is. In the table this difference
is denoted ∆χ, and is calculated taking into account nd = 930, 926, 922 for one,
two and three state fits respectively. In all of the fits the high energy limits on
the level energies are set to 20MeV. Except in (∗) where in addition the 2+
state was required to have the second lowest level energy, giving the second 0+
state the highest energy of the three states. In the two last fits (∗∗) the upper
limit of the second 2+ state energy was set to 30MeV and in 14c an additional
requirement was set on the relative feeding of the third level.

The first thing to notice from table 6.3.4 is the fact that several of the fits
seem promising when looking at the ∆χ value. This is true for fit 6, 10, 14b and
14c especially. It is clear as well that none of the two level fits reproduce the
data, leaving us with only the different three level fits. For these it is easy to
compare the χ2

λ values directly. Keeping in mind that a difference of k2 in χ2
λ

corresponds to a kσ rejection of the worst model, it is easily seen that all of the
remaining combinations are rejected at more than the 10σ level when comparing
to any of the four. It is clear that the best of these fits is the 14b fit, but before
we reject any of the four, we will for a moment look at some of the parameters for
the four fits, namely: The observed energy; the dimensionless reduced gamma;
and the matrix element ratio for the 12N decay. These parameters are shown in
table 6.3.5 where it is clearly seen that the 14b and 14c fits prefer a very high
value of the observed energy for the third level. This in itself is not a problem,
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Fit States λ Eo
λ (MeV) θ′λ MN

λ /MN
H

6 0 − 0 + 0 2 11.17 -0.645 0.51
3 13.94 1.020 0.30

10 0 − 0 + 2 2 11.18 -0.940 0.45
3 13.59 0.659 0.47

14b 0 + 2 − 2 2 11.24 1.109 0.31
3 29.85 0.578 16.39

14c 0 + 2 − 2 2 10.68 1.057 0.45
3 27.07 3.65 1.99

Table 6.3.5: R-Matrix parameters for the best three level fits.

since the low energy tail of such a high energy level in R-Matrix theory can be
interpreted either as a non resonant L = 2 triple alpha continuum contribution
to the spectrum or simply a broad level at high energy.

There is however another problem when giving the level parameters a closer
inspection. The matrix element ratio MN

λ /MN
H ≈ 16 is very high for the 14b

fit. What this fit suggests is therefore that the BGT value (proportional to M2)
should be roughly 502 = 2500 times as large as the coupling to the resonant 2+

state (level 2) and 162 ≈ 250 times as large as that of the Hoyle state. This is
not consistent with the traditional triple alpha cluster interpretation of the Hoyle
state and the 2+ states included in the fit. Furthermore, if we calculate the BGT

value of the Hoyle state from the literature value of the ft value (log ft = 4.34
according to Ajzenberg-Selove (1990)) and the relation in equation 3.2.8, we get
a BGT value of 0.175 for the Hoyle state. With the ratio mentioned above,
this corresponds to a BGT value of about 40 for the higher lying 2+ state, in
conflict with the inequality deduced from the Gamow-Teller sum rule. If on the
other hand we require the feeding to level 3 to be more reasonable (fit 14c), the
width increases drastically, yielding a dimensionless reduced width of θ′λ = 3.65
corresponding to an observed width of Γo

λ = 104 MeV. This value of θ′λ does
not comply with the Wigner limit introduced in section 3.2.3, and must thus be
rejected. In both of these cases the resulting fit is thus outside the physically
acceptable parameter space, and when leading the fits back inside the physically
feasible parameter space we end up with a fit like 14a which was already rejected
on grounds of its χ2

λ value. The essence of the 0 + 2 − 2 fits is thus that such
a three level R-Matrix analysis only reproduces the data if the third level has a
very high energy. This high energy will in turn require either an extremely high
feeding to this level or an unphysically large width.

This leaves us with only two possibilities: 0 − 0 + 0 (fit 6) and 0 − 0 + 2 (fit
10), for which the difference in χ2

λ is 34, close to a 6σ rejection of the 0 − 0 + 0
state combination. The following sections will therefore focus on the 0+0+2+

combination fit with negative sign of the 0+0+ state interference.
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Figure 6.3.4: Best fit χ2
λ as a function of r0.

6.3.6 The channel radius

As discussed in chapter 3 the channel radius a0 = r0

(
A

1/3
1 + A

1/3
2

)
is actually

a free parameter and it should be determined from the data, if not given by
previous experiments. For different values of r0, the data is therefore fitted to
the 0+0+2+ configuration, and the resulting minimum values of χ2

λ are plotted
as a function r0. This is shown in figure 6.3.4, from which we clearly see that
r0 = 1.87 fm as used in the preceding is not the best value. A best estimate
is r0 = 1.71

(
+2
−1

)
fm, where the asymmetric confidence interval stems from the

shown χ2
λ dependence on r0.

With these bounds on r0 we can deduce the systematic uncertainties on the
observed parameters arising from correlations with r0. This is shown in figure
6.3.5 where the best fit (standard) is compared to those for the upper and lower
bounds of r0. It is clear that this contribution to the total uncertainty is most
important for widths and energies.

6.3.7 Setup related systematic uncertainties

In sections 6.2.3 and 6.2.4 we saw that uncertainties in beam spot size and overall
geometry had an effect in the simulated detection efficiency. Through this it will
naturally influence the parameter estimates. As seen in figure 6.3.5 the effects are
very different for the individual parameters. It is natural that the deduced feeding
(MX

3 /MX
H ) differs significantly for the standard (1.0mm) and test (2.3mm) beam

spot size, since their respective efficiencies (figure 6.2.6) differ significantly in the
high energy region.
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The uncertainty in resolution described in section 6.2.1 however introduces
very little uncertainty in the fitted parameters as can as well be seen from figure
6.3.5.

6.3.8 Uncertainties on Hoyle state parameters

The Hoyle state energy is very well determined with an uncertainty of only
0.2keV (Nolen & Austin, 1976). The Hoyle state width however is only deter-
mined within 12% to 7.65 eV. Note that this value differs a bit form that stated
by Ajzenberg-Selove (1990) and is found from the two values of Γπ/Γ and Γπ

identified by Alburger (1977) and Crannell et al. (2005) respectively.

This uncertainty is taken into account by finding the best fit channel radius
for a Hoyle state width (Γo

H) of 6.73 eV and 8.57 eV in addition to the standard
7.65 eV. The best estimate of r0 was found to be 1.67 fm and 1.74 fm respectively,
and the estimates of the remaining parameters found. This yielded the values
shown in figure 6.3.5, where Γo

H = 8.57 eV gives the highest values for all of the
λ = 2 state parameters. Not surprisingly, the Hoyle state uncertainty is most
important for the λ = 2 state, since it is at the lowest energy and interfering
with the Hoyle state. This uncertainty will be reduced when Sam Austin and
collaborators will re-measure the pair branching Γπ/Γ of the Hoyle state in the
near future (Austin, 2005; Tur & Austin, 2006).

The best fit χ2
λ values for the three Γo

H values: 6.73 eV, 7.65 eV and 8.57 eV
were found to be 938.7, 941.6 and 944.5 respectively showing a 1–2σ preference for
the lower bound value compared to the central value. Caution however should be
taken since this may be influenced by details of the spectrum not accounted for by
the simple three level, one channel model described here. This does nonetheless
point to an important application of studying the 10MeV region of 12C, namely
that the total width of the Hoyle state may be probed by its effect in the 10MeV
region. Such a measurement will be a valuable independent test of the Γπ/Γ, Γπ

measurements especially since the present measurements (Crannell et al., 2005)
and (Strehl, 1970) of Γπ are inconsistent at about the 2σ level. This is essential
for the measurement of the radiative width of the Hoyle state Γγ + Γπ which at
present is the primary source for uncertainty in the triple alpha reaction rate cal-
culations at temperatures corresponding to the helium burning in the Asymptotic
Giant Branch (AGB) stars (Austin, 2005). If the triple alpha spectrum could be
measured well below the cutoffs necessary in a coincidence measurement such
as this, the measured spectrum may prove sensitive to the strong correlations
experienced here between the Hoyle state width and the channel radius.

Such an experiment has just been performed using in-detector decay of 12N
and 12B, as described in section 2.5. If the systematic uncertainties from the beta
background and beta summing can be controlled sufficiently, this may provide
the needed independent detection of the Hoyle state width.
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Jπ
λ Eo

λ (MeV) Γo
λ (MeV) MN

λ /MN
H MB

λ /MB
H

0+
1 7.65420(15) 7.65(90) ·10−6 1.0 1.0

0+
2 11.47(+14

−14)(
+5
−7) 3.44(+20

−20)(
+25
−30) 0.361(+10

−10)(
+35
−8 ) 0.430(+10

−10)(
+25
−20)

2+
3 13.61(+14

−11)(
+2
−3) 1.68(+17

−17)(
+2
−9) 0.447(+32

−26)(
+40
−10) 0.29(+9

−12)(
+4
−2)

Table 6.3.6: Final estimates of observed parameters with uncertainties. This fit
is an r0 = 1.71 fm, 0+0+2+ state fit with negative sign of the 00 interference.
The first uncertainty is the statistical, whereas the second is the systematic.

6.3.9 Conclusions

With this we must conclude from the beta delayed triple alpha breakup through
the 8Be ground state, that the data is well described by a three level R-Matrix
model. Furthermore that of the three 12C states corresponding to the three levels,
the second lowest must be a 0+ state interfering with the 0+ Hoyle state known
to be the lowest state in the triple alpha continuum. For the third state there is
a strong (6σ) preference for the spin and parity to be 2+, giving no interference
with the two lower lying states.

Regarding uncertainties of the observed parameters, the systematic are taken
from figure 6.3.5 whereas the statistical errors are estimated from the correspond-
ing errors on the R-Matrix parameters. This yields the results for the three ex-
amined continuum states shown in table 6.3.6, where only the results for λ = 2, 3
are from this experiment, but all three are listed for completeness. Furthermore,
since the systematic uncertainty, and in particular the uncertainties coming from
the channel radius and the uncertainty in the Hoyle state width are so impor-
tant to the total uncertainty in the final parameter estimates, we must conclude
that this type of experiment cannot be improved significantly with regards to
detection of the breakup through the 8Be ground state.

To the results in table 6.3.6, one further complication is actually added. This
stems from the fact that the 8Be ground state channel is not the only breakup
channel of the 12C states. Breakup through higher energies in 8Be is possible as
well. This breakup mode is dealt with in detail in the following chapter. Here
however we must be aware of the way the results stated in the table can be
affected by the other breakup channel. Having such additional breakup channels
actually means the level matrix is slightly different, since the contribution from
the othre channels must be included as described in equation 3.4.4.

As will be seen in the following chapters (directly seen in figure 8.1.1) the
branching ratio for the 8Be high energy breakup channels in the breakup of
the 0+

2 state is modest (about 10%). For the 13.6MeV 2+ state on the other
hand, the contribution from these breakup channels is significant. Because of
this, I will expect the inclusion of these channels to have a modest (about 10%
decrease) and significant (up to 50% decrease) in the partial widths to the 8Be
ground state channel for the two states respectively. For the total widths, as
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well as the positions of the states, no significant effect is expected. So as long
as Γo

λ is understood as the total observed widths of the states, the estimates in
table 6.3.6 still holds true. Since the Hoyle state (0+

1 ) and the 0+
2 state behaves

similarly in the 10MeV energy region of 12C with regards to the 8Be high energy
breakup channel, the matrix element ratios fro the 0+

2 state are furthermore
not expected to to be affected by this channel. For the 13.6MeV state on the
other hand the feeding strength—that is, the square of the matrix elements—
could potentially be altered with up to a factor of two increase in the worst
case scenario. The incertainty introduced by this should therefore be taken into
account when estimating uncertainties of M 2

λ in section 8.6 (the BGT values).
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Figure 6.3.5: Systematic uncertainties from uncertainties in geometry, beam spot
size, resolution, channel radius and Hoyle state parameters. Estimate of total
systematic uncertainty is shown as bars on the standard parameters.
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CHAPTER 7

The 8Be excited state channel

As described in section 5.3.3, the breakups that do not proceed through the 8Be
ground state are referred to as breakups through the 8Be excited state chan-
nel. Assigning this name to a breakup already indicates some knowledge of the
breakup channel, namely that the breakup is sequential and proceeds through
an intermediate 8Be resonance. For the time being however it should be seen
as nothing more than a name, since we cannot a priori claim to know that an
excited state resonance of 8Be is playing a role here, instead of a direct breakup
to the free triple alpha continuum.1 And as we will see in sections 7.3.3 and 7.4.3
we may even have a resonant 8Be contribution here that isn’t really an excited
state of 8Be.

7.1 Energy spectra

7.1.1 12C spectrum

In figures 7.1.1 and 7.1.2 we see the Fynbo plots for breakup through the 8Be
excited state channel for 12N and 12B data respectively. As indicated in figure
5.3.4 a cutoff for this was set at 200keV in reconstructed 8Be energy.

1A discussion on sequential versus direct decays in the context of two-proton deays can be
found in Blank et al. (2003).
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Figure 7.1.1: Fynbo plot of 12N beta delayed triple alpha breakup
through the 8Be excited state channel, and projection onto sum
energy axis.

Figure 7.1.2: Equivalent to figure 7.1.1, but for 12B beta delayed
triple alpha breakup.

7.1.2 Phase space distributions

There has previously been published a thorough discussion of the breakup of the
12.7MeV 1+ state of 12C (Fynbo et al., 2003). This showed that the breakup
could in fact be successfully described as a resonant breakup through the 3 MeV
2+ state of 8Be if the intermediate state was properly described in a full sym-
metrized R-Matrix model. The direct breakup model (Korsheninnikov, 1990)
could not reproduce the data. Keeping this in mind, we will try to describe these
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Figure 7.1.3: 12N beta delayed triple alpha breakup through the 8Be excited
state channel. Binning for phase space projections are indicated.

breakups through an R-Matrix description of the intermediate 8Be resonances,
not only for the 12.7MeV state but as well for the broad 0+ and 2+ states of
12C.

The relevant observables to investigate here are observables describing which
parts of three particle phase space dominate in the breakups. The energies of
the individual alpha particles is one such observable. As seen in the Fynbo plots,
these individual alpha energies are very different at different sum energies, so
to describe the data quantitatively we divide the data into bins according to
the sum energy as shown in figure 7.1.3. The binning has been chosen so that
individual bins have similar number of events (around 100), except from the very
abundant 12.7MeV state in the 12N decay data. In the following we will focus on
the 5.4MeV bin where the 12.7MeV state dominates and—for the 12N data—the
3.8MeV and 5.9MeV bins. The situation for the other bins and for the 12B data
is similar except we have no 12B data in the upper energy region.

For the three mentioned bins, Dalitz plots are shown in figure 7.1.4. The plots
are defined as described in section 4.2.2 except here only one sixth of the circular
Dalitz plot is shown, since sorting the three alpha particles ensures E1 > E2 > E3,
thus confining all data to this part of the full Dalitz plot. Below the Dalitz plots
the individual alpha energies are plotted, scaled according to the region between
0 and 1 with the maximal kinematically allowed alpha energy 2

3Esum. This scaled
single alpha energy is denoted Xα.

The single alpha energy distributions directly reflects the Dalitz plot distri-
butions as can be seen by comparing the upper and lower plots in figure 7.1.4.
The 3.8MeV bin shows a close to uniform distribution in the Dalitz plot which
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Figure 7.1.4: 12N data, Dalitz plot and individual alpha energies. Sum energy
binning according to figure 7.1.3.

is reflected in a very broad distribution in the single alpha plot, without any pro-
nounced peak structure. At this energy the distribution is thus relatively close
to the raw three particle phase space distribution. The 5.9MeV bin on the other
hand has a sharp peak close to the origin of the Dalitz plot, corresponding to
events where the three alpha particles share the energy evenly. This is reflected
in the sharp peak at Xα = 0.5 corresponding to a single alpha energy of 1

3Esum

for all three alpha particles. The central plots containing the 5.4MeV bin data is
completely different from both of the others. Here we have again a pronounced
peak structure but not at the Dalitz plot origin rather around (0, 3

4 ). This again
corresponds to X2 = 0.5 since the vertical position gives the X2 value as shown
in figure 4.2.3. With a well defined value of X2 the horizontal position defines the
distance to the two upper sides of the equilateral triangle indicated in the figure
i.e. the remaining two energies X1 and X3. With this position of the Dalitz plot
peak X1 is much bigger than X3, giving rise to the three peak structure of the
Xα plot for this sum energy bin.

7.2 Background estimate

In section 5.4.2 we saw an estimate of the energy distribution of the background.
This, however, is not all that is to be said about the background. We should as
well investigate the distribution of the background in three particle phase space.
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Figure 7.2.1: Event mixed data, Dalitz plot and individual alpha energies. Sum
energy binning according to figure 7.1.3.

As in section 5.4.2 this is estimated using event mixing.

7.2.1 Phase space distribution from event mixing

Figure 7.2.1 contains the Dalitz plot three particle phase space distributions from
triples mixed from two events. When comparing figure 7.1.4 and 7.2.1 it is clear
that at neither of the three shown energies the background can be a dominant
contributions to the data set. This fits well with the total background estimates
in section 5.4.2. Here we saw a total background estimate of 100. With the
energy distributions shown in figure 5.4.1 and 5.4.2 we get an estimate ranging
from about 1.5 background counts per 100keV sum energy in the 5.9MeV region
up to about 3 counts per 100keV in the 3.8MeV region, yielding an estimate of 10
background events for each of the three energy intervals shown in figure 7.1.4 and
7.2.1. Even with a background as different from the total data set as in the case
of the 3.8MeV in terms of Dalitz plot distributions and thereby Xα distributions
a 10 count contribution is not in conflict with the data set distribution.

7.3 Simulated phase space distributions

Before investigating the breakup of broad 0+ and 2+ states in 12C, we will take a
look at the breakup of the 12.7MeV 1+ state of 12C. With this we can verify the
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Figure 7.3.1: 12C 1+ state breakup through 8Be 2+ state. Upper row: Dalitz plot
for 12N and 12B data along with R-Matrix simulated distribution. Below: Same
data, single alpha energy scaled according to maximal alpha energy. Simulation
scaled down to reproduce the area.

overall simulation method and identify the precision of the simulations in order
to validate the following evaluation of the 0+ and 2+ state data.

7.3.1 The 12C(1+) breakup

The physical three particle phase space distribution for 12C breakup through
the 8Be(2+) excited state is found using the three particle distribution and the
Von Neumann sampling method described in section 3.3.1. With the events
distributed according to the physical distribution, each events is processed in
the same way as was the case for the 8Be ground state breakup (section 6.2)
namely: First an analysis of how the detector setup would respond to the event
and secondly by processing the detected event through the same data analysis
as used for the experimental data. This analysis gave the effect of the individual
cutoffs as shown in table 5.4.1.

For the 12C(1+) breakup, the R-Matrix weight calculation is straight forward,
since the parity of the states in play requires the orbital angular momentum of
the 8Be(2+) + α system to be even and conservation of the total spin of the
system excludes any even angular momenta except 2. In figure 7.3.1 the result
of such a simulation is shown. This simulation is performed for 106 physical
events yielding in total 18407 detected triple coincidence events corresponding to
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Figure 7.3.2: Dalitz plots for 12N data in two different sum energy bins. Sim-
ulated distributions for breakup through 8Be 2+ state. Two different possible
spins (J) of the 12C state, all possible angular momenta (L) for the 8Be(2+) + α
intermediate system.

an efficiency of 1.84%. When investigating the figure, it is clear that the overall
properties are reproduced in the Dalitz plot as well as in the Xα plot. There is
however a negative bias in the X2 values of the simulation, corresponding to a
lowering of the peak in the Dalitz plot. The grounds for this bias could not be
identified, so what this says is that care should be taken when using the plots
to discuss the possible breakup channels for broad 12C 0+ and 2+ states in the
following.

Note that since the distribution in three particle phase is peaked, the Von
Neumann sampling used here is not the most efficient Monte-Carlo simulation
method. It would be convenient to use an importance sampling focused on the
peak of the distribution, this would be extra preferable since some of the breakup
simulations in the following section are even more peaked. The distributions
however depend on both decay channel and 12C energy, so to make an importance
sampling effective would require several different sampling methods, essentially
one for each distribution. The gain from importance sampling was in this case
not sufficient to justify the complications of it.

7.3.2 The 8Be(2+) breakup channel

The phase space distributions for breakup of a 12C 0+ and 2+ contribution at any
given 12C energy can be sampled in the same way as was done for the 12C(1+)
breakup. Here however more than one angular momentum value is possible if
the 12C state in question is a 2+ state, namely 0, 2 and 4. Such simulations for
2 · 105 physical events are shown in figure 7.3.2 for all possible combinations of
12C spin and angular momentum.

Before making a statistical comparison of the simulated Dalitz plots and the
corresponding experimental data, we can get the overall picture from what we
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Figure 7.3.3: Dalitz plot projections on horizontal axis, 3.8MeV sum energy. 12N
data and four simulations as in figure 7.3.2.

can see by eye. What we should look for in the comparison is not the overall scale
of the distributions but in which parts of the Dalitz plots the intensity is located.
That is we should understand the simulated distributions as approximations to
the physical distributions from which the actual data has been drawn. With this
we should describe which of the distributions are most likely to dominate the
data distributions. Note that we cannot necessarily require all of the data to be
described by one of the distributions and also that we expect a small contribution
from the background, so the correspondence is not expected to be exact.

The most pronounced structure seen in the simulations is the fact that L = 2
simulations are strongly peaked at the origin of the Dalitz plot whereas the
others—especially L = 0—show a distribution closer to a uniform distribution.
This is very clear if we look at the projections on the horizontal axis as seen in
figure 7.3.3. It is clear that neither of the L = 2 breakups can be a dominant
contribution to the data. For the 5.9MeV bin the situation is quite the opposite,
and a strong intensity is seen near the origin of the data plot, pointing towards
a significant L = 2 contribution. With this understanding of the overall picture,
we are ready to proceed to a statistical analysis of the data.

The shown Dalitz plots are all 36×36 pixels. As noted in the preceding section
however the precision of the simulations does not justify such a fine binning of
the Dalitz plots. For this reason, the following comparison between data and
simulations are done for a binning 6 times as rough yielding 36 pixels in total.
Of these pixels 8 are outside the piece of the Dalitz plot obeying E1 > E2 > E3

leaving 28 relevant pixels. The distribution predicted by the simulation is fitted
to the data with one free parameter, a scale factor. Besides this contribution from
the simulated distribution, a background component estimated from event mixing
(figure 7.2.1) is added, scaled as in figure 5.4.2. The fitting method used here is
exactly the same as described in section 6.3.2. Compared to the previous fits we
have here a smaller number of bins and a two dimensional simulated distribution
to describe the theoretically predicted content of each bin. The essentials of the
Maximum Likelihood method however remains the same. In these fits, the most
interesting parameter is actually the χ2

λ minimum quantifying the goodness of
the individual fits. This is shown for the individual fits in the first four columns of
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J12C, J8Be, L 0, 2, 2 2, 2, 0 2, 2, 2 2, 2, 4 0, 0, 0 2, 0, 2
χ2

λ(3.8MeV) 98.6 60.2 92.3 34.1 35.1 46.5
χ2

λ(5.9MeV) 37.8 35.2 20.5 40.2 41.4 43.9

Table 7.3.1: Goodness-of-fit χ2
λ for fits of simulated Dalitz plot distributions

(figure 7.3.2 and 7.3.4) to data.

table 7.3.1. The overall trends identified by eye are confirmed by the fitting. The
L = 2 fits to the 3.8MeV region data are very poor. A bit surprising is the fact
that the J = 2, L = 4 fit is better than the J = 2, L = 0 fit for the same region.
When we looked at figure 7.3.3 it seemed as if it would be the opposite. This
however is not a problem, since the projection removed all vertical information,
leaving only some of the information in the original plot.2 For the 5.9MeV sum
energy bin, the situation is almost the opposite. J = 2, L = 2 gives by far the best
fit, though admittedly the J = 2, L = 0 distribution is not that bad. In general
it is seen that the discrimination between the different distributions is best in the
3.8MeV sum energy bin compared to the 5.9MeV bin. This is primarily because
of the lower amount of data in the latter of the two having 61 events compared
to the 149 events in the 3.8MeV bin.

7.3.3 Breakup through the 8Be(0+) ghost

Though with the analysis in the preceding it is very tempting, we should not
stop here, since another channel actually exists. The 8Be ground state is not
only important around 92keV above threshold. Just as was the case for the
Hoyle state, the upper tail of the state is determined by the competition between
the standard Breit-Wigner distribution cutting off the high energy region and
the penetrability for the α–α breakup through the barrier increasing the width
in the Breit-Wigner distribution drastically with energy. This is seen in figure
3.1.1 where the Breit-Wigner distribution for resonant α–α scattering through
the 8Be(0+) ground state is shown. This blown up high energy tail of the 8Be
ground state distribution is what is called the ghost of the 8Be ground state (see
section 3.1).

With this “excited state” of 8Be an analysis similar to that of the preceding
sections can be made. Only here the 8Be spin (J8Be) is 0 requiring the 12C spin
to be identical to the orbital angular momentum of the intermediate 8Be(0+)+α
system. The Dalitz plot for simulations corresponding to a 12C spin (J12C) of
0 and 2 are shown in figure 7.3.4. When comparing these simulations to the
experimental data as was done for the 8Be(2+) state simulations, we get the
results shown in table 7.3.1. From this—and actually from a simple comparison

2The same is in principle the case for the reduction from 36× 36 pixels to 6× 6 pixels. This
reduction however seems to do a better job in keeping the information in the Dalitz plot. The
effect of these reductions have not been analyzed in detail, but for a description of such an
analysis see (Eadie et al., 1971).
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Figure 7.3.4: Dalitz plot for 12N data along with simulated distributions for
breakup through ghost of 8Be 0+ ground state. Angular momentum (L) equals
12C state spin (J).

by eye as well—it is clear that they reproduce the data very well in the low energy
region whereas for higher energies the correspondence is very poor. For the low
energy region, the detected phase space distribution is reproduced just as well
by the simulated 0, 0, 0 (J12C, J8Be, L) distribution as is the case for the 2, 2, 4
distribution. We will return to the discussion of this breakup channel in section
7.4.3 where it will be shown how the energy distribution in 12C corresponding
to this breakup channel can be found directly from the information we already
have on the 8Be ground state channel.

7.3.4 Conclusions from Dalitz plot simulations

From the Dalitz plots and fits to data presented here, we must conclude that
the high energy region (above the 12C 1+ state at 12.7MeV) is dominated by
the breakup of a 12C 2+ state through the 3 MeV 2+ state of 8Be. Besides this
we may conclude that at these energies the breakup has predominately a d-wave
(L = 2) in the intermediate 8Be + α system.

For the low energy region the situation is a bit more complicated, since the
2, 2, 4 and 0, 0, 0 distributions reproduce the data equally well. There is however
one very significant physical complication for the 2, 2, 4 possibility, namely the
angular momentum barrier. In itself, seeing a 2, 2, 4 contribution at low energy
is hard to exclude. However one would expect the 2, 2, 0 and 2, 2, 2 contributions
(with L = 0 and L = 2) to overcome their angular momentum barriers at lower
energies than is the case for the 2, 2, 4 contribution (with L = 4). Since the
2, 2, 2 contribution is seen to dominate at an energy of about 5.9MeV above
the threshold, the 2, 2, 4 would be expected to come in at even higher energies.
With this possibility excluded we must conclude that the low energy region is
dominated by a 12C 0+ state breaking through the 8Be(0+) ghost channel.
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These two conclusions comply with the conclusions from the analysis of the
breakup through the 92 keV 8Be ground state channel (chapter 6). The resulting
spin assignments from the analysis of these two channels can thereby be seen
as independent tests of the 12C state properties. Firstly because the data are
statistically independent. Secondly because the analysis in the first case is built
on an understanding of the shape of the 12C spectrum whereas the second analysis
focuses on the energy sharing between the three alpha particles. With these
differences, a systematic error can hardly cause the same erroneous conclusion in
both cases, which is exactly what characterizes independent measurements.

7.4 Energy spectrum calculations

The last remaining challenge regarding the 8Be excited state channel is to de-
scribe the 12C spectrum for this channel. This spectrum is determined by the
beta feeding of the states and the widths for breakup through this channel. It
is furthermore influenced by other channels, in particular the 8Be ground state
channel, through their effect on the level matrix Aλµ. The developed formal-
ism describing breakup of broad states through such broad exit channels was
described in section 3.4 and will not be repeated here in detail.

There are however a few things worth noting. The formalism uses a descrip-
tion of the distribution of relative energies similarly to what was done in section
7.3 for the Dalitz plot distributions. The main difference being the importance
of the overall scale. This distribution is then integrated over all angles and over
the 8Be energy from 200keV and upwards as in the data analysis cutoffs. This
yields a 12C spectrum with the overall scale factor taken from the analysis of the
8Be ground state channel. The angular integration is performed as an integration
over the direction of the first alpha and over the angle of the secondary breakup
relative to that of the first alpha. This however causes one problem that has
not yet been overcome: In the integration the two alphas constituting the inter-
mediate 8Be state are defined, in conflict with the idea of symmetrizing in the
three alpha coordinates. For this reason, the following integrated spectra have
not been symmetrized (sections 7.4.3 and 7.4.4).

7.4.1 Detection efficiencies

Before describing the spectra theoretically we must however be able to correct
the measured spectra for detection efficiencies. These efficiencies are found in
the same way as was done for the 8Be ground state channel, namely through
Monte-Carlo simulations. As described in section 7.3.1 the efficiency for detect-
ing three alpha particles from the breakup of the 12C(1+) state 5.4MeV above
the threshold, was estimated to be 1.84%. In exactly the same manner, the effi-
ciency must be simulated for all other possible state spins and breakup channels
(J12C, J8Be, L). This is because the triple alpha detection efficiency in general de-
pends on the decay channel, as is especially clear when comparing the efficiency
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Figure 7.4.1: Simulated efficiencies, different 8Be excited state channels.

corresponding to the breakup of the 12.7MeV 1+ state. Furthermore it should
be calculated at all relevant energies. In practice the efficiencies are simulated for
all center values for the bins illustrated in figure 7.1.3. After this the efficiencies
and their different energy dependencies are found by interpolating between the
simulated efficiencies. This is the most effective way of finding the energy depen-
dencies, since the simulations are rather time-consuming. The energy dependence
of all seven efficiencies (0, 2, 2; 2, 2, 0; 2, 2, 2; 2, 2, 4; 0, 0, 0; 2, 0, 2; and 1, 2, 2) are
plotted in figure 7.4.1. As can be seen, all efficiencies are within ±20% of the
average of the seven which is shown as well. So unless details finer than 20%
are needed, the average efficiency is perfectly acceptable as a common efficiency
estimate.

7.4.2 Phase space and efficiency corrections

With such an understanding of the triple alpha coincidence detection efficiency,
we can correct the measured 12N and 12B decay spectra for detection efficiencies
as well as for the f -factor from the beta decay phase space, allowing us to compare
spectra for the two decays. These corrected spectra are seen in figure 7.4.2 for
the f -factor corrected spectrum and in figure 7.4.3 where both corrections are
applied. The 12N and 12B spectra have been scaled relative to each other by
the same ratio as used for the 8Be ground state channel (figure 6.3.1 and 6.3.2)
making use of the fact that the scale factor is determined solely by the total
number of decaying 12N and 12B nuclei. With this scaling it is once again clear
that the physics governing the two decays are very similar.
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Figure 7.4.2: 12N and 12B spectra for
breakup through the 8Be excited state
channel corrected for β-phase space f -
factor.

Figure 7.4.3: Same as figure 7.4.2 but
corrected for the average efficiency of
figure 7.4.1 in addition to the β-phase
space correction.

7.4.3 Direct prediction for breakup through the 8Be(0+)
ghost

Since the 8Be(0+) ghost channel and the 8Be ground state channel are exactly the
same breakup channel from a quantum mechanical perspective, we can use the
results from chapter 6 to make a direct prediction of the 12C spectrum for breakup
through the ghost channel. The predicted spectrum is seen in the right frame of
figure 7.4.4 where it is compared to the experimental 12N decay data. Note that
in this prediction there are no free parameters, not even the overall scale. To test
the validity of the integration, the integration is performed over the narrow 8Be
ground state peak 92 keV above the threshold, giving the spectrum seen in the
left frame of the figure. This clearly shows the validity of the integration method.

As seen in figure 7.4.4 the predicted spectrum reproduces the shape and in-
tensity of the measured spectrum very well in the 2–3 MeV region. Above this
value, the correspondence is only within a factor of three or so. The decay of the
2+ state at higher energies does not reproduce the measured high energy range,
well in agreement with the Dalitz plot conclusions claiming this energy region to
be dominated by a 2+ state decaying through the excited 2+ state of 8Be.

7.4.4 Possible 12C spectra for the 8Be(2+) channel

In addition to the 8Be(0+) ghost channel, we can similarly calculate spectra for
breakups through the 8Be(2+) excited state at 3 MeV. Such a calculation however
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Figure 7.4.4: 12C breakup through 8Be ghost predicted from breakup through
8Be ground state. Compared to 12N decay data. Both spectra are corrected for
beta phase space and detection efficiency.

has a lot of free parameters compared to the ghost channel calculations. This is
because we have up to three new decay channels L = 0, 2, 4 with their respective
decay widths. Or in the R-Matrix formalism: The reduced widths γJC

λJBeL from

the level λ of spin JC by a decay with angular momentum L through the 8Be
level of spin JBe. In this case JBe = 2 and since we saw in table 7.3.1 that the
JC = 0, JBe = 2, L = 2 was unlikely to contribute significantly, we focus on the
JC = 2 levels. For simplicity the L = 4 contribution is excluded as well, leaving
us with γ2

λ20 and γ2
λ22 for at least one, possibly more levels λ of 12C.

With a single high energy level at 13.6MeV above the ground state of 12C
and values of γ2

λ20 and γ2
λ22 similar to that of γ2

λ02 as found in chapter 6, we get
the calculated spectrum shown as the dashed line in figure 7.4.5. In contrast to
the 8Be ghost channel calculation, the scale for this calculation relative to that
of the 8Be ground state is quite arbitrary. This ratio is in essence defined by
the ratio between the decay widths of the two channels and may be seen as a
free parameter. As seen in the figure, a level at such a high energy has no way
of producing a significant contribution in the low energy range, which is hardly
surprising. We will therefore consider the possibility of a second 2+ level at a
lower energy. Such a state would necessarily interfere with the higher lying 2+

state.
If the low energy level should have a low energy tail as pronounced as possible,

the interference between the two levels should enhance the low energy tail thus
giving a destructive interference in the intermediate region. Such calculations
are shown as the dotted and dot-dashed lines in the figure for a low energy level
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Figure 7.4.5: Calculated spectra for 2+ states at different energies with breakup
through 8Be(2+) state channel.

just above 3 MeV and 4 MeV in three alpha sum energy corresponding to states
around 10.5MeV and 11.5MeV in 12C. As seen, the state is very narrow if placed
at an energy as low as 10.5MeV, and it is clearly seen that a breakup through
the 8Be(2+) state cannot reproduce the low energy part of the spectrum.

7.4.5 Conclusions from energy spectrum calculations

With these spectra in hand, we can conclude: Firstly that the 8Be(0+) ghost
channel is very important and as seen from figure 7.4.4 it receives about 10% of
the total 12C 0+ strength in the region about 3 MeV above the triple alpha thresh-
old, and dominates the breakups through high energies of 8Be completely at this
12C energy and below. It is thus essential for understanding the 8Be excited state
breakup channel. Secondly we may conclude that this breakup channel seems to
be reasonably well described by an R-Matrix formalism without symmetrization.
Thirdly, for the energy range around 4 MeV above threshold, the situation is more
ambiguous. In this energy range a 12C 2+ state decaying through the 8Be(2+)
channel would easily have a width of half an MeV or more, enabling the state to
contribute significantly to the broad measured spectrum without standing out as
a narrow peak in the spectrum. At the same time the breakup through the 8Be
ghost is apparently not sufficient to describe the spectrum. We should however
hesitate in excluding the ghost channel at these energies because of the com-
plications arising from the symmetrization when determining the spectrum as
predicted from the R-Matrix model.

As noted in section 3.4.1 the symmetrization should be done by interchanging



100 Chapter 7 - The 8Be excited state channel

the three alphas in equation 3.4.1 and summing the three contributions each
arising from a different pair of alphas assigned to the 8Be intermediate state.
If more than one of these three contributions are significant, they are added as
complex numbers before calculating the norm squared. This may give up to
a factor of three in the sum, if they have the same size and add constructively.
Taking the norm squared makes this up to a factor of 9. Outside the norm squared
however the symmetrization requires a factor of 1

3 , yielding in total up to a factor
of three increase in the spectrum. The symmetrization may thus potentially
cause the ghost channel to reproduce the channel at higher energies than the
3 MeV seen in figure 7.4.4. The question is just: Is the ghost channel capable
of producing such a symmetrization interference? Unfortunately the answer is
yes, which can be seen from a short argument involving only the energies of the
states in play. We can as an example look at a 3.8MeV breakup such as the one
simulated in section 7.3.3. In figure 3.1.1 we see that the 8Be(0+) ghost has a very
broad distribution over the 0–3 MeV energy range, and it has thus a significant
contribution around for example 1.7MeV. A breakup through this 8Be energy
will leave 2.1MeV for the initial breakup yielding an energy of 1.4MeV for the
first emitted alpha. This is very close to the energies of the two remaining alphas
(1.2MeV) if they share the energy evenly, thus making the two other choices
for the first emitted alpha equally important. Such events are the ones close
to the origin of the upper central Dalitz plot of figure 7.3.4. For these events
at least, the symmetrization may therefore be very important, but because of
the broad distribution in 8Be, a more uneven sharing of the energy between the
three alphas may as well give rise to significant contributions from more than
one of the three different choices of the first emitted alpha particle. A similar
argument can be used for the breakup of the high energy (approximately 6 MeV
triple alpha energy) 2+ state of 12C through the 3 MeV 8Be(2+) state, making it
likely that as well for this breakup, the symmetrization will be important for a
proper description of the spectrum.

The breakup on the other hand of the high energy 2+ state of 12C through
the ghost is not likely to be influenced that heavily by the symmetrization. This
is because seen from a total triple alpha energy of 6 MeV, the ghost is a rather
narrow state and it has such a low energy that the energy of the first emitted
alpha particle is rather well defined and much higher in energy than the remaining
two alpha energies.
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CHAPTER 8

Branching ratios

There are two important ways of describing how the 12N and 12B decays popu-
late the individual states in 12C. Firstly the branching ratios and secondly the
BGT values. Though it can be done it is however difficult to extract the BGT

values, when two broad levels have a significant interference as described in sec-
tion 3.2.2. As described there, the energy dependence of the beta phase space
factor and the decay width must be corrected for. On top of that the interference
must be unraveled. Because of this, the derivation of BGT values builds on the
interpretation of the spectrum and is in this way at least to some degree model
dependent.

In the following the branching ratios to different energy regions will therefore
be described first. Both through a completely model-independent summing of
the spectrum and through an integration of the fit from chapter 6 corrected for
decays through the 8Be excited state channel. This integration will allow us to
extrapolate the branching ratios down below the measured energies, giving even
the branching ratio to the Hoyle state. Furthermore these branching ratios have
been normalized using the well studied decay to the 4.44MeV state in 12C. After
this the matrix elements, BGT values and ft values corresponding to each level
will be identified. Summarizing these results will be compared to the previously
available data.
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12.7MeV state Energy (MeV) Counts Uncert. Counts/MeV
12N decay peak [5.0:5.6] 2726 52
Background [4.5:5.0] 96 192
Background [5.6:6.0] 52 130
Backgr. estimate [5.0:5.6] 96 20 160
12N detected 12.7MeV 2630 56
Decays in total 12.7MeV 1.46 ·105 0.14 ·105

12B decay peak [5.0:5.7] 79 9
Background [4.7:5.0] 8 27
Background [5.7:6.0] 0 0
Backgr. estimate [5.0:5.7] 9 7 13
12B detected 12.7MeV 70 11
Decays in total 12.7MeV 3.9 ·103 0.7 ·103

Table 8.1.1: Number of triple alpha events detected in the 12N and 12B decays
populating the 12.7MeV state of 12C, and total number of nuclei corrected for
detection efficiency.

8.1 Model independent relative branching ratios

The measured 12C spectra yield a direct information on the branching ratios
for the two decays to the different energy regions, and thereby the branching
ratios to the individual states. Since we have no absolute normalization of these
spectra, it must be noted that only relative branching ratios are measured. The
branching ratios of interest are to the 0+ strength in the 10.3MeV energy region
corresponding to a triple alpha energy of about 3 MeV; to the 2+ strength in the
13MeV region corresponding to triple alpha energy of about 7 MeV; and to the
12.7MeV 1+ state 5.4MeV above the triple alpha threshold.

From the 12C spectra (figure 7.1.3) for breakups through the 8Be excited state
channel, the feeding to the 12.7MeV state can easily be identified. The estimated
number of counts for this beta decay channel is listed in table 8.1.1. Along with
the detected number of counts in the peak, the estimated background is shown as
well. The background is estimated from the number of counts in the surrounding
region as indicated. The stated uncertainty of the total number of counts is the
statistical uncertainty, whereas the background uncertainty is a reasonable upper
limit estimated from the difference between the two surrounding intervals.

With efficiencies of 1.84(18)% and 1.86(19)% for the 12N and 12B data re-
spectively, this corresponds to a total of 1.43(14) ·105 and 3.8(7) · 103 produced
nuclei in the 12.7MeV state of 12C for the two decays respectively. The 12.7MeV
state however does not decay entirely to the triple alpha continuum states. The
total width of the state is 18.1(28) eV of which 0.40(5) eV is the gamma decay
width to the two bound states of 12C corresponding to a 2.2% gamma decay
branch (Ajzenberg-Selove, 1990). This branch is missing in this measurement
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Figure 8.1.1: Spectra for 12N and 12B decays, detection efficiency corrected. 8Be
ground state channel (dashed); 8Be excited state channel (dotted); and sum of
the two (solid) are plotted. The definition of “the 10.3MeV region” is indicated.

and it must therefore be corrected for,1 yielding the results shown in table 8.1.1.
An uncertainty of about 10% for the efficiencies is reasonable even though the
beam spot size uncertainty shown in figure 6.2.6 shows a dependence of the ef-
ficiency of up to 20%, since what we need here is really the relative efficiency
when comparing different energies or different breakup channels. If the absolute
number of decays is needed, a additional systematic uncertainty of 15% should
be included.

For the feedings to the states different from the 12.7MeV state, the situation
is a bit more complicated, since they are broad. If we remember the efficiency
and beta phase space corrected spectra shown in figure 6.3.2 however, we see that
a reasonable distinction between high and low energy contributions could be set
to 4.7MeV in sum energy corresponding to a 12C energy of 12MeV. Because of
the limited statistics in the low energy range, we must choose a low energy cutoff
for the lower energy region as well. This may conveniently be set to 1.7MeV,
corresponding to a 12C energy of 9 MeV. The maximum of the upper region is
only defined by the Q value of the beta decay. The feedings of these regions
must be found taking the energy dependent detection efficiency into account,
as shown in figure 8.1.1. The spectrum integrals as used for branching ratio
estimation are shown table 8.1.2. For the low energy range the uncertainties are
dominated by the 10% uncertainty in efficiency, whereas for the upper energy

1Though this is smaller than the estimated uncertainty we should not neglect it, since it is
an expected systematic bias of our measurement.
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0+,2+ states Energy (MeV) Nuclei Uncert.
12N (gs) [1.7:4.7] 5.32 ·105 10%

(ex) estimate [1.7:2.0] 0.06 ·105 0.03 ·105

(ex) [2.0:4.7] 0.58 ·105 10%
12N 10.3MeV total [1.7:4.7] 6.0 ·105 0.6 ·105

12N (gs) [4.7:6.0] 0.79 ·104 10%
(gs) [6.0:7.0] 0.27 ·104 10%
(ex) [6.0:7.0] 0.28 ·104 10%
(ex) [7.0:8.0] 0.15 ·104 10%

12N 13.6MeV min [4.7:8.0] 1.3 · 104

12N 13.6MeV max [4.7:8.0] 2.3 · 104

12N 13.6MeV total [4.7:8.0] 1.8 ·104 0.4 ·104

12B (gs) [1.7:4.7] 6.03 ·105 10%
(ex) [1.7:4.7] 0.69 ·105 10%

12B 10.3MeV total [1.7:4.7] 6.7 ·105 0.7 ·105

12B (gs) [4.7:6.1] 0.34 ·103 0.15 ·103

(ex) min [4.7:6.1] 0.10 ·103

(ex) max [4.7:6.1] 1.30 ·103

12B 13.6MeV min [4.7:6.1] 0.3 · 103

12B 13.6MeV max [4.7:6.1] 1.7 · 103

12B 13.6MeV total [4.7:6.1] 1.0 ·103 0.4 ·103

Table 8.1.2: Estimates of produced nuclei for the 12N and 12B decays in different
energy ranges of 12C. Both 8Be ground state channel (gs) and 8Be excited state
channel (ex).

range, the uncertainties from subtracting the 12.7MeV state contribution are
substantial. The uncertainty on the total 12N feeding to the upper energy region
is thus found from estimated minimum and maximum bounds of 1.3 ·104 and
2.3 ·104. The lower bound is found from the assumption that at least the counts
up to 7 MeV where the ground state channel is no longer present are real decay
events, whereas the upper bound is found under the assumption that all the
measured events are real events and furthermore that the excited state channel
for the broad states contribute as much as the ground state channel in the region
where they are overlaid by the peak of the 12.7MeV state. These bounds yield a
standard deviation of 0.3 · 104.2 In addition to this, the efficiency uncertainty is
taken into account. The estimation of the uncertainty for the upper energy region
of the 12B decay is made in a similar manner, though here the total number of
counts is so small that the total is almost consistent with zero, so the given value
should mainly be seen as an upper bound. Furthermore, the events that are
unquestionable are all close to 4.7MeV, so had the division between the ranges

2With the worst case assumption of a uniform uncertainty distribution within these bounds,
the standard deviation is

√
12 of the total width as described e.g. by Barlow (1989).
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12N 12C 12B
BR/BR12.7 Energy BR/BR12.7

(MeV)
4.1(5) 10.3 171(37)
0.12(3) 13.6 0.28(13)

Table 8.1.3: Branching ratios relative to those of the 12.7MeV 1+ state in 12C.
Two different energy regions: 10.3MeV and 13.6MeV referring to the 0+ and 2+

strength in the intervals [1.7:4.7] and [4.7:8.0] MeV respectively in total alpha
energy.

been placed just a bit higher, the 12B branching to this region would definitely
have been consistent with zero.

With the number of nuclei in different energy regions under control, we can
give a completely model independent estimate of the relative branching ratios of
the three parts of the 12C spectrum. In table 8.1.3 the relative branchings are
therefore summarized.

8.2 Relative branching ratios near the threshold

As noted in section 3.2.2 we can extrapolate the branching ratios down below
our experimental low energy cutoff, since the fitted three level R-Matrix model
describes the spectrum of both the 10.3MeV region as well as the Hoyle state
peak. As seen in figure 8.2.1 the total spectrum has a minimum at 0.46MeV
corresponding to 7.73MeV in 12C. This is where the Hoyle state ghost begins.
The most useful definition of branching ratio regions is therefore to separate the
two at exactly this energy. With this we can then calculate the integrals, and
thereby estimate how many 12C nuclei were produced in the individual regions.
These estimates are given in table 8.2.1 corrected for the breakup through the
8Be excited state channel as in table 8.1.2. By normalizing to the 12.7MeV state
(table 8.1.1) we get the relative branching ratios. The uncertainty of these are
dominated by the 10% uncertainty in detection efficiency except for the 12B decay
where the uncertainty in the population of the 12.7MeV state is higher. For the
13.6MeV state similar integrated relative branching ratios can be found. This
yields 0.070 and 0.055 for the 12N and 12B decays respectively, which should
be multiplied by about a factor of two to take into account the fact that for
this state about half of the breakup is through the 8Be 2+ state. These values
are consistent with those given in table 8.1.3, but is not expected to be more
accurate.

Though these are the best estimates of the branching ratios to the Hoyle state
and the 10.3MeV energy region, it must be emphasized that they are to some
degree model dependent. For the branching to the Hoyle state peak it is 100%
extrapolated, whereas for the 10.3MeV strength only the difference between the
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Figure 8.2.1: Three level R-Matrix fit to 8Be ground state data. 0+ Hoyle state
with its ghost (1); 11.5MeV 0+ state (2); and 13.6MeV 2+ state (3). Dotted
lines are the individual states in the single level approximation; dashed lines are
the individual state contributions as described in equation 3.2.15 and the sum of
all three; whereas the solid line is the total intensity including the full interference
(equation 3.2.1).

12N 12C 12B
BR/BR12.7 Populating Energy Populating BR/BR12.7

decays (MeV) decays
38(6) 5.6(6) · 106 7.65 1.62(17) ·107 4.2(9) · 103

4.7(7) 6.9(6) · 105 10.3 1.11(12) ·106 2.8(6) · 102

Table 8.2.1: Estimated number of 12C nuclei produced in low energy intervals:
7.65MeV Hoyle state peak and 10.3MeV region respectively, where the latter
covers the [0.46:4.7] MeV interval. Branching ratios are given relative to those
of the 12.7MeV state.
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Figure 8.3.1: Single alpha energy, data and three component fit for region above
1 MeV as indicated (S. G. Pedersen, private communication).

values in tables 8.1.3 and 8.2.1 is model dependent.

8.3 Relative branching ratios from single alpha

spectra

In addition to the analysis of triple alpha coincidence events presented in the
preceding, the single alpha spectrum has been analyzed as well.3 This analysis is
in essence the same as the one previously performed by Schwalm & Povh (1966).
The difference being our much improved statistics and a better theoretical under-
standing of the spectrum. Since the new analysis takes the interference between
the Hoyle state ghost and the higher lying 0+ state into account, the shape of the
0+ contribution to the single alpha spectrum is much better understood yielding
a more correct separation between this and the contribution from the 12.7MeV
1+ state as showed in figure 8.3.1. The resulting relative branching ratios are
shown along with those from the triple coincidence analysis in table 8.3.1.

When comparing the branching ratios from the analysis of single alpha spectra
and the triple coincidence spectra the two can be seen as independent measure-
ments of the branching ratios to the degree that the two analysis are decoupled.

3For the data analysis and results presented in this and the following section all credit should
be given to Solveig G. Pedersen.



108 Chapter 8 - Branching ratios

12N 12B
Comb. Triple Single Energy Single Triple Comb.

alpha alpha (MeV) alpha alpha
43(6) 38(6) 53(9) 7.65 5.5(11)·103 4.2(9)·103 4.7(9)·103

5.1(6) 4.7(7) 6.2(11) 10.3 3.5(7)·102 2.8(6)·102 3.1(5)·102

1. 1. 1. 12.7 1. 1. 1.
0.12(3) 0.12(3)∗ 0.12(6)† 13.6 1.1(10)† 0.28(13)∗ 0.28(13)

Table 8.3.1: Relative branching ratio recommendations for the decays of 12N and
12B to the triple alpha continuum. For the 0+ strengths (7.65MeV and 10.3MeV)
the energy intervals are defined as in table 8.2.1. ∗ For the 2+ strength (13.6MeV)
the energy interval is defined in table 8.1.3. † Here found from an integration
of the fitted 2+ contribution over the entire energy range. Combined values are
found as described in text.

This is because the two data sets are to a high degree statistically independent.
In addition to this the main systematic uncertainty for the triple coincidence
data analysis, the coincidence detection efficiency, does not come into play for
the single alpha energy spectra. This makes the low energy cutoffs and the trig-
ger levels the only common feature in the two analysis. Furthermore, effects from
low energy cutoffs and trigger levels are avoided in the single alpha analysis by
excluding the low energy region.

When comparing, it is evident that the branching ratios from the two meth-
ods are consistent. For the Hoyle state and the 10.3MeV energy region the
values from triple coincidence (T ) and single alpha (S) spectra are combined
with relative weights according to their uncertainty (S) (see e.g. Barlow, 1989):

BR =
BRT S −2

T + BRSS −2
S

S −2
T + S −2

S

.

For the 10.3MeV region the uncertainty is similarly found through

S−2 = S −2
T + S −2

S ,

which is reasonable since the analysis methods are independent. This however
is not the case for the Hoyle state, since its contribution is extrapolated from
the R-Matrix description of the 10.3MeV region. The single and triple alpha
estimates are therefore influenced by the same systematic uncertainties, and a
realistic uncertainty is therefore the smallest of the two uncertainties. For the
high energy region, the triple coincidence estimate is given.

8.4 Normalizing to the 4.44 MeV state

Since the detector setup included a germanium detector in addition to the silicon
detectors, it is possible to detect the gammas emitted when the bound 4.44MeV
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12N 12B
Literature BR(%) Energy BR(%) Literature
value (%) Igisol (MeV) Igisol value (%)
94.55(60) ? g.s. ? 97.22(30)
1.898(32) ? 4.44 ? 1.182(19)†

2.7(4) 5.2(8) 7.65 1.66(25) 1.5(3)
0.46(15) 0.62(7) 10.3 0.109(10) 0.08(2)
0.31(12) 0.121(15) 12.7 3.5(7)·10−4 ?

? 0.015(5) 13.6 1.0(5)·10−4 ?
0.0044(15) ? 15.1 – –

Table 8.5.1: Absolute branching ratio recommendations. Comparison with
(Ajzenberg-Selove, 1990) where possible. For † an alternative value of 1.283(40)
is given.

2+ state in 12C is populated. With this detection we can use the known branching
ratio to this state to normalize the measured relative branching ratios. This
analysis yields an absolute value of the branching ratio to the 0+ strength in the
10.3MeV region of 0.618(73)% for 12N and 0.1092(97)% for 12B (S. G. Pedersen).
For 12B the value of course depends on which branching ratio for the 4.44MeV
state is used. The above value is derived using BR(4.44) = 1.182% whereas for
BR(4.44) = 1.283% the 10.3MeV branching ratio is scaled correspondingly.

8.5 Recommended branching ratios

With the absolute value of the branching ratios to the 10.3MeV region in place
(section 8.4), the absolute values of the remaining branching ratios can be found
from the relative values. These new recommendations for the branching ratios
are presented in table 8.5.1, where they are compared to literature values. The
values for the 12B decay are under the assumption that BR(4.44) = 1.182%, so
if BR(4.44) = 1.283% holds true instead, the values in the table must be scaled
by a factor of 1.283/1.182. For the 12B decay, the results are consistent with the
literature values whereas for the 12N decay, the values for the Hoyle state and for
the 12.7MeV state differ significantly. With two independent measurements both
showing a significant deviation in the 10.3MeV to 12.7MeV ratio, the branching
ratios presented here however seem sufficiently well founded.
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8.6 BGT values for individual levels

With a narrow state such as the 12.7MeV state, the BGT values are easily cal-
culated from equation 3.2.8, stating that

BGT =
g2

V

g2
A

B

fβt1/2;λ
.

The absolute branching ratios to this state were found in the preceding sec-
tion 8.5.1 and the half lives of 12N and 12B are known to be 11.000(16)ms and
20.20(2)ms respectively (Ajzenberg-Selove, 1990). The partial half lives of the
two decays to the 12.7MeV state are therefore found from t1/2;12.7 = t1/2/BR12.7

to be 9.1(11) s and 5.8(11) · 103 s respectively. Besides this, the beta phase space
factors are calculated from (Wilkinson & Macefield, 1974) to be 924 and 1.059
for 12N and 12B decays respectively. With this the BGT values for the two decays
are found to be 0.456(57) and 0.63(13) respectively.

For the decays to the 7.65MeV Hoyle state peak, the fβ factor can be found
as for the 12.7MeV state but in this case it is much larger, namely 5.40 ·104 and
1.007 ·104 for the 12N and 12B decays respectively. With this and the relative
beta decay branching ratios as seen in table 8.3.1, we can calculate the relative
BGT values to be 0.65(11) and 0.46(10) for the two decays respectively from:

BGT ;7.65

BGT ;12.7
=

fβ;12.7 t1/2;12.7

fβ;7.65 t1/2;7.65
=

fβ;12.7

fβ;7.65

BR7.65

BR12.7
. (8.6.1)

This way of calculating the BGT values is what has traditionally been done.
It does however not really do justice to the Hoyle state, since it ignores the Hoyle
state ghost and therefore does not take into account the entire beta strength
to the Hoyle state. To take this threshold effect into account I will use the
broad state formalism introduced in section 3.2.2 (Barker & Warburton, 1988).
To emphasize this difference, the entire Hoyle state decay branch will in the
following be denoted h instead of 7.65.

BGT ;h

BGT ;12.7
=

fβ;12.7 t1/2;12.7

fβ;h t1/2;h
=

fβ;12.7

Ih

Jh

BRh

BR12.7
(8.6.2)

Where Ih and Jh are defined for the 0+ Hoyle state (λ = 1) from equations 3.2.17
and 3.2.18. In case of the fitted function, the decay probability is not scaled to
yield an integral of ln 2/t1/2 but is scaled to fit the measured spectrum. With
this scaling of the front factor C2, the integral over any energy region is 1% of
the total number of 12C nuclei populated in the region, since the used energy
unit is 1 MeV and bin width is 1% of this, namely 10 keV. We therefore have:

Ih =
1

(gh,GT )2 C2

∫
wh(E)dE =

Nh

100 (gh,GT )2 C2
, (8.6.3)
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12N 12C 12B
BGT /BGT ;12.7 Energy BGT /BGT ;12.7

3α data only (MeV) 3α data only
0.65(6) 7.65p 0.45(10)

1.12(10)(11) 7.65h 0.74(7)(14)
0.146(+30

−10)(15) 11.47 0.137(20)(25)
1. 12.71 1.

0.224(+190
−30)(20) 13.61 0.062(+70

−40)(10)

Table 8.6.1: BGT values relative to those of the 12.7MeV state. Values for the
Hoyle state; the 11.47MeV 0+ state; and 13.61MeV 2+ state are given. In the
case of the Hoyle state the values are given for the traditional method including
only the 7.65MeV peak (p) as well as for the full Hoyle state contribution (h).

with Nh as the total number of decays populating the Hoyle state. Consequently

BGT ;h

BGT ;12.7
=

fβ;12.7Jh

Ih

Nh

N12.7
= 100fβ;12.7Jh (gh,GT )

2
C2 1

N12.7
(8.6.4)

The value of fβ;12.7 is given in the preceding and N12.7 is given in table 8.1.1 for

both decays. The value of (gh,GT )
2
C2 on the other hand is found from the fit

in chapter 6 to be 0.564 and 8.75 for the 12N and 12B decays respectively. This
gives us the BGT values for the Hoyle state relative to those of the 12.7MeV
state as 1.12(10)(11) and 0.74(7)(14) for the two decays. The first uncertainty is
an estimated uncertainty from the fit, whereas the second is the uncertainty on
N12.7.

As seen in table 8.6.1 the results using the traditional method and the method
used by Barker & Warburton (1988)4 are clearly different. This is because the
traditional method of calculating BGT values neglects threshold effects. One
should therefore be very cautious when assigning BGT values to states with sig-
nificant ghost contributions and it is thus essential to state whether the traditional
method or the full R-Matrix description has been used.

For the 11.47MeV 0+ state and the 13.61MeV 2+ state, the BGT values as
found in the R-Matrix formalism relative to those of the Hoyle state can easily be
found from the square of the corresponding matrix elements (equation 3.2.21).
The ratios of these matrix elements were found from the fit in chapter 6 where
they are stated in table 6.3.6. Taking into account the estimated uncertainties
and scaling to get the values relative to those of the 12.7MeV state instead of
the Hoyle state we get the values shown in table 8.6.1. The uncertainties given in
the first parentheses are the uncertainties from the BGT ;λ/BGT ;h ratio whereas
the second are from the BGT ;h/BGT ;12.7 ratio. For the 13.61MeV state the
first part includes the mentioned uncertainty from the effects of the 8Be exited

4Barker & Warburton describes as well an alternative method for narrow levels. This gives
very similar results to the method used here
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12N 12B Isospin asym.
Literature log ft Energy log ft Literature log(δ + 1)

value Igisol (MeV) Igisol value Igisol

4.120(3) ? g.s. ? 4.066(2)
5.149(7) ? 4.44 ? 5.143(7)†

4.34(6) 4.11(7) 7.65p 4.13(14) 4.13(9)
3.87(9) 7.65h 3.91(12) −0.04(15)

4.36(17)†† 4.76(+12
−8 ) 11.47 4.64(16) 4.2(2)†† 0.12(20)

3.52(14) 3.92(6) 12.71 3.78(9) ? 0.14(12)
? 4.57(+12

−30) 13.61 5.0(+4
−5) ? −0.4(5)

3.30(13) ? 15.11 – – –

Table 8.7.1: Recommendations for log ft values. Comparison with
(Ajzenberg-Selove, 1990) where possible. For † an alternative value of 5.108(14)
is given. For †† the literature values to compare with are those of the so-called
10.3MeV state. The isospin asymmetry parameter is found as discussed in the
text.

state channel (see section 6.3.9). For the latter parts the fit uncertainties on the
BGT ;h/BGT ;12.7 are not included, since systematic uncertainties from the fits are
already included in the BGT ;λ/BGT ;h ratios. To get the full uncertainty the two
uncertainties should then be combined. If however the BGT ;λ/BGT ;h ratios are
calculated from the values given in the table the first parenthesis gives the full
uncertainty of this ratio.

8.7 Recommended log ft values

The central quantum mechanical observables in the description of the Gamow-
Teller beta decays are the Gamow-Teller strengths (BGT ), the quantum mechan-
ical overlap between the decaying state and the state it decays to. This BGT

value however is often given in terms of the log ft value. From the fβ and the
t1/2 values for the two decays to the 12.7MeV state—as given in section 8.6—we
therefore find the log ft values for that level to be: 3.92(6) and 3.78(9) for the
12N and 12B decays respectively. With these values and the relative BGT values
in table 8.6.1, the absolute log ft values for the states can be found as:

log ftx = log ft12.7 − log

(
BGT ;x

BGT ;12.7

)
, (8.7.1)

The resulting log ft values for the two decays can then be compared to the
values in the available literature as shown in table 8.7.1. The log ft values for
the 12B decay given in the table are all calculated under the assumption that the
literature value of 5.143 holds for the decay to the 4.44MeV state, corresponding
to the branching ratio value of 1.182%. If instead the alternative value of 5.108
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is correct, all calculated values should be reduced by the difference of 0.035. In
the table, the calculated values are furthermore compared to those given in the
data evaluation by Ajzenberg-Selove (1990). This comparison will be discussed
in the following.

For the 12N decay to the 12.7MeV state the deviation is significant, a bit more
than 2σ. This difference corresponds directly to the difference in the branching
ratios as presented in table 8.5.1. As discussed in section 8.5 the new value
for this branching seems well founded and we can thus have confidence in the
log ft value presented here as well. For the Hoyle state and the 11.47MeV
state (or 10.3MeV state as it has been denoted in litterature) the situation is
more involved. This stems from the fact that the two states are actually very
broad states, and moreover they interfere. The log ft values should therefore
be calculated from the R-Matrix description of the states and their interference.
Since this is unavoidable for the 11.47MeV state, I would recommend using the
same formalism for the Hoyle state log ft value. This will allow calculation of the
log ft values for the two states in a single theoretical model, and thereby make
a direct comparison with the experimental values possible. In the R-Matrix
formalism (equation 3.2.21 and Barker & Warburton, 1988) The contribution
from the ghost of the Hoyle state is taken into account. Since this contribution is
at higher energies, the contribution of the ghost to the Hoyle state log ft values
is furthermore enhanced by the energy dependent f -factor. This means the beta
decay is enhanced because of the ghost and the log ft value (7.65h) is lowered
significantly relative to the traditional value (7.65p). This has the additional
consequence that the value of the higher lying 0+ state (11.47) is increased, since
some of the 0+ strength prevoiusly assigned to this state is now known to be
caused by the Hoyle state ghost.

The difference in log ft values also corresponds to the difference between ob-

served and direct R-Matrix parameters through the factor
(
1 + γ2

λc
d

dESc(E)
)−1

.
When the Hoyle state is assumed to have an observed width of 7.65 eV, and
the calculation is made for a channel radius corresponding to r0 = 1.71 fm as
in this case, the factor is 0.58. This corresponds to a difference in log ft of
log10(0.58) = −0.24, exactly the difference between the two Hoyle state values
given in the table. The difference between the 7.65h and 7.65p values is there-
fore well understood, and I would personally prefer the 7.65h value to ease the
comparison with the log ft values for the 11.47MeV state and the 13.61MeV
state.

8.7.1 Isospin symmetry

As a final comment on the beta decays of 12N and 12B the isospin symmetry
for the two decays can be descussed now that whe have log ft values for the
decays to individual states. The possibility of an asymmetry in the two decays
is conveniently discussed using the δ parameter as defined by Smirnova & Volpe
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(2003) from the ratio of the beta plus and beta minus decay ft values.

δ =
(ft)+
(ft)−

− 1 =
ft(12N)

ft(12B)
− 1 (8.7.2)

For convenience, the values given in table 8.7.1 are the values of log(δ + 1),
with uncertainties given as rather conservative estimates. As seen in the table
we cannot pinpoint any isospin asymmetry, except that a small preference for
beta minus decay could be indicated in the case of decays to the 12.7MeV state
(δ > 0).
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CHAPTER 9

The stellar triple alpha process

This chapter is first and foremost intended to give a thorough documentation
of the triple alpha reaction rate calculations presented recently in (Fynbo et al.,
2005). This paper deals primarily with the extreme temperature ranges, relevant
primarily in explosive helium burning scenarios. The results and method for
calculating the reaction rate is presented in section 9.2.

Another aspect of the triple alpha reaction rate however is so important that
it should not be disregarded here, namely the work presently being done on im-
proving the triple alpha reaction rate at the temperatures relevant for hydrostatic
helium burning as it takes place in Asymptotic Giant Branch (AGB) stars. Sec-
tion 9.1 will therefore present the current status of the reaction rate calculations
and the measurements necessary for these calculations, even though the actual
work being done in this field is done by other groups and is thus not part of the
work otherwise presented in this dissertation.

9.1 Hydrostatic helium burning

Before Hoyle et al. (1953) identified a 7.65MeV 0+ state in 12C just above the
triple alpha threshold, the reaction

3 ×4 He →12 C + γ (9.1.1)

was thought to take place through a two step reaction

4He + 4He ⇀↽ 8Be(gs)
8Be(gs) + 4He → 12C + γ
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where the latter reaction was described as a direct reaction, that is with no inter-
mediate 12C state in the triple alpha continuum, as described by Öpik (1951) and
Salpeter (1952). But as described in chapter 1 it is now known that the 7.65MeV
state (the Hoyle state), dominates the reaction rate at the temperatures where
helium burning takes place. Namely T9 = 0.1–2 where T9 is the temperature in
giga Kelvin (see e.g. Hoyle, 1954).

Being dominated by the Hoyle state, the reaction rate can be determined
from an investigation of this state. This section will describe how the relevant
information on the Hoyle state is determined and how the reaction rate is calcu-
lated from this information. The reaction rate is used in stellar evolution models,
and as described by Herwig, Austin, & Lattanzio (2006) the stellar evolution can
be very sensitive to the triple alpha reaction rate at these temperatures and for
some scenarios it will be important to determine the rate within an uncertainty
of about 5% or less.

9.1.1 The resonant triple alpha reaction rate

In the temperature range from T9 = 0.1 up to T9 = 2, the reaction proceeds
through the two alpha cluster resonances: The 8Be ground state and the 12C
7.65MeV Hoyle state, both of them 0+ states so that with their natural parity
they are available in collisions of alpha particles. The following will explain how
to calculate the reaction rate of this resonant two step process. This description
will largely follow the introduction of Nomoto, Thielemann, & Miyaji (1985).

At these temperatures and with the available pressure the two reactions

4He + 4He ⇀↽ 8Be(gs)
8Be(gs) + 4He ⇀↽ 12C(Hoyle)

are in complete thermal equilibrium. This means that at any time a certain part
of the available 4He is actually not in the form of free helium nuclei, but has
combined to form either 8Be or the Hoyle state. At any time it is the population
of the latter state that determine the reaction rate, since a small fraction of
the populated Hoyle state nuclei does not break up into three alpha particles
again, but decay electro-magnetically to the bound states in 12C. With a given
population n of the Hoyle state, the production ṅ of 12C nuclei is therefore:

ṅ
(
12C
)

= n
(
12C(Hoyle)

) Γrad

h̄
, (9.1.2)

since the radiative width Γrad divided by h̄ is the decay probability per time.

With the thermal equilibrium, the population of the individual states is gov-
erned by the Saha equation (Saha, 1920), which for the Hoyle state yields:

n
(
12C(Hoyle)

)( 2πh̄2

M12kBT

) 3
2

= n
(
4He

)3
(

2πh̄2

M4kBT

) 9
2

exp(−Q/kBT ), (9.1.3)
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where kBT is Boltzmann’s constant times the temperature; Q is the energy differ-
ence between the three free alpha particles and the Hoyle state; and M12 and M4

are the masses of the Hoyle state and the individual alpha particles respectively.
With this, the rate of the triple alpha process is given by:

ṅ
(
12C
)

= n
(
4He

)3
(

2πh̄2

kBT

)3
M

3
2

12

M
9
2

4

exp(−Q/kBT )
Γrad

h̄
. (9.1.4)

On this we can use the approximation M12 ≈ 3M4 valid at the 10−4 level. Fur-
thermore if we write it in terms of the abundances Yi = ni/(ρNA) for the 12C
ground state (i = 12) and of helium (i = 4) where NA is Avogadro’s number and
ρ is the density of the stellar plasma, we get:

Ẏ12 = 3
3
2 Y 3

4 ρ2N2
A

(
2πh̄2

M4kBT

)3

exp(−Q/kBT )
Γrad

h̄
. (9.1.5)

With the commonly used notation:

N2
A〈ααα〉 = 6Ẏ12/(ρ2Y 3

4 ) (9.1.6)

this can be written as:

N2
A〈ααα〉 = 3

3
2 6N2

A

(
2πh̄2

M4kBT

)3
Γrad

h̄
exp(−Q/kBT ). (9.1.7)

It is clearly seen that this reaction rate can be very temperature dependent and
furthermore that the reaction rate at temperatures where this approximation is
valid only depend on two properties of the Hoyle state: Its energy relative to the
triple alpha threshold (Q) and its radiative width (Γrad).

9.1.2 Secular equilibrium

To illustrate how the temperature is important in determining whether complete
thermal equilibrium is obtained or not, we can look at the more general assump-
tion of secular equilibrium, which holds in a wider temperature range. In this
case it is only assumed that the abundances of 8Be and of the 12C Hoyle state
are constant in time, that is:

Ẏ
(
8Be

)
= Ẏ

(
12C(Hoyle)

)
= 0. (9.1.8)

Here the 8Be ground state abundance can be related to the cross section for pro-
ducing the state in alpha alpha scattering, since the yield in a 4He(4He, )8Be
reaction is proportional to the relative velocity v of the helium nuclei times
the cross section σαα. Here however we have a stellar environment where the
velocities of the individual alpha particles in the plasma are not fixed, but dis-
tributed according to the Maxwell-Boltzmann distribution at the temperature of
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the plasma:

ξMB(E)dE =

(
8

πmc2

) 1
2
(

1

kBT

) 3
2

E exp (−E/kBT )dE, (9.1.9)

where m is the reduced mass of the two colliding particles, the two being either
two helium nuclei or a helium nucleus and a beryllium nucleus, depending on
which of the two processes is to be calculated. Because of that σv should be
averaged over the Maxwell-Boltzmann distribution:

〈αα〉 ≡ 〈σv〉 =

∫ ∞

0

σαα(E)v(E)ξMB (E)dE. (9.1.10)

We are now in a position to investigate the beryllium abundance:

0 = Ẏ
(
8Be

)
=

1

2
ρNA〈αα〉Y 2

4 − Γα(8Be)

h̄
Y
(
8Be

)

−ρNA〈α8Be〉Y4Y
(
8Be

)

+
Γα

(
12C(Hoyle)

)

h̄
Y
(
12C(Hoyle)

)
. (9.1.11)

Here the first term describes the production of 8Be through αα scattering and
the second term describes the decay of 8Be back into the αα continuum. The two
last terms deal with the contribution from the α +8 Be scattering as described
by Cox & Giuli (1968, pg. 499), and 〈α8Be〉 denotes the averaged cross section
for the reaction 8Be(α, )12C(Hoyle). As noted by Nomoto et al. these terms are
small compared to the first two, and may be neglected. With this, the beryllium
abundance is found to be:

Y
(
8Be

)
=

1

2

h̄

Γα(8Be)
ρNA〈αα〉Y 2

4 . (9.1.12)

The next step is to calculate the production of 12C from the helium and
beryllium abundances. This can be calculated directly from the cross section of
the 8Be(α, γ)12C reaction, where the intermediate 12C(Hoyle) state is required
to emit a gamma instead of breaking up again. This cross section must again be
integrated over the Maxwell-Boltzmann distribution as in equation 9.1.10 to find
〈α8Be〉. With this we get:

Ẏ12 = ρNA〈α8Be〉Y4Y
(
8Be

)
. (9.1.13)

With the notation defined in equation 9.1.6 and with the 8Be abundance (equa-
tion 9.1.12) inserted we get:

N2
A〈ααα〉 = 3N2

A

h̄

Γα(8Be)
〈αα〉〈α8Be〉. (9.1.14)

With knowledge of the energy dependence of the cross sections—and thereby the
σv integrals—it will be clear how this determines the temperatures at which the
resonant reaction rate is valid.
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9.1.3 Cross sections and the Gamow window

The cross section of the alpha alpha scattering as a function of the center of mass
kinetic energy E can be found from a scattering theory such as the R-Matrix
theory (Lane & Thomas, 1958):

σαα(E) =
π(2jλ + 1)

k2
αα

Γα(8Be)2

(Eλ − E + ∆α)
2

+ (Γα(8Be)/2)
2

=
π(2jλ + 1)

k2
αα

∣∣Pαγ2
λαAλλ

∣∣2 . (9.1.15)

Here the notation is the same as in chapter 3 equations 3.2.1 and 3.2.3, and jλ

is the spin of the contributing state λ and kαα is the wave number in the alpha
alpha scattering so that

kαα =
2mααc2E

h̄2c2
. (9.1.16)

In the case of the alpha alpha scattering we can safely use the one level approxi-
mation, since we have no possibility of interfering states. For the alpha beryllium
reaction on the other hand, we could in principle have contributions from inter-
fering states, since as we have seen in chapters 6 and 7 that the 11.5MeV 0+

state interferes with the Hoyle state ghost. With that in mind, we must write
the cross section as a function of the relative energy E taking into account the
possibility of interference:

σα8Be(E) =
π(2jλ + 1)

k2
α8Be

∣∣∣∣∣∣

∑

λµ

P
1
2
α γλαΓ

1
2

µradAλµ

∣∣∣∣∣∣

2

. (9.1.17)

Here the incoming and outgoing channels of the reaction are not the same as
in the alpha alpha scattering, but rather the alpha channel and the radiative
channel for incoming and outgoing channels respectively. The situation here is
very similar to that of the beta decay (equation 3.2.1) and the level matrix Aλµ is
indeed defined as in equation 3.2.2. The only difference is that in the triple alpha
process the incoming and outgoing channels differ from those in the beta decay.
The width for the incoming channel α +8 Be is thus Γλα = Pαγ2

λα, whereas for
the outgoing channel the width Γµrad is the radiative width of level µ and scales
with E5

γ , the energy available in the E2 gamma transition. The relative sign of

γλα and Γ
1
2

µrad when comparing two levels sets the sign of the interference, just
as in the beta decay. The cross section could be written with the notation used
in the one level approximation (Lane & Thomas, 1958, eqn:XII.4.2), but it gets
very cumbersome and the level matrix notation (Aλµ) is therefore preferable.
When calculating the level matrix for the Hoyle state one should in principle add
all channel widths. What has actually been done is to neglect the small width to
the gamma channel, which is a good approximation at the resonance energy, but
not at lower energies far from the resonance. At these energies however we are
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far from the resonance compared to the total width and the width does not play
an important role in |Aλµ|2 anyway. This is similar to the cross section seen in

equation 9.1.15 where the denominator (|Aλλ|2) is dominated by the first term,
making the second term negligible.

To identify the relevant temperatures for the resonant reaction rate approxi-
mation (section 9.1.1) we will for the time being neglect the fact that we have any
resonances at all and only look at the overall energy dependence of the reaction
rate. The resonances make the denominator (in for instance equation 9.1.15)
approach zero thereby making the cross section diverge. Apart from this effect,
the energy dependence of the cross section is determined by the penetrability Pc

and the factor 1/k2 ∝ 1/E. Though we actually have P2
c in equation 9.1.15 one

of these are canceled by the Pc factor in the width Γα(8Be) in equation 9.1.14.
Writing these two factors explicitly, the cross sections can be written as:

σ(E) = S(E)
1

E
exp

((
−EG

E

) 1
2

)
(9.1.18)

where the last part is the penetrability as described for the inverse process of
alpha decay by Gamow (1928). The S-factor is slowly varying if no resonances
contribute, and diverges around narrow resonances. The S-factor therefore car-
ries all the nuclear structure information.

If σv is integrated assuming a constant S-factor, the resulting energy distri-
bution is for a temperature peaked at a certain energy, the Gamow peak energy,
which scales with T

2
3 . This peak determines at which energies it is important to

know the S-factor and thereby determines which intermediate state(s) are pop-
ulated. At temperatures from T9 = 0.1 to T9 = 2, the 8Be ground state as well
as the 12C Hoyle state are within the Gamow window, ensuring that the triple
alpha process proceeds resonantly through these two states, making the reso-
nant reaction rate approximation (section 9.1.1) valid. At these temperatures,
the reaction rate (equation 9.1.14) reduces to the rate found from the thermal
equilibrium approximation (equation 9.1.7).

9.1.4 Current status of the resonant reaction rate

With the reaction rate at resonance given in equation 9.1.7 we need measurements
of the radiative width of the Hoyle state and the energy of the Hoyle state relative
to the triple alpha threshold. The energy of the state is a straight forward
measurement and has been determined within 0.2 keV as seen in table 9.1.1. The
radiative width is more complicated, and it has been measured only through the
factorization:

Γrad =
Γγ + Γπ

Γ

Γ

Γπ
Γπ, (9.1.19)

where the individual factors are the radiative branching ratio, the inverse of
the pair production branching ratio and the total pair width. The pair width,
the width corresponding to the decay channel 12C(Hoyle) →12 C(gs) + e+e−, is
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(a) Q = 379.38± 0.20 keV (1.2 %)

(b)
Γγ+Γπ

Γ = (4.12 ± 0.11) 10−4 (2.7 %)

(c) Γπ

Γ = (6.8 ± 0.7) 10−6 (10 %)
(d) Γπ = 60.5 ± 3.9 µeV (6.4 %)
(e) Γπ = 52.0 ± 1.4 µeV (2.7 %)

Table 9.1.1: Parameters for determining the resonant triple alpha reaction rate.
Evaluated values and errors are given along with the contributions to the error
on the reaction rate. For a discussion of the individual values see text. The
evaluations are listed by Ajzenberg-Selove (1990) and the latest experiment in
the individual evaluations are:
(a) Nolen & Austin (1976).
(b) Markham, Austin, & Shahabuddin (1976).
(c) Alburger (1977).
(d) Strehl (1970).
(e) Crannell et al. (2005).

measured though the equivalent process: Electron scattering on the 12C ground
state. The two remaining on the other hand are detected in direct counting
experiments, where the Hoyle state is populated in a reaction experiment, and a
low background setup is used to allow detection detection of the small branching
ratios. The results as used in the present evaluations of the triple alpha reaction
rate are shown in table 9.1.1 references (a–d). It is clear that the combined
uncertainty from these values are slightly larger than 10% and dominated by
the uncertainty in the pair branch with some contribution from the pair width.
There has however recently been performed a new experiment and with that a
new evaluation of the pair width. This evaluation gives a significant improvement
of the uncertainty. However, since the value differs by about 15% corresponding
to two sigma, care should be taken when the value is used in calculating the triple
alpha reaction rate. Because of this, it would be an important contribution to
the understanding of the triple alpha reaction rate, if for example the total width
(Γ) of the state could be measured directly, independent of the pair width. The
possibility of such a detection through beta decay studies was briefly discussed
in section 6.3.8.

Assuming the pair width to be under control, the uncertainty in the pair
branch dominates completely. For that reason a joint collaboration from Michi-
gan State University and Western Michigan University (Austin, 2005) is launch-
ing an experiment that is intended to improve the present value of this branching
ratio. The experiment is just about to start and is expected to reduce the uncer-
tainty to about 5%. This would yield a total uncertainty of 6% on the resonant
triple alpha reaction rate, in compliance with the astrophysical requirements.
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9.2 Explosive burning and extreme temperatures

At the more extreme temperatures, the reactions cannot be assumed to be reso-
nant and in particular for the very low temperatures neither the αα nor the α8Be
reaction are dominated by the resonant contribution (Nomoto et al., 1985).

9.2.1 The non-resonant triple alpha reaction rate

The advantage of the secular equilibrium formalism, described in sections 9.1.2
and 9.1.3, is that in the calculation of the 〈σv〉 values, one does not assume that
the 12C state mediating the reaction is populated at resonance.

For the derivation presented above however it was assumed when calculat-
ing 〈α8Be〉, that the incoming alpha beryllium channel was an α particle and a
8Be nucleus in its ground state, that is at 92 keV above the two alpha threshold
(Ajzenberg-Selove, 1988). Such an assumption on the 8Be energy was necessary
since the energy difference between the 12C intermediate state populated in the
reaction and the 8Be energy sets the energy available when the alpha particle pen-
etrates the Coulomb barrier in the reaction. Since this penetrability is strongly
energy dependent, the reaction rate is very sensitive to the 8Be energy populated
in the alpha alpha scattering. Besides this the energy difference also sets the
kinetic energy required from the Maxwell-Boltzmann distribution.

At the very low temperatures below T9 = 0.03 the intermediate 8Be nucleus is
not predominantly populated at the resonance energy but rather in the low energy
tail of the resonance. To take this into account when calculating 〈α8Be〉 we must
calculate this for all populated energies in 8Be and find the total production of
12C as the integral over the contributions from different 8Be energies as done by
Nomoto et al. (1985). In other words we assume secular equilibrium to be valid
for all 8Be energies (E):

0 = Ẏ
(
8Be, E

)
dE (9.2.1)

=
1

2
ρNAY 2

4 σαα(E)v(E)ξMB (E)dE − Γα(8Be, E)

h̄
Y
(
8Be, E

)
dE.

That is

Y
(
8Be, E

)
dE =

1

2
h̄ρNAY 2

4

[
d〈αα〉†(E)/dE

]
dE, (9.2.2)

if we define
[
d〈αα〉†(E)/dE

]
=

σαα(E)v(E)ξMB(E)

Γα(8Be, E)
, (9.2.3)

the integrand of the 〈αα〉 integration divided by the energy dependent width.
Note, that since we here use the cross sections directly and not a parameterization
of the S-factor as in the calculation of Nomoto et al. (1985) the width Γ(E) =
Pc(E)γ2 appears explicitly. For that reason it is more convenient to include the
entire 1/Γα(8Be, E) factor and not just the energy dependent part of it as done
by Nomoto et al..
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With this we can calculate the reaction rate as

N2
A〈ααα〉 = 3N2

Ah̄

∫ ∞

0

[
d〈αα〉†(E)/dE

]
〈α8Be(E)〉dE. (9.2.4)

Here the alpha alpha cross section is still as given in the preceding (equation
9.1.15). When calculating the 8Be cross section however, we must take special
care, since as described in section 3.4 and restated in equation 9.2.5 the level
matrix is more complicated when the decay channel is not a narrow state but
either a broad state or as in this case the low energy tail of a narrow state.
Compared to chapter 7 however the situation does simplify a bit when the 12C
energy is so low that only the 8Be 0+ ground state can contribute to the breakup
of the intermediate 12C state and thereby contribute to the level matrix. With
this the level matrix is:

(
A(E12C)−1

)
λµ

= (Eλ − E12C)δλµ (9.2.5)

−
∫∞

0 γλαγµα (Sα(E12C − E8Be) − Bα + iPα(E12C − E8Be)) ραα(E8Be)dE8Be.

For negative values of E12C − E8Be the penetrability (P) is of course zero
whereas the shift function can contribute at negative energies. The negative
energy contribution to the shift function integral however was not included in
the calculation for which the results were shown in (Fynbo et al., 2005), but
should be included in future compilations of the reaction rate at low energies. As
we will see in section 9.2.5 however the present tests of stellar evolution models
indicate little sensitivity on the low temperature triple alpha reaction rate.

9.2.2 Summary of contributions

With the method for calculating the reaction rate in hand, we will in the fol-
lowing review the nuclear physics input to the calculations. The needed input
is the possible contributing states in the reaction along with threshold effects
beyond the Breit-Wigner shape of the individual states. This is summarized in
tables 9.2.1 and 9.2.2 for the low temperature and high temperature regions re-
spectively. As seen in the preceding section, for the non-resonant contributions
to the reaction rate it is necessary to know not only the energy and the radiative
width of the state but the total width as well. All three are therefore listed.

For the low temperature region below T9 = 0.1 the only relevant contribution
is from 0+ strength in the two intermediate nuclei. This is because higher an-
gular momentum contributions are precluded by their larger angular momentum
barrier. This means the most important contribution is the low energy tails of
the Hoyle state and the 8Be ground state. As described in the preceding sections,
one must be careful when describing these low energy tails. Firstly because the
tail (the non resonant contribution to the rate) is dominating the reaction rate
at these temperatures (Nomoto et al., 1985) and secondly because the tails of
the states do not really follow the Breit-Wigner distribution because of threshold
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12C Jπ Eλ Γ Γrad

(a) 0+ 7.65420(15)MeV 8.5(10) eV 3.7(5)meV
(b) 7.6(10) eV 3.2(4)meV
(c) Direct L = 0, E2 radiative capture to 4.44MeV state.

8Be Jπ Ex Γ
(d) 0+ 91.8 keV 5.57(25) eV

8Be and 12C
(e) Non-resonant contribution to reaction rate.
(f) Threshold effects on low energy tail of continuum states.

Table 9.2.1: Possible contributions to the low temperature reaction rate. For
discussion of the individual contributions see text. Energy in 12C is relative to
the ground state whereas in 8Be it is given relative to the αα threshold.
(a) Ajzenberg-Selove (1990).
(b) Ajzenberg-Selove (1990) and Crannell et al. (2005).
(c) Langanke et al. (1986).
(d) Tilley et al. (2004).
(e) Nomoto et al. (1985).
(f) Section 9.2.1 and Fynbo et al. (2005).

effects. For an alternative treatment of effects beyond the Breit-Wigner shape of
the states, Langanke, Wiescher, & Thielemann (1986) has described direct L = 0
capture with radiative E2 decay to the 4.44MeV bound state of 12C. This was
described in a potential model and indicated an increase of about a factor of
two relative to the reaction rate from a Breit-Wigner distribution with energy
dependent width.

For the high temperature region above T9 = 2, higher spin states can come
into play, though only natural parity states can contribute since the reacting
alpha particles carry an internal spin-parity of 0+. All relevant contributions are
listed in the table. As is clearly seen, the radiative widths are in general poorly
known, as is to be expected since they are weak decay branches.

For the 0+ strength, the ghosts of the 8Be ground state and of the Hoyle
state can potentially be of importance, and to the degree that the Hoyle state
ghost is important, it is important to take into account the interference with
the 11.47MeV state. For this interference however we have no information on
the sign. This is because the sign of the interference depends on the incoming
and outgoing channels in the reaction, and since the measurement presented
in this dissertation probed the state through beta decay, i.e. another channel,
the measured sign is not directly related to the sign entering in the reaction rate
calculations. The uncertainty introduced by this ambiguity however is fortunately
very small, as will be seen in section 9.2.5.

The 2+ strength suggested by Descouvemont & Baye (1987) would contribute
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12C Jπ Eλ Γ Γrad

(a) 0+ 7.65420(15)MeV 8.5(10) eV 3.7(5)meV
(b) 7.6(10) eV 3.2(4)meV
(c) 0+ 11.47(16)MeV 3.44(35)MeV unknown
(d) 2+ 9 MeV 0.56 MeV 0.2 eV
(e) 2+ 11.46(20)MeV 0.43(10)MeV
(f) 2+ 9–11MeV 1 MeV
(a) 3− 9.6 MeV 35(5) keV 0.3 meV < Γrad < 14 meV
(a) 1− 10.8 MeV 315(25) keV unknown

8Be Jπ Ex Γ
(g) 0+ 91.8 keV 5.57(25) eV
(h) ghost 1 MeV 1 MeV
(g) 2+ 3.12 MeV 1513(15) keV

Table 9.2.2: Possible contributions to the high temperature reaction rate. For
discussion of the suggested states see text. Energies are given as in table 9.2.1.
(a) Ajzenberg-Selove (1990).
(b) Ajzenberg-Selove (1990) and Crannell et al. (2005).
(c) Chapter 6, table 6.3.6.
(d) Descouvemont & Baye (1987).
(e) Bency John et al. (2003).
(f) Itoh et al. (2004).
(g) Tilley et al. (2004)
(h) Chapter 3, figure 3.1.1.

significantly to the reaction rate, but the current experimental data suggest-
ing such a 2+ state places it at a somewhat higher energy (Bency John et al.,
2003; Itoh et al., 2004). If placed at an energy as high as that suggested by
Bency John et al., the contribution will certainly be very small, since the con-
tribution from the individual states depend strongly on the state energy as seen
already from the resonant reaction rate contribution (equation 9.1.7). If how-
ever a 2+ state in this energy range is included, one will have to take special
care in describing its shape, since it will interfere with the 13.6MeV 2+ state as
illustrated in figure 7.4.5.

For the negative parity contributions 3− and 1−, the states are well estab-
lished, but the radiative widths are poorly known. Assuming the uncertainties
are taken into account properly, the states should be included in reaction rate
calculations though the effect of these states is modest.

Regarding the 8Be states, the 2+ state is positioned at such a high energy
that it is unlikely to contribute significantly. The ghost of the ground state on
the other hand should be taken into account, since it will be important whenever
states in 12C at high energies contribute. This is the case if the 3− state or the
suggested 9 MeV 2+ state are included. The formalism stated in equation 9.2.4
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Figure 9.2.1: Integration regions for
numerical integration of reaction rate,
equation 9.2.4. The integration is per-
formed over regions 1–18 whereas the
marked region does not contribute to
the reaction rate.

Figure 9.2.2: Numerically integrated
triple alpha reaction rate (solid line)
and (dashed) the resonant reaction rate
as in equation 9.1.7. Arrows mark the
temperatures where the αα and α8Be
reactions become dominated by the res-
onant reaction rate.

however does include this effect as long as one remembers the high energy region
when evaluating the integral.

9.2.3 Numerical integration of the cross sections

The numerical integration is performed using the multidimensional adaptive rou-
tine dcuhre (Berntsen et al., 1991a,b) as in section 3.4. This integration routine
requires the integration regions to be rectangular, and since we furthermore have
narrow states as well as broader contributions, the integration regions are defined
as shown in figure 9.2.1. The regions around the narrow states: The 8Be ground
state; the Hoyle state; and the 9.6MeV 3− state in 12C are all defined as the
state energy plus-minus 20 times the width of the state. This ensures that the
numerical integration routine identifies both the narrow resonance contributions
and the broader contributions from tails of the states or from narrow resonances.
Though not essential, it turns out to be convenient to introduce separate regions
in the 12C energy around the 8Be ground state energy, since especially the inte-
grated level matrix (equation 9.2.5) varies significantly over this energy region.
The reaction rate as found through the numerical integration is shown in figure
9.2.2. As illustrated, the reaction rate is dominated by the resonant rate (sec-
tion 9.1) above log(T9) = −1 while the αα reaction is resonant already from
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9.2. Explosive burning and extreme temperatures 127

1 2.43 ·109 8 23.570 15 3.26 · 102

2 13.490 9 0.16 16 3.07 ·10−16

3 2.25 ·10−2 10 1.307 ·102 17 29.1
4 6.09 ·105 11 3.338 18 1.308 ·103

5 1.054 12 2.51 ·104 19 3.44 ·10−16

6 74.5 13 20.307 20 1.58 · 10−2

7 2.76 ·107 14 5.47 21 0.65

Table 9.2.3: Reaction rate parameterization from the Nacre compilation
(Angulo et al., 1999).

log(T9) = −1.5 and upwards.

9.2.4 Analytical form for the reaction rate

In the reaction rate compilation by Angulo et al. (1999), the triple alpha rate
has been described by the following analytical approximation.

χ11 = P1 ·T−2/3
9 · exp(−P2 ·T−1/3

9 − T 2
9 /P3)

χ12 = P4 ·T−3/2
9 · exp(−P5/T9)

NA〈σv〉αα = χ11 · (1 + P6 ·T9) + χ12

χ21 = P7 ·T−2/3
9 · exp(−P8 ·T−1/3

9 − T 2
9 /P9)

χ22 = P10 ·T−3/2
9 · exp(−P11/T9)

χ23 = P12 ·T−3/2
9 · exp(−P13/T9)

NA〈σv〉α 8Be = χ21 · (1 + P14 ·T9 + P15 ·T 2
9 ) + χ22 + χ23

f =

{
P16 · (1 − P17 ·T9 + P18 ·T 2

9 ) T9 ≤ 0.03

P19 · (1 + P20 ·T−P21

9 ) T9 ≥ 0.03

N2
A〈ααα〉 = NA〈σv〉αα ·NA〈σv〉α 8Be · f (9.2.6)

For astrophysical usage of the reaction rate it is important to have a continuous
parameterization of the reaction rate. To ensure this continuity one may define
P19 as:

P19 = P16 ·
1 − P17 ·Tx + P18 ·T 2

x

1 + P20 ·T−P21
x

. (9.2.7)

In the Nacre parameterization, a good set of parameters were found to be the
set stated in table 9.2.3. This described their calculated reaction rate within 5%
over most of the temperature range. In this parameterization P1 to P6 describe
most of the effect from the αα reaction whereas parameters P7 to P15 similarly
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1 2.368 ·109 8 23.6448 15 3.629 ·102

2 13.6672 9 3.274 ·10−2 16 1.603 ·10−16

3 4.300 ·10−3 10 88.7912 17 25.207
4 6.090 ·105 11 3.3432 18 85.453
5 1.0631 12 2.493 ·104 19 5.4266 ·10−16

6 162.52 13 158.4144 20 −3.989 ·10−2

7 2.76 ·107 14 5.4986 21 0.0798

Table 9.2.4: Reaction rate parameterization, fit to numerical integration.

describe the α8Be reaction. For that reason, denoting the two parts as NA〈σv〉αα

and NA〈σv〉α 8Be is reasonable even though the reaction rate does not strictly
speaking factorize in the two contributing reactions at all temperatures as can
be seen from the integral in equation 9.2.4.

For the rate presented in figure 9.2.2 a good set of parameters is presented
in table 9.2.4. This parameterization describes the reaction rate within 2.5% in
most of the presented temperature range, except at low temperature where the
deviation is up to 5% and at high temperatures where up to 15% discrepancy is
seen. In this parameterization however it must be noted that most of the param-
eters have been free when fitting to the integrated reaction rate. The distinction
between the αα part and the α8Be part is therefore no longer meaningful. For
the same reason the rate parameterization should not be expected to hold outside
the plotted T9 = 0.01–10 temperature range.

9.2.5 Comparison with the reaction rates in literature

With the calculation of the integrated reaction rate and the analytical param-
eterization of the rate in hand we are ready to compare our rate to commonly
used rates in the literature.

With the many orders of magnitude variation in the reaction rate over the
investigated temperature region (figure 9.2.2) it is convenient to view the reac-
tion rates relative to each other. Since the Nacre reaction rate (Angulo et al.,
1999) is commonly used especially in Europe, the reaction rates are presented
relative to that rate in figure 9.2.3 (as in: Fynbo et al., 2005). To allow a direct
comparison with the Nacre rate, the triple alpha rate calculation is here done
using the same Hoyle state parameters as used by Angulo et al.. These deviates
from the parameters in table 9.2.1 in the three values: Eλ(8Be) = 92.08 keV,
Γ(Hoyle) = 8.3(10) eV and Γrad(Hoyle) = 3.7(5)meV. The temperature depen-
dent uncertainty is not calculated for the presented rate, but since the uncer-
tainties are dominated by the uncertainties in the nuclear physics input, it is
reasonable to assume that the uncertainty is similar to that of the Nacre rate.

As noted in section 9.2.2, different states may contribute to the reaction
rate. The calculated rates presented in figure 9.2.3 are therefore not only the
pure Hoyle state reaction rate, but as well reaction rates where interference with
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Figure 9.2.3: Comparison of calculated reaction rates to the Nacre rate, which
is shown with its stated uncertainty. Integrated reaction rate (equation 9.2.4)
for pure Hoyle state rate as well as for Hoyle state interfering with higher lying
0+ state (chapter 6). Furthermore comparison to Caughlan & Fowler (1988) and
the resonant reaction rate for pure Hoyle state triple alpha reaction.

the 11.47MeV 0+ state is taken into account. The two presented interference
rates are calculated under the assumption that the higher lying state has the
radiative width of the Hoyle state scaled with the E5

γ energy dependence from
the E2 decay to the 4.44MeV state. The two rates have been calculated for
opposite interference, but as seen in the figure, the uncertainty introduced by
this ambiguity is small. The radiative width of the higher lying state would
have to be increased by more than a factor of three for this uncertainty to be
significant in comparison to the uncertainty estimate given in the Nacre rate.
For simplicity, all three reaction rates are calculated without the contribution
from the 9.6MeV 3− state.

As seen in the figure, all rates agree quite well in the central region where
the resonant Hoyle state reaction rate dominates. In the upper temperature
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region on the other hand, the deviation between the Nacre rate and the others
is significant. This difference is primarily caused by the inclusion/exclusion of
the 9 MeV 2+ state. In this temperature region I would therefore recommend
the Caughlan & Fowler (1988) reaction rate. At temperatures above T9 = 5 this
rate exceeds the Hoyle state reaction rate slightly, because of the inclusion of the
3− state. Very few—if any—astrophysical scenarios however are sensitive to the
triple alpha reaction rate at these temperatures, so for practical purposes the
Hoyle state reaction rate is almost as good.1

For the low temperatures, the correspondence is best between our rate and
the Nacre rate and I would therefore recommend using our rate, or alterna-
tively the Nacre rate. There has so far been published at least one test of the
influences from these low temperature reaction rate changes on the evolution
of stars with very low metalicity, stars that have no—or very little—carbon in
its initial composition (Weiss et al., 2005). Is this paper the authors find that
the difference between our rate and the Nacre rate has no significant effect on
the evolution of such stars. One deviation however is worth noting, namely the
(1.5σ) difference of about 20% around T9 = 0.1. This disagreement will have to
be settled before we can claim to know the triple alpha reaction rate to 5% from
T9 = 0.1 up to T9 = 2 which as stated in section 9.1 is an important goal for the
future.

1As a warning for those using the Caughlan & Fowler rate, note that the rate of
Caughlan et al. (1985) is not in agreement with the 1988 rate. For astrophysical simulations
where the 1985 rate is still hidden somewhere in the code, it will therefore be important to
update that rate.
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CHAPTER 10

Summary

In this dissertation I have presented experimental results on 12C states in the
triple alpha continuum, probed in the beta decays of 12N and 12B. Furthermore
I have applied these results to the description of the stellar triple alpha reaction
rate. The dissertation presents three different aspects of the continuum states
besides the investigation of the internal structure of the states: Firstly their
coupling to the triple alpha continuum; secondly their Gamow-Teller coupling
to the isobaric neighbors of 12C, the 12N and 12B ground states; and thirdly
how their coupling to the bound states of 12C determines the stellar triple alpha
reaction rate. These three aspects of the analysis are illustrated in figure 10.0.1.

Starting with the internal properties of the states, I have investigated the
0+ and 2+ strengths in 12C in the energy range from 8.5MeV up to 14.3MeV
corresponding to the interval (1.2MeV:7.0MeV) above the triple alpha thresh-
old. With an R-Matrix model including interference, it is possible to describe this
strength in terms of three states in 12C if the included states are: The well known
Hoyle state (0+; 7.65MeV) contributing with its ghost; a higher energy 0+ state
at 11.47(16)MeV overlapping with the ghost of the Hoyle state and interfering
with it; and a 2+ state at 13.61(14)MeV. A 2+ state at lower energies as for ex-
ample the three suggestions by Descouvemont & Baye (1987), Bency John et al.
(2003) and Itoh et al. (2004) is not confirmed. Note however for further studies
that such a state, if present, will interfere with the 13.61MeV state.

Regarding the coupling of the states to the triple alpha continuum, the state at
11.47MeV has a width of 3.44(35)MeV dominated by the breakup through the
narrow ground state of 8Be. For the entire 0+ strength however, there is a small
fraction (≈ 10%) of the breakups that go through higher energies of 8Be. Within
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Figure 10.0.1: Three properties of the triple alpha continuum states as presented
in this dissertation.

the uncertainty of the model, this breakup channel can be adequately described
by a breakup through the ghost of the 8Be ground state, in terms of the 12C
energy distribution as well as in the breakup kinematics. For the 13.61MeV 2+

state on the other hand, the breakup through the 8Be ground state can only
account for about half of the measured breakups. The remaining are breakups
through the 8Be 2+ excited state, dominated by breakups where the first alpha
particle carries an angular momentum of L = 2 relative to the two remaining
alpha particles. The total width of the 13.61MeV state is Γα = 1.68(20)MeV.

For the coupling to the beta decaying nuclei 12N and 12B, branching ratios
to different energy regions as well as coupling constants to the individual states
have been calculated. This has been done for the three mentioned 0+ and 2+

states as well as for the 1+ state at 12.7MeV in 12C. For the beta decay of 12B,
the measured branching ratios are consistent with the values given in literature
where such are available. For the 12N decay, the branching ratios identified in
this work differ from the literature values by more than 2σ for the Hoyle state
as well as for the 12.7MeV state. All values are given in table 8.5.1. The beta
decay coupling constant (the BGT value) is given in terms of the logarithm of its
inverse, the log ft value. For this the same deviations are seen as was the case for
the branching ratios in the 12N decay. All measured log ft values are between 3.7
and 5.0 consistent with the beta decays being allowed Gamow-Teller transitions.
For all four states the isospin symmetry has furthermore been confirmed within
the experimental uncertainties.

The last process investigated with regards to the triple alpha continuum states
is the stellar triple alpha process in which 12C is produced. This process is
strongly dependent on the properties of the contributing 12C states. With the
results mentioned above, and in particular with the lacking confirmation of a
9 MeV 2+ state, the triple alpha reaction rate at high temperatures (T > 2 GK) is
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reduced significantly relative to the much used Nacre rate (Angulo et al., 1999).
For high temperature reaction rates I would therefore recommend using either the
rate presented in this dissertation or alternatively the rate of Caughlan & Fowler
(1988). For the low temperatures (T < 0.1GK) on the other hand, I recommend
the use of either my reaction rate calculation or the Nacre rate. For medium
range temperatures, all three rates are similar, though smaller differences around
T = 0.1GK must be clarified before we can reach the future goal of a precision
of 5% in the 0.1GK to 2 GK temperature range.
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Äystö, J. 2001, Development and applications of the Igisol technique, Nuclear
Physics A, 693, 477
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