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Abstract

This thesis presents a detailed analysis of the excitation spectrum of 8Be, probed
through β-delayed α-decay of 8B. The analysis is based on data from the ex-
periment IS633 conducted at the ISOLDE facility at CERN, Switzerland in May
2017.

The goal of this analysis is to determine the precise excitation spectrum of
8Be. The primary focus is to measure the 2+ doublet at 16 MeV, with more
statistics than previously possible through β-decay of 8B. More specifically, we
are interested in the level at 16.922 MeV, which has only been measured once
before with very limited statistics.

In order to achieve this, a careful calibration was made with corrections for
energy-loss in different parts of the detector setup. The excitation spectrum was
extracted based on coincidence measurements of the α− α breakup of 8Be, with
an estimated precision of 11 keV at the doublet levels. The extracted spectrum
has a factor of 93 more statistics than any previous experiment has achieved.

Lastly the spectrum was analyzed using R-matrix theory. In a comparison
with the data from a previous experiment, it is shown that their model, results
in a unphysical description of the 2+ doublet levels. Four alternative models
are investigated in a local fit to the 2+ doublet, in an attempt to determine level
parameters and the Gamow-Teller strength.
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Outline

The thesis is divided into five chapters.

• Chapter 1 gives a motivation for the experiment, followed by an introduc-
tion to the subject and lastly, a brief discussion of previous measurements
of the 8Be spectrum.

• Chapter 2 describes the experimental methods. First, the radioactive beam-
line and detector setup is introduced, and some initial data analysis rou-
tines using the AUSAlib library are discussed. Then, various aspects of
the detection system response are discussed, including calibrations and
energy-loss corrections, followed by a discussion on the obtained energy
precision at the end.

• Chapter 3 is concerned with data reduction and the determination of the
excitation spectrum. The extracted spectrum is analyzed and initial results
are presented.

• Chapter 4 introduces R-matrix theory, used to extract physical meaningful
level parameters by fitting to the extracted excitation spectrum. Two analy-
ses are made, the first being a comparison to a previous similar experiment.
The second is an analysis of the 2+ doublet, using only the upper part of
the spectrum.

• Lastly, Chapter 5 concludes the thesis and looks to the future with sugges-
tions for improvements and further analysis.
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Chapter 1

Introduction

1.1 Motivation

Nuclear physics is primarily concerned with studying the constituents and
interactions of atomic nuclei and nuclear matter. It first branched out from
atomic physics in the late 1890s when Henri Becquerel discovered radioactivity.
Since then, it has become one of the major research fields within the field of
physics, with applications ranging from medicine to nuclear energy. The atomic
nucleus is a unique example of relatively few particle systems displaying both
single-particle and collective motions, and the interactions are governed by three
of the four fundamental forces of nature.

Over the last few decades, the study of light atomic nuclei has experienced
a renaissance due to experimental and theoretical developments. There are
several experimental factors allowing for more precise studies than previously
possible. The development of radioactive beams allows for the creation and
subsequent study of specific isotopes with lifetimes down to the millisecond
range, which was previously not possible. This technique, known as Isotope
Separation On-Line (ISOL), was first developed in 1951 by O. Kofoed-Hansen
and K.O. Nielsen for the Copenhagen Cyclotron. It is now used at many facilities
around the world, with arguably the prime facility being ISOLDE at CERN.

Not only isotope separation has experienced significant developments, but
also detection techniques. Double-sided Silicon Strip Detectors (DSSDs) provide
both high energy and spatial resolution, allowing for detailed kinematics and
coincidence analyses.
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2 CHAPTER 1. INTRODUCTION

From a theoretical standpoint, the study of light atomic nuclei is also an ex-
tremely interesting field. Advanced nuclear models and massive computational
power have allowed theoreticians to describe light nuclei in unprecedented
detail. This is done using ab initio calculations, which solve the many-body
Schrödinger equation for realistic nucleon-nucleon interaction potentials ob-
tained from nuclear scattering experiments. Two models in particular have
advanced tremendously in recent years. These are the Green’s function Monte
Carlo (GFMC) [Wir+13] and the No Core Shell Model (NCSM) [BNQ13]. Due to
the complexity of the nuclear force, it has thus far only been possible to calculate
excited states of light nuclei with A < 20, and even these are often not in agree-
ment with experiments. A paper published by Wiringa et al. in 2013 [Wir+13]
was able to determine the excitation spectrum for 8Be up to 20 MeV, with level
energies agreeing with experimental data within a few hundred keV. Due to its
many different structures (see Section 1.3) and large continuum contributions,
8Be is a unique test for ab initio calculations. To validate the calculations, precise
measurements of the experimental spectrum are imperative. Even though 8Be is
one of the most well-studied of all isotopes, controversy remains concerning the
exact spectrum.

The work presented in this study is based on data from the experiment IS633
performed in May 2017. The experiment was conducted with the ambition of
measuring the excitation spectrum of 8Be below 18 MeV in unprecedented detail.
Of particular interest is the 16.922 MeV state which has previously been mea-
sured only once through β-decay of 8Be with merely five counts, and the so far
unobserved electron capture delayed proton emission through the 17.640 MeV
state. The experiment was conducted at the ISOLDE facility at CERN by the
Madrid-Aarhus-Göteborg ISOLDE (MAGISOL) collaboration, with myself as a
lucky participant.

1.2 Nuclear decays

The probing method used in this experiment is the β-delayed α − α breakup
of 8B through an intermediate excited state in 8Be. In order to understand the
underlying resonance structure in 8Be, a brief review of the relevant decays will
be given in this section.

1.2.1 β-decay

Light unstable nuclei generally decay by either proton/neutron emission or
β-decay. Only those that are far away from the valley of stability will decay
by proton/neutron emission, while those closer decay mainly by β-decay. β-
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decay is a weak interaction process of which there are three main types. We will
focus on β+ and β−-decay in this section and treat electron capture separately in
Section 1.2.3. The two processes can be described as:

β+ : p→ n + e+ + νe (1.1)

β− : n→ p + e− + νe, (1.2)

where β+ turns a proton into a neutron, positron and electron neutrino, and β−

turns a neutron into a proton, electron and anti-electron neutrino. Nuclei below
the valley of stability will decay by β−, while the nuclei above decays by β+,
thereby inching closer to the valley of stability.

The energy available in these decays, the Q-value, is given by:

Qβ+ = M(A, Z)c2 −M(A, Z− 1)c2 − 2mec2 (1.3)

Qβ− = M(A, Z)c2 −M(A, Z + 1)c2, (1.4)

where M(A, Z) is the atomic mass of an atom with Z protons and A nucleons.
The binding energy of the electrons has been neglected in these equations. The
Q-value is the mass difference between the initial and final product, and can
be distributed between the final products as either excitation energy or kinetic
energy.

Allowed β-decays can be divided into two types, depending on whether
the interacting nucleon changes spin. If the spin is unchanged, it is a Fermi
transition, and if the spin does change, it is called a Gamow-Teller transition.
Allowed decays are transitions with L = 0, and forbidden decays are those with
L > 0, where L is the orbital angular momentum. The nuclear part of the β-decay
operator, for allowed decays is:

O(β±) = gV

A

∑
j=1

τ∓(j) + gA

A

∑
j=1

σ(j)τ∓(j), (1.5)

where σ the spherical component of the Pauli spin matrices and τ∓ are the
isospin step operators. The first term corresponds to the Fermi operator and
the second to the Gamow-Teller operator. Selection rules for each type of decay
can be deduced from these operators. For Fermi decays, the spin, isospin and
parity must all remain unchanged. For Gamow-Teller transitions, we have the
following rules: ∆J = 0,±1, ∆T = 0,±1 and ∆π = 0. The change in spin is
coupled to the spin of the outgoing leptons, so their spin has to couple to one. An
exception for the Gamow-Teller rules is the 0+ → 0+ transition, because spins of
one and zero cannot couple to zero. Such a decay is pure Fermi type. Forbidden
β-decays are generally 4-5 orders of magnitude slower than allowed transitions,
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and their contribution is therefore only significant when no other transitions are
allowed.

Due to the selection rules, only a subset of the levels are actually populated
in the decay of 8B. In the present study, these selection rules allow us to analyze
the spectrum by including only a few levels in the analysis. As the selection
rules and couplings are different for other types of decay, the resulting spectra
for different probing mechanisms will generally not be the same.

The selection rules for Fermi decays only allow for so-called superallowed
decays between two Isobaric Analogue States (IAS). The IAS are states with a
very similar structure, with the only difference being that a proton is changed
to a neutron or vice versa. These states are due to the charge independence of
nuclear forces, and the energy difference between two IAS is solely due to the
added Coulomb interaction in the state with one extra proton. Fermi decays are
therefore only energetically allowed for β+, where there is one less proton in the
daughter nucleus.

1.2.2 ft-values and strength functions

The intensity of a β-decay transition can be expressed in terms of the comparative
half-life ( f t-value), which is the product of the partial half-life (t1/2) and the
phase space factor ( f ). The phase space is the density of final states and is a
dimensionless integral over the decay window. Far from the endpoint of the
β-window, the phase space can be approximated by:

f ' (Q− Ex)5

30(mec2)5 , (1.6)

where Ex is the excitation energy. For a more general parametrization for all
energies, see [WM74].

The ft-value is directly related to the nuclear matrix elements [BB08] as:

f t =
C

BF + ( gA
gV
)2BGT

, (1.7)

with

C =
ln 2π3h̄7

g2
Vm5

e c4
, (1.8)

where gV and gA are the vector and axial vector coupling constants respectively.
C is a constant and BGT = |MGT|2 and BF = |MF|2 are the matrix elements
squared. Present values for the constants C and gA/gV are found in [TH10] to be
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C = 6144.2(16) and |gA/gV | = 1.2694. The f t-value ranges from 103 to around
1020, with the lower values corresponding to allowed decays.

The Fermi strength , BF, can be evaluated directly without having to know
the explicit wave function. For β±-decay it is:

BF =

∣∣∣∣∣∣〈J f , M f , Tf , T3 f |
A

∑
j=1

τ∓(j)|Ji, Mi, Ti, T3i〉

∣∣∣∣∣∣
2

, (1.9)

= Ti(Ti + 1)− T3i(T3i ∓ 1), (1.10)

where Ti is the initial state isospin, and T3i is the third component of the initial
state isospin.

The Gamow-Teller strength is not as easily calculated. One can define the
Gamow-Teller strength function, S±(GT), as the total Gamow-Teller strength
summed over all final states:

S±(GT) = ∑
f

B f ,GT(β±), (1.11)

where f is the final state. By inserting the Gamow-Teller operator, one can obtain
the Ikeda sum rule [Hyl10]:

S+(GT) = S−(GT) + 3(N − Z), (1.12)

which for the case of 8Be becomes S+(GT) = S−(GT) + 6. As we do not know
S−(GT), this only gives us a lower limit. However, typically S+(GT)� S−(GT),
so we expect S+(GT) ≈ 6.

1.2.3 Electron capture

As mentioned previously, the nucleus can also decay by electron capture (EC).
Generally speaking, all nuclei that can decay by β+-decay can also decay by
EC. In this process, an orbital electron from the decaying atom is captured and,
together with a proton, turned into a neutron and an electron neutrino:

EC : p + e→ n + νe, (1.13)

with

QEC = M(A, Z)c2 −M(A, Z− 1)c2. (1.14)

The Q-value for EC, is seen to be 2mec2 larger than that of β+. The selection
rules for EC are the same as for β+-decays. The transition rates for β+-decays
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are much higher than for EC, and for low excitation energies, the contribution
from EC is therefore irrelevant. However, near the endpoint of the β+-decay
window, the phase space of β+ approaches zero, and EC becomes the dominant
contribution. Above the β-decay window, only EC is energetically allowed.

The matrix element for EC is the same as for β+-decay, so we write the phase
space as:

f (Q− Ex) = fβ(Q− Ex) + fEC(Q− Ex). (1.15)

The phase space for electron capture from the innermost atomic shell for allowed
decay and in the non-relativistic limit, can be calculated from the expression
given in [JW52]:

fEC = 2πα3Z′3
(

W0 + 1− 1
2

α2Z′2
)2

, (1.16)

where α ' 1/137 is the fine structure constant, W0 = (E0 − Ex)/me is the β
endpoint in electron masses with E0 =17.4688 MeV and Z′ = Z − 0.3 is the
effective nuclear charge, where 0.3 corrects for screening effects by the atomic
electrons.

1.2.4 α-decay

α-decay, where the parent nucleus emits an α particle, is by far the most common
type of cluster decay with Q-value:

Qα = M(A, Z)c2 −M(A− 4, Z− 2)c2 −Mαc2. (1.17)

This type of decay is usually only possible for heavy nuclei, and 8Be is the only
known light nucleus that decays primarily by α-decay.

α-decay is fundamentally a quantum tunneling process. The width of the
level is inversely related to the lifetime as:

Γ = h̄/τ. (1.18)

The observed width of a resonance can be expressed as a product of the penetra-
tion factor, PL, and the reduced width amplitude, γ:

Γ = 2Pγ2. (1.19)

The reduced width amplitude is calculated as the final and initial state inner
product, integrated over a spherical surface with radius ac. The radius is called
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the channel radius and will be discussed in more detail in Section 1.4 and Chap-
ter 4. The penetration factor is the product of the penetrability function and
the phase space. The phase space is a kinematic factor, like the phase space for
β-decay. The penetrability factor is the probability that an α particle can escape
the nucleus by quantum tunneling through the Coulomb and centrifugal barrier.

For more details on calculations of the penetration function, see Appendix 1
of [Hyl10].

1.3 Nuclear structure of 8Be

Figure 1.1 shows the excitation spectrum for 8Be, with the levels adopted in
[Til+04] that are energetically accessible from the ground state of 8B. The spin,
parity and isospin is written as Jπ : T for each level. The ground state of 8Be is
situated 92 keV above the α− α threshold.

Density distribution calculations in [Wir+06] of the ground state and the two
first excited states of 8Be show, that they all have a large α− α component. This
means that these levels can, to a high degree, be understood as two interacting
α particles. As a result of this, the reduced width amplitude, γ, in Eq. (1.19)
is very large, which is the reason why the two excited states are so wide. The
ground state has an observed width of only 5.6 keV, which is counterintuitive.
However, this is caused by the vanishing penetrability for low energies. The
large overlap with the α − α wave function is of great astrophysical interest,
because it is needed to explain how 12C is created in the reaction 8Be(α, γ)12C
through the famous Hoyle state.

β transitions from the ground state of 8B to the ground state and second
excited state of 8Be are second forbidden due to the selection rules listed in
Section 1.2.1. Decay through the 17.6 MeV level is extremely suppressed[Kir10]
and is known to decay by proton emission. The β-delayed α− α breakup of 8B
therefore provides a clean probe of the 2+ levels in 8Be. When measuring the 2+

doublet, this is of great advantage since the 3 MeV level is the only "contaminant"
contribution.

The two close lying 2+ isospin doublet levels at 16.626 MeV and 16.922 MeV
are known to be nearly maximally mixed in isospin. Isospin mixing is treated
in an article by P. Brentano [Bre96], where it is shown that the doublet can be
described by two interacting isospin eigenstates that experience energy repulsion
and width attraction. The T = 1 eigenstate is the IAS of the 8Li and 8B ground
states, and the matrix element for this transition is therefore very large. However,
the β+-decay window has an endpoint situated just 332 keV and 36 keV above
the doublet levels respectively. As the β-decay phase space grows with the fifth
power of the β energy, the spectrum is highly suppressed at high excitation
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8Be

g.s. 0+; 0

3.03 2+; 0

11.35 4+; 0

17.640 1+; 1

4He+4He

−0.0918

8B

17.9798 2+; 1

16.922 2+; 0+1
16.626 2+; 0+1

17.2551
7Li + p

β+α

α

EC 2mec2

Figure 1.1: Decay scheme for β decay of 8B to known levels in 8Be. Each level is
labeled with the energy above the 8Be ground state in MeV. The spin, parity and
isospin are labeled as Jπ : T. The 2+ doublet levels at 16 MeV are known to be
strongly mixed in isospin. All energies and quantum numbers are acquired from
[Til+04].

energies. Previously, only one experiment has been able to detect decays into the
16.922 MeV level through β-decay of 8B, with only five counts. This experiment
was conducted at the IGISOL facility of the Jyväskylä Accelerator Laboratory in
Finland in 2008 and is described in [Kir10].

The 2+ doublet in 8Be is the only known case with more than a few percent
isospin mixing, and 8Be is therefore an exceptional case for studying this effect.
An improved measurement of this decay with better statistics would allow the
testing current assumptions in the treatment of the 2+ doublet.

8B is known to possess a proton halo structure in its ground state, and is the
only known nucleus to do so [Jon04]. Halo nuclei are characterized by a large
spatial extension, which is explained by one or two loosely bound nucleons. The
halo structure is seen experimentally by breakup reactions. These reactions show
an unusually large one-proton removal cross section, and a narrow momentum
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distribution of the resulting 7Be fragment, which indicates a large spatial exten-
sion [Sme+99]. At 17.640 MeV above the 8Be ground state, we find the only level
above the β-decay window and still energetically accessible from 8B. This level
is populated by EC, and is known to decay mainly by proton emission. This
decay is highly interesting as a probe of the halo structure of 8B. It is believed
that the main strength of the EC decay can be described as proceeding separately
for the core and the halo proton. In this model, the halo proton acts merely as
a spectator, while the strength of the decaying core can be estimated from the
known β-decay of 7Be. The EC delayed proton decay through this state has
not yet been observed. The detection of this decay was one of the hopes for
the experiment IS633, but will not be treated in this study, as it is the subject
of the PhD dissertation by S. Onsés from the University of Madrid and part
of the MAGISOL collaboration. Also, because of the high trigger levels in this
experiment (discussed in Section 2.5.6), a new experiment was conducted in
April 2018 with the specific goal of measuring the delayed proton branch. The
analysis of this experiment is not yet finished at the time of writing.

1.4 Intruder states in 8Be

Defining a level in nuclear physics is not as straightforward as it sounds. Even
though 8Be is one of the most studied isotopes, there is still an ongoing discussion
about the existence of broad 0+ and 2+ levels at around 6 MeV and 9 MeV. These
states were first proposed by Barker in 1968 and 1969 [Bar68; Bar69]. To describe
the nuclear resonances, he used a theoretical framework called R-matrix theory,
first developed by Lane and Thomas in 1958 [LT58]. R-matrix theory will be
described in more detail in Section 4.1, but for now, we will just introduce
some of the details. R-matrix expresses the cross section in terms of physical
parameters such as the energy, width and feeding parameters for included levels.
However, the expression also depends on the channel radius, which is not as
clearly determined. The radius determines the border between the internal and
external regions, governed by nuclear and Coulomb forces respectively.

Barker argued that to give a consistent description of a resonance, only
the feeding parameters must change for a given level, when probing through
different feeding mechanisms. To examine the 2+ states in 8Be, simultaneous
fits were made with data from α − α scattering, 9Be(p, d)8Be, and β-decay of
8Li and 8B. When only considering one type of measurement, he found that the
level parameters varied with choice of channel radius, all resulting in reasonable
fits. However, when simultaneously fitting all datasets and letting the feeding
parameters vary between them, the channel radius converged to an optimal
value and constrained the energy and width parameters [Bar69]. The resulting
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Figure 1.2: The observed energies of the fitted levels from an R-matrix four-level
fit of the β-delayed α-spectrum from the decay of 8B. The energies are shown as
a function of the channel radius used for the fit. The energies of the well known
3 MeV (black circles) and 2+ doublet (lines) are shown to be constant, while the
position of the fourth level (open circle) varies. This figure is based on data from
[Kir10; Hyl10] and is taken from [Rii+15]

states at 6 MeV and 9 MeV are interpreted as intruder states within the shell
model, i.e., states belonging to a higher shell configuration.

Several critics have disputed Barker’s results [War86a; Fay+98; BA02; BAS06a].
One of the points of criticism, is that none of the proposed intruder states show
as a peak in the spectra. Also, there were no constraints on the channel radii
used in this analysis, and the fits made by Barker used channel radii larger than
6 fm. Warburton [War86a] argues that the natural choice of channel radius for
8Be should be approximately 4.5 fm based on electron scattering experiments.

A combined fit to 11 difference reactions leading to the 8Be intermediate state
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analyzed in [Pag05], supports Barkers 2+ intruder state. Here the state was
found at 16.4 MeV with a width of 19.2 MeV. In this study the channel radii were
chosen rather arbitrarily, ranging from 3 fm to 6.5 fm. In other works there was
found no need for intruder states [War86a; BAS06a], but here the fits were done
separately on different probing mechanisms.

Theoretical ab initio calculations have not found any extra low energy 2+ state
for 8Be [Wir+13], which further disputes the existence of the intruder state.

The reason the choice of channel radius may be important is that real physical
levels in R-matrix theory should have constant parameters for varying channel
radii. However, if the level actually describes non-resonant effects, it may show
a significant dependency of the channel radius. Non-resonant contributions to
the spectrum may be due to direct continuum decays: that is, decays where the
assumption of an intermediate state in 8Be is not valid. Such decays are not
treated in R-matrix theory, but may be taken into account by adding an additional
high energy level. The presence of such decays can be indicated in a few ways
[Rii+15], which can be summarized as: R-matrix levels that do not correspond to
any physical "peak" in the spectra; level energies that scale inversely with the
channel radius; or levels that have unphysically large values of parameters that
represent coupling to different channels, such as the feeding parameter or width.
Figure 1.2 is taken from [Rii+15], and shows the fitted energies of a four-level
R-matrix fit to the β-delayed α-spectrum from 8B. This level is shown to be in
agreement with Barker’s model, with a level at approximately 14 MeV when
using a channel radius above 6 fm. However, the fits for lower channel radii
show that this level should likely not be interpreted as a physical level.

1.5 AUSAlib
The analysis in the present study is based on the AUSAlib[MHK17] program
packages, which is based on ROOT[CER16]. AUSAlib stands for Aarhus Sub-
atomic Library, and is a framework formalizing many standard procedures
regarding the data analysis of experimental nuclear physics. The library has
been developed in the Subatomic group at the Department of Physics and As-
tronomy at Aarhus University, primarily by M. Munch, O.S. Kirsebom and J.
Refsgaard. Various parts of AUSAlib will be explained throughout the thesis in
the relevant sections.





Chapter 2

Experimental Methods

The goal of this experiment is to examine the β+-decay of 8B, with the aim of
determining the beta strength for decays into exited states in 8Be. With the half-
life of 8B being (770± 3)ms, it is necessary to produce the isotope at the same
location as the detector setup. Recently new targets at ISOLDE has been able to
produce unprecedented yields of 8B, which make ISOLDE an ideal location for
this experiment.

The following chapter will be concerned with the experimental approach and
calibrations. A presentation of the radioactive beam production and detection
setup is given in Sections 2.1 and 2.2. Section 2.3 gives a brief description of the
measured data and the structure of it, and a discussion of energy-loss calculations
used in the analysis is given in Section 2.4. Various aspects of the calibration and
detector response are analyzed in Sections 2.5 and 2.6. Finally a discussion of the
energy precision in the experiment is presented in Section 2.7.

2.1 Radioactive beam production

The Isotope Separator On-Line DEvice (ISOLDE) is a part of the larger CERN
facility. CERN is located on the Swiss-French border right outside Geneva.
CERN is the largest high energy physics facility in the world, with more than
2500 employed staff members, and host of more than 12000 scientific researchers
per year. The facility consists of several accelerators, which are connected as
shown in Fig. 2.1. The largest accelerator is the Large Hadron Collider (LHC) at
which the Higgs boson was famously measured in 2012.

13
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Figure 2.1: Schematic overview of the accelerators and some of the experiments
at CERN. The protons used in ISOLDE (green) is accelerated from LINAC 2
(purple), into the PS Booster (light purple) and lastly transported to the ISOLDE
facility. This figure is provided by CERN.

The proton beam line used at ISOLDE to produce nuclei, starts at the linear
accelerator LINAC 2 which accelerates a bunch of protons to 50 MeV every 1.2 s.
They are then led into the Proton Synchrotron Booster (PSB), which consists
of four superimposed synchrotron rings, where each ring gets every fourth
proton bunch, and accelerates them to 1.4 GeV. Finally these proton bunches
are then send to either the Proton Synchrotron (PS) or to ISOLDE. During the
experiment approximately half of these proton bunches were directed to ISOLDE.
A schematic overview of the ISOLDE facility is seen in Fig. 2.2.

The proton beam is then directed into a cylindrical target with 1.5 mm di-
ameter made of 99 % porous graphite (nanotubes). When the protons bombard
the target, spallation, fission, fusion and fragmentation is induced. These pro-
cesses produce lighter nuclei than the target material. The target is infused
with a SF6 gas, which is highly reactive. The produces nuclei react with SF6 to
create molecules, which then diffuse out of the target. The molecules are then
ionized by a plasma ion source, and led out of the production chamber with
a 30.0 kV voltage. Next, the relevant ions are isolated in the General Purpose
Separator (GPS) magnet. Ions with the same mass as BF2 (46.0 u) is separated in
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1.4 GeV protonsGPS

Detector

Figure 2.2: Schematic overview of the ISOLDE facility. The red arrow indicates
where the proton beam from the PS Booster comes into ISOLDE, and collides
with the carbon target. The blue arrow points to the GPS magnet, which separate
the nuclei. Lastly the detector setup was in the back of the hall as indicated by
the black arrow. This figure is a bit outdated, which is why the area around the
detector setup is empty.

this process. In the end, around 104 molecules reach the detector setup, out of
the original 1013 protons per pulse. There are no strong contaminants with the
same mass as BF2, and the beam is therefore very clean.

At the detector setup, the BF2 beam is collimated through four collimators
with widths of 10 mm, 8 mm, 6 mm and 4 mm. The molecules are then implanted
with 30 keV into a 137 nm thick carbon target.

2.1.1 Overview of the run

Figure 2.3 shows the time line of the run. In the days leading up to the experiment,
calibration runs were made on all detectors. These calibrations were done with a
standard α-source with four radioactive isotopes, which we call the 4α-source
and will be described later. After the experiment two additional calibration runs
were made, one with the 4α-source and one with a 226Ra-source.

During the experiment with 8B beam, the trigger settings were changed
constantly in an attempt to improve the yield. The consequences of these changes
are discussed in Section 2.5.6. Also at one point there was a 30 min run with the
focus of determining the lifetime of 8B. Here, the beam gate closed for 600 ms
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226Ra (7h)

Figure 2.3: Overview of the different measurements done during the experiment.
The orange part is calibration runs with the 4α-source. Red block corresponds to
the measurements with the beam gate closed for lifetime measurements. Light
blue and dark blue are all 8B measurements, with light blue indicating a high
detection threshold of 2.5 MeV, while the dark blue is with a lower threshold
of 600 keV. The green part indicates the calibration measurement of the 226Ra-
source.

in the beginning of every pulse. This was done to prevent excessive overflow,
which can have the effect of changing the time distribution.

2.2 Detection system

The detection system used for the IS633 experiment at ISOLDE, included a two
different types of detectors. These were Double-sided Silicon Strip Detectors
(DSSD), and unsegmented silicon detectors which I from now on will mention
as PADs.

As the name suggests, the DSSD is a segmented detector. It measures 5×
5 cm2, and is both sides are divided into 16 strips. The front side is p doped,
while the back side is n doped. Each strip is 3.0 mm, and there is an inter-strip
width of 0.1 mm made of aluminum. This corresponds to a 97 % coverage of the
pixels, and the remaining 3 % covered by the aluminum. The front side p-doped
layer is implanted at only 100 nm, which gives the detector a very thin deadlayer
of 100 nm. The thickness of the DSSDs used is 40 µm and 60 µm. Figure 2.4
shows an illustration of a DSSD.

The PAD is an unsegmented silicon which is very thick compared to the
DSSDs. The PADs used are 1000 µm and 1500 µm, and are used to detect the
excess energy of the particles that are not completely stopped in the DSSDs. They
are included specifically for detecting protons and electron, but those will not
be investigated in this thesis. Information on all the detectors can be found in
Table 2.1 and a view of the detector setup is seen in Fig. 2.5.

In this study, we aim to detect alpha-particles in coincidence with a total
energy of up to 17 MeV, which means that each alpha will have an energy of
up to 8.5 MeV. The fact that we do not have a detector opposite of U5, means
that it will not be possible to measure a significant coincidence spectrum with
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Figure 2.4: Illustration of a DSSD. The detector has 16 p-doped strips and another
16 n-doped strips perpendicular to the other, which creates 256 pixels. Figure is
provided by Micron Semiconductor Ltd.

this detector. To detect the protons two thinner DSSD’s (U3 and U4) were used.
However, these are not thick enough to be able to stop the alpha’s with energies
above 7 MeV, which is well below the region of particular interest. This means
that to measure alpha coincidences in this pair of detectors, we will not only have
to match two events in opposite DSSD’s, but also their energy deposit in the PAD
behind them. This makes the analysis much more complex, and the possibility
of detecting false coincidences increases. To counter these two problems, I have
chosen only to use events recorded in the DSSD’s U2 and U6 in the following
analysis. This in turn, will decrease the number of coincidences by a factor of
two, and the number of single detections by a factor of 3/5 = 60%. However,
because the intensity of 8B is so large in this experiment compared to previous
similar experiments, we still expect to have enough statistics to see will defined
peaks at the 16 MeV doublet.

2.3 Data structure

In this section I will briefly explain how the data is stored and transformed
through AUSAlib into ROOT files containing well defined particle events.
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Figure 2.5: (Left) A picture of the detector setup, taken just before the experiment
was started. The carbon foil is seen mounted on the telescope in the center.
(Right) Schematic drawing of the detector setup. The numbers x = 2, 3, 4 and 6
signifies the detector pair (Ux and Px), where the DSSSD is closest to the center.
The y-axis has not been drawn in this figure to reduce clutter, but a right-handed
coordinate system it used, meaning the y-axis points upwards from the center of
U5. The target is placed in (0,0,0) and the beam travels along the z-axis.

Table 2.1: Table of relevant information on each detector used in the setup. Eα is
the maximum energy α-particle that will be completely stopped in the detector.

Number Type Thickness [µm] Eα[MeV]

U2 DSSD 60 9.13

U3 DSSD 40 7.02

U4 DSSD 40 7.02

U5 DSSD 1000 48.8

U6 DSSD 60 9.13

P2 PAD 1500 61.6

P3 PAD 1000 48.8

P4 PAD 1000 48.8

P6 PAD 1500 61.6
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ROOT is a data analysis framework created and maintained by CERN. Data
files in ROOT are stored in a TTree structure. A TTree consists of a set of
TBranches, where one TBranch corresponds to a variable that is stored, and
each variable is either a list or number. Each TTree can hold events that each
has their own set of branches, defined by the TTree. This can be seen like a
table with rows representing events, and columns representing branches. One
of the primary reasons to use ROOT for data analysis, is its capability to effi-
ciently manage extremely large amounts of data. In this experiment we gathered
144 GB data, which makes it necessary to have advanced memory management
to handle. Another is that ROOT is created for the specific purpose of creating
histograms and is extremely efficient in this task, and has a large toolbox for
fitting.

In this experiment an event is started whenever a detector is triggered by
a signal larger than its trigger threshold. All signals that are measured in any
detector within the next 2.5 µs are then included in this event. Each event has its
own set of TBranches defined in the TTree. The raw data files are converted into
ROOT files in the AUSAlib "Unpacker" program. In the unpacked ROOT files,
we have the following branches:

• DSSD UX, where X= 2, 3, 4, 5, 6 we have:

– UXF, UXFI, UXF_E, UXF_T

– UXB, UXBI, UXB_E

where F corresponds to the signals from the p-side, and B to the signals
from the n-side. UXF is the number of signals (multiplicity) measured in
the front strips of UX and vice versa for UXB. I is the strip number, E is the
ADC value, and T is the TDC value.

• In the PAD detectors PX, where X= 2, 3, 4, 6 we have:

– PXE, PXT

where again, E is the ADC value and T is the TDC value.

• global event branches1:

– TRIGGER - the id of the triggering detector

– TPROTONS - the time since last proton pulse in units of 10 ns.

1There are a few more branches, which I have not included since they will not be used in the
analysis.
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In these files each signal in either the n- or p-side of a DSSD is treated as seperate
events. The next part of the initial analysis is done with the AUSAlib "Sorter".
This program has four main purposes:
• Perform energy calibration.
• Do front-back matching of energy signals for double-sided detectors.
• Determine direction of each hit.
• Perform TDC alignment.

To do this step, the user must provide a setup-file, matcher-file, and ADC and
TDC calibrations. The setup-file contains properties for the detectors namely
geometry, detector-type and dead-layer thicknesses. The matcher-file includes
information about energy-tolerances for front-back matching, strips to ignore
and high/low energy thresholds for each detector. This is used to remove all
events that are due to low-energy noise signals.

2.4 Energy loss of charged particles in matter
Understanding the interaction between charged particles and matter is crucial in
all nuclear physics experiments concerned with measuring charged particles. In
this study, we measure the energies of alpha-particles through their interaction
with the silicon detectors, where large numbers of electron-hole pairs are created.
The passage through non-detection material also account for substantial energy
corrections in the analysis. To make a precise analysis, we need to understand
these effects.

The energy losses associated with the interaction between a charged particle
and the material can be divided into electronic and nuclear energy losses. The
electronic losses are due to collisions with the atomic electrons which result in
ionization or excitation of the atom. The nuclear losses are associated with the
transfer of energy to the center of mass movement of the atoms. The energy
loss per distance (dE/dx) due to interactions with the material is often called
the stopping power. The stopping power can be described with the famous
Bethe formula [Sig06]. This equation describes the mean stopping power of
swift charged particles (protons, alphas and ions) through matter, and was first
derived in 1930. The relativistic version of this equation is:

〈
dE
dx

〉
=

4π

mec2
NZz2

β2

(
e2

4πε0

)2

·
ln

(
2mec2β2

I · (1− β2)

)
− β2

 , (2.1)

where N is the atomic density of the material with Z electrons in each atom,
β = v/c, z is the charge of the particle and I is the mean ionization potential or
the average energy needed to ionize the atom. This ionization potential can be
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Figure 2.6: SRIM calculation of stopping power of a 0-10 MeV α-particle, travel-
ing through 1 µm Silicon.

found in tables for the particular material used in [ICR93]. Equation (2.1) applies
to light charged particles such as protons and α-particles, but not electrons. This
is due to the fact that electrons have a very small mass and therefore further
relativistic corrections are needed. The formula is only valid for particles with
high enough energies that the particle does not carry any atomic electrons with it,
luckily this is not a problem at the energies we are concerned with. For particles
with velocity β� 1, the logarithm is a slowly varying function, and the stopping
power therefore decreases as dE/dx ∝ v−2 for increasing energies. This is what
we see in Fig. 2.6, which show the stopping power for 0-10 MeV α-particles in
silicon. For large velocities (β ≈ 1) the relativistic effects come into play and
the stopping power starts to increase logarithmically. For α particles this is only
important for energies above the order of GeV.

By numerical integration, Eq. (2.1) can be used to calculate the energy lost
by a particle when traveling through a material, which is one of two things we
might be interested in knowing. The other is the range of the particle, that is the
distance a particle with a specific initial velocity on average will travel through a
material before being stopped completely. For heavy ions, the path is more or
less linear except near the very end of its trajectory. This means that we can write
its range as R =

∫ R
0 dx, where we already know dE/dx from equation Eq. (2.1).

By inserting this, we an expression for the range of the particle. In reality one
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would observe a spread around this range. This is called the straggeling-effect
and is due to the statistical nature of the problem.

Even the relativistic Bethe formula shown in Eq. (2.1), is not an exact solu-
tion. There are correction terms for both high and low energies which is not
taken into account yet. Some fo these effects are found empirically, and it is
therefore a difficult task to calculate a precise stopping power. This is why I
have chosen to use the SRIM (Stopping and Ranges of Ions in Matter) program
package[ZZB15; Zie18] to calculate energy losses and ranges. This program
is based on Monte Carlo simulations to generate tables with stopping powers,
ranges and straggeling as a function of energy for incoming particles on many
different materials. Part of the calculations used in this study is made directly in
SRIM and some are made in the Eloss routine [Hal18] which is part of AUSAlib
and is also based on SRIM tabulated values. For a more in-depth analysis of
SRIM calculations and its precision, see section 2.2 in [Kir10].

2.5 Calibration of detectors

The energy calibration of the detectors were done the day before we got beam
time. However, it was quickly discovered that there were problems with these
calibration files because of an unknown change/drift in the electronics. Therefore
another calibration run was done after the experiment ended, which is the one
we will use for the following analysis. As mentioned previously, we used two
different sources. The first one is a standard source with four alpha emitters,
which are 148Gd, 239Pu, 241Am and 244Cm. From here on out, this source will be
mentioned as the 4α-source. The second run is conducted using a 226Ra source
which decays via the following decay scheme:

226Ra α−−−→ 222Rn
222Rn α−−−→ 218Po
218Po α−−−→ 214Pb

214Pb
β−−−−→ 214Bi

214Bi
β−−−−→ 214Po

214Po α−−−→ 210Pb.

The energies found in literature for both sources are shown in Table 2.2.
The following section will be concerned with geometry and energy calibra-

tions, as well as investigating the energy thresholds for the detectors.
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Source Radionuclide Half-life Energy [keV]
148Gd 71 yr 3182.7

4α 239Pu 24 000 yr 5155
241Am 434 yr 5499
244Cm 18 yr 5805
226Ra 1600 yr 4773.4

226Ra 222Rn 3.8 d 5489.0
218Po 3.1 ms 6001.1
214Po 163 µs 7686.7

Table 2.2: Table of α-emitters used for calibration. The listed energies are found
in [Lab17].

2.5.1 Geometry calibration

A figure of the detector setup can be seen in Fig. 2.5. We have some rough
measurements of the geometry of the setup from when the experiment was done,
but in this section we will use hitpatterns (the number of events in each pixel on
the detector) to determine more precise positions of the DSSD’s. The analysis
was done using the program Geodwim, which is part of the AUSAlib library.

In this part we will use a different coordinate system from the one used to
describe the whole detector setup. Here we use a local system for each DSSD,
with origin at the calibration source and the center of the detector in (x, y, z),
where the x,y-plane is the detector plane and z is normal to the detector plane.
In the following analysis, we assume the source to be a point source. Because
there is no preferential direction of α emission, we can expect the particles to be
uniformly distributed over 4π. This means that the number of events in each
pixel on a detector should be proportional to the solid angle of that pixel. If we
assume the pixels to be small, the solid angle of each pixel can be written as
[Kol15]:

Ωi,j = cos θ
a2

4πR2
i,j

, (2.2)
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Figure 2.7: (Left) Shows the hitpattern for U2 for a selected part of the 8B run.
(Right) Shows the corresponding geometry fit. Black circles are the original data
based on hand-measured geometry. The red circles are fitted data points and the
thin blue line is the fourth order polynomial.

where

cos θ =
Rz

r
, (2.3)

R =
√

R2
x + R2

y + R2
z (2.4)

and

r =
√

R2
x + R2

y, (2.5)

Rx = i(a + b)− c + x, (2.6)
Ry = j(a + b)− c + y, (2.7)
Rz = z. (2.8)

Here, i and j are the indices of the pixel, r is the distance from the center of the
DSSD to the pixel, a = 3.0 mm is the strip width, b = 0.1 mm is the inter-strip
width and c = 16+1

2 (a + b).
The calibration is then done in four steps.

1. First we find the x and y displacements by fitting the number of hits in
each pixel to a fourth order polynomial as a function of r, as described in
[Kol15]. This fourth order polynomial is a linear combination of orthogonal
polynomial defined in [Bar00]. The coefficients of these orthogonal poly-
nomials are independent of each other, eliminating correlation terms and
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therefore making the fit more robust. This method is not sensitive to the
distance along the z-direction, which is why we only use this to determine
x and y.

2. To find the position along the z direction, we fit:

N(i, j) = CΩ(i, j), (2.9)

where C is constant for all indices. This fit is generally not as robust as
the previous, but because we already have approximate solutions for x
and y, we lock these and find z. This method is known to result in small
systematic deviations due to the finite size of the source.

3. Next we do step 2 again, but this time with z locked to the new value. This
is used to check if x and y has changed with the new value of z.

4. Lastly step 1 is done again, with the new value of z to check again if x and
y are consistent.

This method can be done iteratively, until one finds a stable set of coordinates.
Depending on the amount of statistics it may be necessary to use loglikelihood
minimization which work well for low statistics tests. In this case we have used
the Neyman algorithm.

The position of the target was not necessarily the same during the two cal-
ibration runs and the 8B run. The geometry calibration was therefore made
individually for each of the three parts of the experiment The hitpattern and cor-
responding fit from step 4 for U2 using the 8B data, is seen in Fig. 2.7. The other
fits are similar, and are therefore not shown. The resulting x,y and z, converted
into the global frame, is seen in Table 2.3 for detectors U2 and U6 in the three
sets of data. The errors on the position are on the order of 100 µm or below for
all coordinates. Solid angles for each detector is also calculated as a percentage
of 4π. During the 8B run, we have a coverage of 21%.

2.5.2 Calibration with 4α-source

Calibration of the ADC values for the detectors was done for each front and back
strip individually. This is done by measuring a number of different α-decays
from the calibration source, then finding the peak positions in terms of channel-
numbers, so that we have a channel-number corresponding to a known energy.
Lastly a linear fit through these points is made, to get the slope and offset for
all individual strips. As mentioned in Section 2.1.1, we did measurements for
two different calibration sources, 4α and the 226Ra-source. In this study, I have
chosen to only use the 4α-source for making the actual calibrations. There are
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Name Source x [mm] y [mm] z [mm] Solid angle (%)

4α −25.1 −3.0 16.1 13.5%

U2 226Ra −22.2 −3.2 22.0 12.7%
8B −24.1 1.0 24.7 11.2%

4α 23.9 −2.6 −16.1 14.1%

U6 226Ra 28.7 0.0 −26.0 9.5%
8B 27.6 2.9 −25.7 9.8%

Table 2.3: Result of geometry calibration determined from 8B, 226Ra and 4α. The
coordinates indicate the center of the detector. For the calculation of solid angles
the approximation has been used, that they all squarely face the origin.

two main reason do to the calibration in this manner. Firstly, the calibrations are
done with the Calibrator tool in AUSAlib. This program takes a root histogram
with the channel-spectrum as input, and fits a specified number of Gaussians to
the spectrum. It then choses the calibration parameters from a linear fit to the
known peak energies versus the channel number found for each peak. In the
case of the 226Ra-source, there is a significant angular dependent deviation from
the measured peak energies and the ones found in literature. This is due to the
fact that 226Ra is implanted into a gold foil, which the leads to significant energy
losses in the source itself. AUSAlib has the option to take global energy shifts
into account but not angular dependent shifts. This effect is not a problem in the
4α-source, because the implantation depth in the source is negligible. Secondly,
the amount of statistics in the two calibration runs differ by three orders of
magnitudes. Because some of the 226Ra peaks lie quite close to the much larger
4α peaks, it is not possible distinguish the 226Ra peaks from the rest. Instead
we use the 226Ra-source to do a separate check of the calibrations, which will be
done in Section 2.5.4.

To calibrate to the 4α-source, we will need to determine the position of
each peak in the channel-spectrum very precisely, down to a few keV. To avoid
skewing the placement of the peaks due to an asymmetrical response function2,
we will fit a very local Gaussian around the peak. The uncertainty on the peak
positions from the Gaussian fits are well below 1 keV, and the residuals from the
linear fit are all within 1-2 keV. The mean standard error on the offset and slope
of the linear fit are 2.5 keV and 1.3× 10−3 keV/channel respectively for U2, and

2This phenomena will be investigated in Section 2.6.
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2.1 keV and 1.0× 10−3 keV/channel for U6.

2.5.3 Detector deadlayer

On the front and back of the DSSD detectors there is a thin layer of silicon, which
does not measure the energy of the alphas. This layer is called a deadlayer and
is declared by the manufacturer to be 100 nm thick for the DSSD’s, however the
precision of this is not specified.

It is usually possible to measure the size of the deadlayer, by measuring a
narrow peak and then rotating the detector with respect to the source. This will
change the effective distance that the charged particles has to penetrate before
being measured. For a thin deadlayer where the energy loss is small enough
that dE/dx is approximately constant, the angular dependent energy loss can be
found as:

dE(θ) =
dE
dx

d
cos θ

, (2.10)

where θ is the angle of incidence on the detector and d is the deadlayer thickness.
In this experiment we did not do this specific measurement. Attempts were
made to measure the deadlayer thickness from other measurements, but this
was not successful due to lack of statistics. We will therefore use the declared
thickness, to calculate the expected energy loss for each particle we measure
and add this. A previous study using the same type of detectors, have found
that the declared length is only precise within around 20% [Kir10]. This means
that there might be a broadening and systematic angular and energy dependent
error due to this. The maximum angle of incidence on the detector is around 80
degrees, and the stopping power is largest for low-energy particles. So for the
most extreme cases of a 3 MeV α-particle coming at an angle of 80 degrees, a 10%
deviation from the declared thickness is will cause a shift of 11 keV. This effect
is somewhat reduced in the calibration and when calculating the implantation
depth of the target foil in Sections 2.5.2 and 2.5.5.

2.5.4 Implantation depth of 226Ra-source

The 226Ra-source goes through several steps of decays as shown earlier. However
for each step, there will be a recoil of the daughter-nucleus. This recoil means
that some of the daughter-nuclei will sputter out of the source, which effectively
increases and broadens the implantation depth for each step. To quantify this,
we analyze each α-decay individually in an attempt to measure the implantation
depth for each decay. This information is then used to perform a check on the 4α
calibration in the high energy region.
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As mentioned in Section 2.5.3, the energy loss of a particle going through a
thin layer can be expressed as:

dE(θ) =
dE
dx

d
cos θ

, (2.11)

where this time θ is the outgoing angle from the source.
To find the implantation depth for each type of α-decay, we find the peak

position as a function of the outgoing angle from the 226Ra-source for each of the
detectors U2 and U6. The spectra used in this analysis has been corrected for the
100 nm deadlayer of the detector. The shape of spectra we are trying to fit, are
heavily dominated by the detector response functions. This phenomena will be
investigated in Section 2.6. For this analysis the peak energies are found by fitting
a Gaussian to the area Emax±30 keV. The reason to use such a narrow Gaussian
is because the peak is not symmetric. Instead it has a significant tail towards
lower energies which, if included, will skew the fit towards lower energies. This
approach is used in order to be consistent with the method used in the calibration
with the 4α-source in the previous section.

The found peak energies are then fitted to the following equation:

E(θ) = E0 + k + ∆E0 · sec θ, (2.12)

where E and E0 are the measured peak energies and the values found in Table 2.2
respectively, k is a constant allowing for small deviations due to experimental
errors, and ∆E0 is the energy loss for a particle going out of the source at zero
degrees. Figure 2.8 shows ∆E = E(θ)− k − E0 as a function of sec θ for both
detectors. The blue lines shows ∆Ew · sec θ, where ∆Ew is the weighted average
of ∆E0 for both detectors. There is some systematical trends in the ∆E0’s found
in each of the fits. The energy loss is consistently around 4.5 keV larger in U2
than in U6. At this time, we do not understand why we see this effect, but it is
suspected to be due to imperfections in the calibration for U6.

The energy shifts are translated into implantation depths, using stopping
powers from SRIM, as d = ∆Ew/(dE/dx). The resulting depths of this analysis
are (27± 5) nm, (26± 5) nm, (32± 6) nm and (35± 6) nm respectively. Here
we see that the effective depth of the source increases for each decay, which
is consistent with our expectations. The second depth is a bit smaller than
the previous, but this is clearly within the errors of the analysis. The initial
implantation depth of 27 nm correspond to an implantation energy of 399 keV.

As a test of these results, a simple Monte Carlo simulation has been made. We
determine the starting position of each nuclei using a Gaussian distribution with
µ = 27 nm. A SRIM simulation implanting 226Ra into a gold foil with 399 keV,
yields a standard deviation of 15 nm of the distribution, due to straggeling. All
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Figure 2.8: Energy loss of α-particles going out of the 226Ra-source.

nuclei are then given a direction drawn from a uniform spherical distribution,
and a range drawn from a Gaussian distribution. The mean and spread of the
range are also simulated in SRIM. The mean implantation depths after the first
decay, based on the simulation are 28.5 nm, 29.0 nm and 29.5 nm. This is obvi-
ously not in very good agreement with the experimental analysis. However, the
simulation is very dependent on the spread of the starting position, and on both
the mean and spread of the ranges for each decay. By changing the standard devi-
ation of the starting position from 15 nm to 18 nm, the simulated depths changes
to 29.8 nm, 31.9 nm and 34.0 nm. This is obviously in much better agreement
with the experimental measurements. Based on the Monte Carlo simulation, the
measured depths seem realistic.

Now that we have investigated the properties of the 226Ra-source, this can
be used to do an independent analysis of the energy calibration. We do this
by using the newfound source-depths to correct for energy losses through the
source. Figure 2.9 shows ∆E = E− E0, where E is the measured peak energies,
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Figure 2.9: Plot of the differences between the measured and literature peak
energies. The blue circles are peaks from the 4α calibration source. The red
triangles are the peaks measured from the 226Ra-source. The green squares are
also from the 226Ra-source, but where each event has been corrected for energy
losses through the source. The peak positions are found by fitting a narrow
Gaussian to the data.

while E0 are the values found in Table 2.2. The blue circles correspond to the
4α-source, and it is seen that these differences are generally within the error-bars.
However, there is a systematic shift indicating too large dead-layer corrections,
and this trend is identical for both detectors. The red triangles are the residual
energy for the 226Ra peaks where we have not included the source-correction.
Here it is seen that they are shifted t least 15 keV lower than the expected energies.
The green squares are the same peaks from 226Ra-source, but here we see that
we have successfully corrected for most of the errors associated with energy loss
through the source. The results from U2 looks to be correct within a few keV. For
U6 though, it seems like there is a downward trend for increasing energy. This is
consistent with the differences seen in Fig. 2.8, where the slope is consistently
larger for U6. This effect could in part be due to the deadlayer of the detector,
which might deviate from the declared value of 100 nm. A way to investigate
this, is to uncouple the effect of energy loss in the deadlayer. One way to achieve
this, is to only make the analysis in certain pixels where the angle of incidence
on the detector is the same. This has been tried, but lack of statistics made this
attempt futile.

An estimate of the energy uncertainty at 8 MeV based on this analysis, is
4 keV for U2 and 8 keV for U6. This leads to a uncertainty of 9 keV on the sum
energy.
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2.5.5 Energy loss in target

The α’s measured during the 8B run, are created by implanting BF2 with 30 keV
into a 31 µg cm−2 carbon foil which is equivalent to a thickness of 137 nm. The
BF2 breaks upon impact with the foil, and 8B continues with an energy of 8/46 ·
30 keV3. A simulation in TRIM shows that this gives an implantation depth of
18.9 nm into the foil. This means that the outgoing particles will lose energy:

∆ET = E(θT)− E0 = δE− dE
dx

dT

cos θT
(2.13)

where E0 =16 626 keV, θT is the angle perpendicular to the carbon foil plane
and dT is the thickness of the foil the particle has to pass. Again, we include
δE to take into account small errors in the calibration. α’s detected in U6 will
have lost energy corresponding to dT =18.9 nm, while the thickness for α’s
measured in U2 is 137 nm− 18.9 nm ' 118 nm. The implantation depth and
total thickness, can be measured just as in the previous section, by measuring
the angular dependency of the energy. The hurdle in this analysis is how to
determine the energy precisely. In the previous section, we had a narrow peak
that could relatively easily determined. This is not the case in the 8B spectrum,
as there are no narrow isolated peaks. Instead we use the 16.6 MeV peak. The
signal at 16.6 MeV is not symmetric, and we will therefore use a Gaussian folded
with an exponential tail towards lower energy and only fit in a range of 80 keV
centered around the peak. The energies are then fitted to Eq. (2.13), which can be
seen for both detectors in Fig. 2.10.

The results of this fit, gives depths of (17± 8) nm and (115± 6) nm for U6
and U2 respectively, and a total thickness of (132± 11) nm. The implantation
depth corresponds very nicely with the simulation made in SRIM and the total
thickness is also in agreement with the declared value within the errors. The
depths found in this analysis will later be used to to energy-loss corrections for
each particle individually.

2.5.6 Detection thresholds

There are two thresholds for both the DSSD’s, one for the ADC and TDC. The
ADC threshold determines the minimum possible energy that the system will
detect and while the TDC threshold determines the lowest energy that detector
will trigger on.

3The fraction 8/46 corresponds to the mass of 8B with respect to the whole molecule.
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Figure 2.10: Energy loss of α-particles from the 16.6 MeV level in 8B as a function
of the outgoing angle from the carbon foil. The energies are found by fitting a
narrow Gaussian with an exponential tail.

During the experiment, TDC thresholds were changed several times in an
attempt to increase the yield by decreasing the deadtime4. The TDC threshold
were consistently around 1.5 times larger for U6 than for U2. When doing
coincidence analysis, we are therefore limited by the U6 threshold. The lowest
threshold settings used for U6 were 1.4 MeV and that was only for a relatively
short period of time. The settings used for the bulk of the duration were between
2 MeV and 2.5 MeV. These energies are not corrected for losses in the carbon
target and the deadlayer of the detectors, and the actual threshold is therefore
a bit higher. As a consequence of this, a conservative 3 MeV cutoff is set for
single alphas and 6 MeV for coincidences. This of course means that we cannot
investigate the 3 MeV level with this set of data. As we are mostly interested
in the doublet this is not catastrophic for the following analysis. However, as
we will see later, it becomes a problem when doing R-matrix fits to the entire
spectrum.

2.6 Finding the detector response

The response of the detector is the distribution of energies measured from a
perfectly monochromatic source. This distribution is referred to as the "response-
function" and is an intrinsic property of the detector. The response-function will
smear out the spectrum and to a lesser degree even change the spectrum we

4This is the fraction of time that the setup is not able to detect events due to processing of the
signals.
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measure from the β-delayed α-decay. To understand the spectrum we see in the
end, we therefore need to understand the detectors effect on it.

To measure the detector response, we would ideally need a monochromatic
source. As this is not possible, we instead use the α-decay from the calibration
measurements. More specifically we look at the 3.183 MeV peak from 148Gd.
This peak has a natural width of Γ = 0.024 keV, which is much smaller than
the scale of the detector response. We therefore approximate this peak as a
monochromatic source.

Figure 2.11 shows the zoomed in spectrum of the 3.183 MeV peak we are
interested in. We clearly see that this spectrum cannot be explained merely by
a simple Gaussian, as there is a secondary peak (the so-called "satellite peak")
shifted to lower energy than the main peak. This effect is due to α’s hitting the
narrow 0.1 mm aluminum strips on the DSSD’s, which causes them to lose more
energy.

A parametrization of the line shape caused by experimental effects have been
made in [BAS06b]. The parametrization of the main peak consists of a Gaussian
folded with two exponential tails:

ψ(E0, E) =
2

∑
i=1

Ai

2λi
exp

(
E− E0

2λi
+

σ2

2λ2
i

)
· erfc

(
E− E0 + σ2/λi√

2σ

)
, (2.14)

where A1 and A2 are normalization constants, E0 is the main peak energy, λi
is the exponential tail lengths, σ is the width of the Gaussian and erfc(x) =

2√
π

∫ ∞
x exp(−t2)dt is the complementary error function.

We can include the satellite peak as has been done in [Kir10] by adding a
Gaussian distribution with width σg and energy Eg folded with ψ. For simplicity
I have chosen just not to fold the secondary Gaussian with ψ. This takes away
the "tails" of the satellite peak, but as area of the satellite peak is only around 3%
of the main peak this is a very small correction. The resulting response function
is then:

Ψ(E0, E) = ψ(E0, E) +
Ag√
2πσg

exp

(
− (E− Eg)2

2σ2
g

)
, (2.15)

where Ag, Eg and σg is the normalization, energy and width of the satellite peak,
respectively. The resulting fit is seen in Fig. 2.11. We see that there is a small
systematic error between the two peaks, which could be an effect of the satellite
peak not having tails. However, the error from this is quite small and will be
neglected.

We can deduce the thickness of the aluminum grid from the difference in
energy between the two peaks. For U2, we have E0 − Eg = (147± 2) keV which
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Figure 2.11: Fit to calibration peak in 148Gd. The fitted response function takes
into account the most prominent features of the detector response. There is a
small systematic error in the area between the main peak and the satellite peak.

corresponds to a thickness of (0.66± 0.03)µm, and for U6 we have E0 − Eg =
(151± 2) keV which corresponds to a thickness of (0.68± 0.03)µm.

When analyzing the coincidence spectrum, it is important to know the detec-
tor response’s effect on excitation spectrum. This can be found by folding the
single-α response function from each detector as:

Ψ2α(E) =
∫

Ψ1(E′)Ψ2(E− E′)dE′. (2.16)

The resulting coincidence response has four main contributions. The first comes
from two α’s hitting the aluminum grid, which is around 3% · 3% = 0.09%
of the events and is therefore very unlikely. The next two comes from one α
hitting the aluminum grid in one detector while the other does not. Because the
deviations in the response function for each detector are quite small, it is difficult
to differentiate one α hitting the aluminum in one detector versus the other, and
therefore we actually see these two contributions as one. Lastly we have the
main component, which is neither α hitting the aluminum and this corresponds
to 97% · 97% = 94% of the events. The true coincidence response function for
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U2 and U6 is seen as the blue lines in Fig. 2.12. This distribution was found
by drawing a random hit for each detector, from the same peak and adding
the energy. To simplify the expression for the coincidence response function
Eq. (2.16) will not be used, instead we use the following parametrization:

Ψ′2α(E0, E) = Ψ(E0, E) + ψs(E0, E), (2.17)

where

ψs(E0, E) =
As

λs
exp

(
E− E0

2λs
+

σ2
s

2λ2
s

)
· erfc

(
E− E0 + σ2

s /λs√
2σs

)
. (2.18)

The subscript s stand for "single", because this is single-tail version of Eq. (2.14).
Equation (2.17) has three terms. The first is a dual tail Gaussian which is used
to describe the main peak. The second is a simple Gaussian for the smallest
peak, and the last term is the single tailed Gaussian for the middle peak. The
resulting fit shows a small deviation at higher energies, but it is a extremely small
correction and will be neglected. The coincidence response function broadens
the measured distribution and shifts the peak energy down by ∼22 keV, which
will be taken into account in the R-matrix analysis in Chapter 4.

2.7 Uncertainty estimation
We identify three sources of systematic uncertainties in the determination of
the excitation energy spectrum, Ex. The excitation energy is determined as
Ex = Eα, 1+ Eα,2− 92 keV, where Eαi is the energy measured in one detector. For
details on the calculations of Ex, see Section 3.1. The three sources of uncertainties
are the following:

(1) Uncertainty in the calibration. The uncertainty of single α energy due to
the linear fit in the calibration, is ε2 = 2.5 keV + 5.0× 10−4 · Eα for U2 and
ε6 = 2.1 keV + 4.2× 10−4 · Eα for U6. This combines to a uncertainty of
5.2 keV at Ex = 6.0 MeV and 8.7 keV at Ex = 16.0 MeV.

(2) Uncertainty in the energy-loss calculations. There are two contributions to
the errors associated with energy-loss calculations. These are the precision
of the calculations itself, and the precision of the distances used. For a
discussion on the first contribution see [ZZB10]. In this estimate, we will
assume these errors to be zero.

The errors on the energy-loss calculations due to uncertainties in the dis-
tances are again divided into two contributions, one for the detector dead-
layer and one for carbon target thickness. The uncertainty on the carbon
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Figure 2.12: Coincidence response function, found by randomly drawing from
the single-α response functions in U2 and U6. The red line is a fit to the form of
Eq. (2.17).

target thickness and implantation depth found in Section 2.5.5, are 6 nm
and 8 nm respectively. Energy-loss calculations show that this leads to a
standard error of 1.5 keV and 2.1 keV for U2 and U6 respectively5. The
combined error due to the energy loss in the foil is then 5 keV. A similar
calculation done for the detector dead-layer, assuming 10% uncertainty in
the dead-layer thickness, results in an uncertainty of 1.9 keV for a single
α and 2.7 keV for the coincidence energy. These two effects lead to a total
standard error on the coincidence energy of 5.7 keV.

(3) Uncertainty in determining energy due to detector response function. The
coincidence response function found in Section 2.6, has a standard error on
the peak energy of 3.4 keV.

The uncertainty from (1) is obviously energy dependent, while we assume the
contributions from (2) and (3) are not.

5This is calculated assuming the particles travel with an angle of 90◦ to the plane of the foil.
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By adding the contributions of (1)-(3) we get:

8.4 keV at Ex = 6.0 MeV, (2.19)
10.9 keV at Ex = 16.0 MeV, (2.20)

as a conservative estimate of the systematic uncertainty of Ex. This estimate
seems reasonable, based on the results of the 226Ra analysis in Section 2.5.4.





Chapter 3

Data Analysis and Results

In the previous chapter the experiment and the calibration was presented. This
chapter will be concerned with the extraction and analysis of the excitation
spectrum, Ex, and present experimental results. In Section 3.1 we will discuss the
kinematics of the β-decay of 8B and how to find the Ex spectrum. Sections 3.3, 3.5
and 3.6 will serve to present further analysis and validation of the Ex spectrum.
Lastly, in Section 3.7, some initial results from the spectrum will be presented,
and compared to the literature standard.

3.1 Determination of Ex spectrum

The β-decay of 8B results in a recoil on the daughter nucleus (8Be*), which then
decays by α− α breakup. Conservation of momentum leads to the two α-particles
to be emitted exactly back-to-back with the same energy, in the rest-frame of 8Be*.
We can therefore write the velocity of the α’s as ~v′α,1 = −~v′α,2. In the laboratory
frame (rest frame of 8B) we find the velocities by vector addition ~vα,i = ~v′α,i +

~VR,
where ~VR is the recoil velocity of the daughter nucleus. A schematic drawing of
the two decays is seen in Fig. 3.1. The energy of the α particle can then be found

39
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Figure 3.1: A 2-D schematic drawing of the β-delayed α-decay of 8B.

as:

Eα,i =
1
2

mαv2
α,i, (3.1)

=
1
2

mα

(
v′2α,i + V2

R + 2~v′α,i · ~VR

)
, (3.2)

= E′α +
mα

Md
ER +

√
mα

Md
E′αER cos θi, (3.3)

where θi is the angle between ~VR and ~v′α,i, Md and mα are the masses of the
daughter nucleus and α respectively, ER is the recoil energy of the daughter
nucleus and E′α = E′α,1 = E′α,2 is the kinetic energy of the α particle in the rest
frame of 8Be*. When we measure the single-α-spectrum, we see a broadened and
shifted spectrum due to the recoil from the β-decay. The last term in Eq. (3.3)
vanishes when measuring coincidences because cos θ1 = − cos θ2. This lepton
broadening effect will be investigated in more detail in Section 3.3.

Figure 3.2 shows the single and coincidence spectra zoomed in on the doublet
levels. Here we see the effect of removing the recoil broadening, which allows
us to more effectively differentiate the two 2+ doublet levels.

In the case of 8Be where Md = 2mα, we can determine the excitation energy
as:

Ex = 2E′α − 92 keV, (3.4)
= Eα,1 + Eα,2 + ER − 92 keV, (3.5)



3.1. DETERMINATION OF Ex SPECTRUM 41

Single
Entries  1610
Mean    15.18
Std Dev    0.5662

1

10

210

310

410

Single
Entries  1610
Mean    15.18
Std Dev    0.5662

Coincidence
Entries  1610
Mean    15.18
Std Dev    0.5659

14.5 15 15.5 16 16.5 17
1

10

210

310

410

Coincidence
Entries  1610
Mean    15.18
Std Dev    0.5659

Ex [MeV]

C
oi

nc
id

en
ce

s
/

10
ke

V
Si

ng
le

s
/

10
ke

V

Figure 3.2: Comparison of the resolution for single events versus coincidences.
The energy of the single events is calculated as Ex = 2Eα− 92 keV, while Eq. (3.5)
is used for the coincidences.

where 92 keV is the energy difference between the 8Be ground state and two
unbound α particles. The size of ER depends on the angle between the outgoing
leptons, and will be maximum when they go out in the same direction. We
can then estimate the maximum possible recoil energy from conservation of
momentum as:

ER,max =
(E0 − Ex)2

2Mdc2 , (3.6)

where E0 = 17.9798 MeV− 511 keV = 17.4688 MeV is the maximum possible
kinetic energy of the leptons, corresponding to a decay to the 8Be ground state.
The recoil energy for a decay to Ex = 6 MeV can be calculated as 8.8 keV and
0.05 keV at Ex = 16.6 MeV. By measuring the energy and outgoing direction
of the positron, one can make first order corrections to ER. This is possible
to do with the current detector setup, but it takes careful analysis to identify
the positron, and will decrease the amount of statistics because the detection
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efficiency is less than 100%. However, for the energy region we are concerned
with, this is a negligible correction, and we will not concern ourselves further
with this.

3.2 Data reduction
The data was analyzed using the Analyzer program in AUSAlib. The signal of
interest is coincidence events of two α particles, with a sum energy of above
6 MeV. Because the BF2 beam is very clean, the primary source of noise in this
spectrum stems from positrons coming from the β-decay, which deposit less than
50 keV [PVG86] in the DSSD detectors. We therefore assume all particles in the
energy range of interest, are α particles. Events with multiplicity one or larger in
both detectors U2 and U6 are selected and the particles are then corrected for
energy loss in the carbon target and detector dead-layer, assuming they are α
particles.

Due to the lepton recoil effect discussed in Section 3.3, we are susceptible to
false coincidences on the outermost strips. This effect is shown in Section 3.4
to cause angular shifts of up to ≈ 5◦. This corresponds approximately to the
angular width of one strip. To reduce the false coincidences, a condition is set
that at least one of the particles has to have hit within the innermost 14× 14
strips. Lastly the excitation energy is determined from Eq. (3.5) assuming ER = 0.

3.3 Lepton broadening
When measuring the coincidence spectrum, the third term in Eq. (3.3) cancels
out, as pointed out previously. However, we do see a significant broadening
effect on the single α-spectrum due to this effect, which was seen in Fig. 3.2. The
size and shape of the broadening is described in [BA02] for the specific case of
β-decay from 8Li and 8B. The shape of the broadening can be described as:

dN
dE

(x) =

{
15

16Tmax
(1− 2x2 + x4) −1 ≤ x ≤ 1

0 otherwise
, (3.7)

with

Tmax(Ex) =
√

W2
0 − 1

me

M

√
2Qmαc2 M−mα −Q

M−Q
(3.8)

where Tmax is the maximum recoil shift, x = δE/Tmax = 1
2(Eα,1 − Eα,2)/Tmax

is the relative shift with respect to Tmax, and me, mα and M are the electron, α
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Figure 3.3: (Left) The difference in energy between the two α particles in coinci-
dence events with 8 MeV ≤ Ex ≤ 9 MeV. The red line is a fit to Eq. (3.7). (Right)
Red stars are the measured FWHM, obtained through a fit, for excitation energies
in intervals of 1 MeV. The blue line is the theoretical FWHM from Eq. (3.7).

and 8Be masses, respectively. W0 = (E0 − Ex)/me is the β endpoint in electron
masses and Q = Ex + 92 keV. The full-width-half-maximum (FWHM) of Eq. (3.7)
is given as:

FWHM(Ex) = 2Tmax(1− 1/
√

2)1/2 ' 1.082 · Tmax. (3.9)

To analyze the broadening as a function of Ex, all events in the coincidence
spectrum is divided into histograms for every 1 MeV and fitted to Eq. (3.7).
Figure 3.3 (left) shows one of these fit and the red stars in Fig. 3.3 (right) shows
the extracted FWHM as a function of Ex. The black line is the theoretical value
extracted from Eq. (3.8).

Here we see that the measured broadening follows the same tendency as
expected. It is clear however, that the observed FWHM is systematically larger
than the theoretical value. There is an obvious explanation for at least some
of this deviation. The effect of the detector response function has not been
included in this analysis. To do this analysis correct, one would have to use
Eq. (3.7) folded with the response function from Eq. (2.17) to fit the observed
broadening. This would decrease the measured FWHM due to recoil, but it was
unfortunately not possible to do within the time frame of this study. However, if
we estimate the main part of the response function with a simple Gaussian, it has
FWHMresp = 23.5 keV. By adding the FWHM of the theoretical broadening and
response function in quadrature, we get an estimate for the expected measured
broadening. This is of course a conservative estimate of the response functions
impact, as it does not include the broad low-energy tail.
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When including the estimated effect of the response function, the differences
between the measured and theoretical FWHM are lowered. As seen in Fig. 3.3,
the differences are larger for low Ex. The response function therefore also has
a larger effect for large Ex. For Ex ≥ 13 MeV, the response function accounts
for more than half of the difference. However, there is still a quite large energy-
dependent contributions which is not explained. The reason for this is not
known, but it could indicate that the data reduction has not eliminated all false
coincidences.

3.4 Angular broadening
The lepton recoil does not only have an effect on the measured single α-spectrum.
The recoil also makes it such that the α particles do not travel in completely
opposite directions, as seen in Fig. 3.1. The magnitude of the angular shift
depends on the outgoing angle of the α’s in the rest frame of 8Be*, and is largest
when θ1 = θ2 = 90◦. In this case we find the relative angle between the two
outgoing α’s to be:

∆θmax(Ex) = 180◦ − 2 · δθ, (3.10)

where

δθ = arctan
VR

v′α,1
, (3.11)

= arctan

√
mαER,max

MdE′α
. (3.12)

This angle corresponds to the two leptons going out in the same direction and the
two α’s going out perpendicular to the the recoil motion. For Ex = 16.6 MeV the
relative outgoing angle is ∆θ ' 179.8◦, so the angular shift at the doublet levels is
almost zero. At Ex = 6.0 MeV the maximum shift is 175.6◦. These examples were
the maximum shift for a single event. When looking at the angular spectrum we
expect to see a narrow distribution between 180◦ and ∆θmax for a given excitation
energy. This distribution is simulated and shown in fig. 3.9 in [Kir10] for two
different excitation energies.

Experimental effects can also lead to a broadening of the angular distribution.
Four sources of uncertainty on the relative outgoing angles can be identified:

(1) Uncertainty of where the α particles hit on each pixel. Each pixel is
3 mm×3 mm. In the analysis each event is given a random uniformly
drawn position in the pixel. The maximum possible error on the position is
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Figure 3.4: This plot shows the relative outgoing angle of the α’s in coincidence
events. The red line is a Gaussian fit with mean µ = 180.2◦ and standard
deviation σ = 4.7◦.

therefore
√

2 · 3 mm = 4.2 mm. The distance from the assumed implanta-
tion position in the target and the center of each detector is 34.5 mm for U2
and 37.8 mm for U6 during the 8B run. If we assume the detectors to face
the target squarely, then this leads to a maximum error of 6.9◦ and 6.3◦ for
detectors U2 and U6, respectively.

(2) Uncertainty of the implantation spot of 8B in the carbon target. There are
actually two sources that contribute to this error. The first is the uncertainty
due to different stopping lengths in the target. This has been simulated in
TRIM and is conservatively found to be on the order of 10 nm, which is
negligible. The other and more significant contribution is due to the beam
of BF2 not being completely collimated. Four collimators were used with
the smallest being 4 mm. An error of 4 mm on the position of the decay,
will lead to an error of the outgoing angle of approximately the same size
as (1).

(3) General uncertainties from the geometry calibration of ∼0.1 mm on all
positions. This effect is partly taken into account through (1) and (2), and is
of negligible size compared to the others.

(4) Scattering of the α particles when going through the target and detector
deadlayer. This effect has two components, the first being electronic scat-
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tering and the second is nuclear scattering. The scattering in the deadlayer
happens in the detector, and will therefore not have any significant impact.

Scattering in the carbon target will mostly only have an effect on the
particles measured in U2, because the implantation depth is only ∼18 nm.
Simulations in TRIM show that traveling through 110 nm carbon, will
create a broadening of the angular distribution of up to 3◦ for an α particle.
A few particles will experience significantly larger scattering due to nuclear
collisions with a high impact parameter.

To summarize, we have three different sources of angular broadening due to
geometrical uncertainties and one due to scattering processes. The contributions
from (3) and (4) are much smaller than those from (1) and (2), and the experimen-
tal broadening effects are estimated to be significantly larger than the intrinsic
recoil shift.

Figure 3.4 shows the angle between the two α’s for coincidence events with
6 MeV ≤ Ex ≤ 7 MeV. The red line is a Gaussian fit with mean of 180.83◦±0.02◦

and σ = 4.66◦ ± 0.01◦. The quality of the Gaussian fit indicates that the experi-
mental broadening dominates the distribution over the intrinsic lepton broaden-
ing. However, we would still expect the Gaussian centered somewhere between
175.6◦ and 180◦, which is not the case. The reason for this is not well understood.

3.5 Decay time

One of the variables saved for each event is the TPROTON described in Sec-
tion 2.3, which is the time from the proton pulse was send until the event was
triggered. From now on we will mention this trigger time as Tp. If the events
we measure are indeed decays from the radioactive 8B nuclei, then this time dis-
tribution should follow an exponential decay with the lifetime of 8B1. However,
the time distribution is not a perfect exponential decay, because the dead-time
is larger right after a proton pulse which means a lesser fraction of the events
are actually measured in this period. The Tp-spectrum can be seen in Fig. 3.5. At
every 1.2 s there is a discontinuity due to the fact that the clock is reset every time
we get a new proton pulse. The pulses does not come regularly, which means
that sometimes there is 1.2 s between the pulses, sometimes 2.4 s and so on.

To analyze this spectrum we will use the Kolmogorov-Smirnov test (KS-test).
This method tests a given distribution again the null-hypothesis or a so-called
reference-distribution. The test works for arbitrary reference functions even
including discontinuities. Another advantage is that this test works very well

1This is assuming the rate is low enough that only one decay is measured in each event
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Figure 3.5: Tp-distribution of coincidence events. The discontinuities are due to
the fact, that the proton pulses from the PS Booster are send out every 1.2 s and
does not come regularly.

with small amounts of data. These are the primary reasons to use the KS-test
instead of the more commonly used χ2 test.

The goodness-of-fit is defined by the test statistic:

D = max
1≤i≤N

(
F(Yi)−

i− 1
N

,
i
N
− F(Yi)

)
, (3.13)

where F is the reference distribution, Y are the ordered data points we test for, N
is the number of data points, and i/N is the cumulative probability at data point
number i. The test assumes that the data points are sorted and we know the
exact value for each point. The KS-test should therefore generally not be used
for binned data. We will be using ROOT’s own implementation of the test, and
the error associated with binned data is discussed in the ROOT documentation2.
They have come to the conclusion that as long as the bin widths are much smaller
than any physical phenomena of interest, the significance level (α) returned by
the function should be approximately correct. The effect of using binned data (if
any) is always to make α larger. Therefore we will be susceptible to accepting
tests that might otherwise be rejected.

2The documentation can be found at https://root.cern.ch/doc/master/classTH1.
html

https://root.cern.ch/doc/master/classTH1.html
https://root.cern.ch/doc/master/classTH1.html
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Figure 3.6: Coincidence spectrum zoomed in on the region around the 2+ dou-
blet. The color codings correspond to the regions in Table 3.1.

The null hypothesis is rejected with significance level α if:

D > c(α)
√

n + m
nm

, (3.14)

where n and m are the number of counts in the reference and testing distributions
respectively, and c(α) can be approximated as:

c(α) = −1
2

ln(
α

2
), (3.15)

but is generally found in tables from literature.
The test is conducted on five Tp-distributions based on the Ex-spectrum. The

region around the 2+ doublet is of particular interest, as a small number of wrong
coincidences can cause a significant error due to the low statistics in this region.
The regions are shown divided by color in Fig. 3.6. The black area goes all the
way down to 6 MeV and is the reference-distribution, while the red area signifies
the 16.6 MeV level. The green is the intermediate region which is important in
determining the interference between the levels. The blue region is the 16.9 MeV
level and the purple are the events investigated in Section 3.6. The results from
the KS-test are shown in Table 3.1.
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Energy Region α0 α1

15.50-16.67 MeV 0.199 0.329

16.67-16.80 MeV 0.459 0.028

16.80-17.00 MeV 0.872 0.891

17.00-18.00 MeV 0.958 0.687

Table 3.1: Table of results from KS-test on TProton-distributions with the refer-
ence distribution taken from 6.0 MeV ≤ Ex ≤ 15.5 MeV. α0 is the significance
level for a test with all coincidence events. α1 shows the same test, but including
events where neither of the particles hit the innermost 14× 14 strips.
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Figure 3.7: Plot of the cumulative Tp probability distribution. Red line is the
standard reference distribution. The black line is the distribution for events
with two physical events, corresponding to the square of the exponential decay
distribution. The green line is the distribution for coincidence events with
16.67 MeV ≥ Ex ≥ 16.80 MeV, without the demand that at least one α hits the
innermost 14× 14 pixels.
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We deem the test of the null hypothesis true is the significance level is above
0.05. The middle column show the results for the coincidence reference distri-
bution, where at least one of the particles hit within in innermost 14× 14 strips.
In this test, all regions has α ≥ 5%, and none of them are close enough that the
error associated with binned data plays a significant part.

For reference, the right column shows the results from a KS-test with the
same reference-distribution, but with test-distributions including hits where
none of the particles hit within the innermost 14× 14 strips. In this case, one
of the regions have a significance level below 0.05. When doing four tests with
significance level of 5%, there is a 1− 0.954 = 18.6% chance of rejecting a true
test, which means that this test is not significant in itself.

The red line in Fig. 3.7 shows the cumulative probability distribution for the
standard reference distribution. The black line is a the distribution for events
with two physical events, which means that it is the square of the single particle
decay time distribution. The green line is the time distribution from the region
between 16.67 MeV and 16.80 MeV, including events where neither α hits within
the innermost 14× 14 pixels. It is clear that the green line is somewhat of a
combination between the red and black lines, which could indicate that there
might be a significant part of false coincidences in this region. A similar plot
excluding events in the outermost pixels, show that the distribution lies much
closer to the red line, which is also why the KS-test was passed in this case.

As mentioned, the KS-test is not significant in itself, but leads us to the
observation that the region between the 2+ doublet levels might be more prone
to false coincidences than the surrounding parts. This is important to be aware
of, since this region is crucial in determining the exact interference between the
levels. It seems, however, that the demand that at least one α hits within the
inner 14× 14 pixels reduce this effect. This analysis also suggests that the high
rate of counts during the experiment, has led to a non-negligible amount of
pile-up events which may be problematic across the entire spectrum. In general,
as the events are uncorrelated, the spectrum does not on average change shape.
However, in low statistics regions on the spectrum, it may cause an effect.

3.6 Analysis of high energy coincidences

In Fig. 3.2 there was an upper energy cut of 17 MeV. However, in Fig. 3.6, it is
shown that the coincidence spectrum does have events at larger energies than
17 MeV. Here we see the 16.9 MeV level, which has a well defined upper edge at
just below 17 MeV. There are then 31 events scattered around between 17 MeV
and 18 MeV. These events has been investigated on an event-by-event basis, and
a summary of this is what will be presented in this section.
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We do not expect to see any events above the 16.9 MeV level and one way
to explain these high energy events would be if two particles were summed
as one. There are two possible scenarios for this. The first scenario is if the
positron is emitted in the same direction as one of the α-particles and hit in
the same pixel. The chance of this happening is ∼ 2 · 9 mm2/4π(3.5 cm)2 =
1.2 · 10−3. We assume an average energy loss 0.4 keV µm−1 for positrons in silicon
[PVG86]. The energy deposited in the DSSD by a positron is then approximately
0.4 keV µm−1 × 60 µm = 21 keV. The lowest energy events above 17 MeV are
∼ 100 keV above the upper limit of the 16.9 MeV level, which is too high for
positron summing to explain it. Even if the energy was enough, there is only
around 300 counts in the 16.9 MeV level. With the probability of 1.2 · 10−3, we can
estimate the number of events where this happens to around 300× 1.2 · 10−3 =
0.4. Again, this is clearly not enough to explain the 31 events.

The second possibility is for two α’s to be detected as one. The initial pulse
created by the α depositing energy in the detector is amplified in the Pre-amplifier
to reduce noise in the measurement. The outgoing pulse from the Pre-amplifier
has a sharp rise of ∼ 100 ns, but a slow discharge of around 40− 60 µs, much
longer than the length of an event. If another particle hits the same strip before
the Pre-amplifier has discharged sufficiently, there is a possibility to count these
two separate events as one, with an energy up to the sum of the two constituents.

If two α’s were detected as one in one of the detectors, the difference in α
energies, δE = Eα, 1− Eα,2, would be on the order of MeV. However, none of
these events has δE ≥ 300 keV, so it seems unlikely that this is the case.

The last explanation is that two decays happened at the same time, resulting
in the summing of α energies in both detectors. If the α’s from one decay travel
exactly back-to-back, the chance of α-summing in one detector is approximately
the same as α-summing in both detectors. We saw in Fig. 3.4, that this is not
the case. The angular width of one pixel is approximately arctan 3 mm

35 mm ' 5◦. To
estimate the number of double summing events, we assume that if an α particle
hits a pixel in one detector and |∆θ − 180◦| ≤ 5◦/2, then the other α can only hit
in a single pixel in the other detector. So, the rate of double summing events (Γd)
can be estimated from the total number of summing events (Γ), as:

Γd =

(
N(∆θ ≤ 180◦ − 2.5◦)

N

)2

× Γ, (3.16)

where N is the number of total counts and N(∆θ ≤ 180◦ − 2.5◦) is the number
of counts susceptible to double summing. This fraction is found from Fig. 3.4 to
be (56%)2 = 31%. Also, for two events to be summed as one, the time difference
between them has to be small. We assume that two events that happen in the
same pixel within 4 µs, will be summed.
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Figure 3.8: Plot of the time difference between events in U2 and U6. The arrow
indicates the high energy event, that we believe are due to double α summing.

The rate of coincidence events varied throughout the experiment, but with
an average rate of 362 Hz. With the solid angle of a pixel being 0.75%, the chance
of summing is ≈ 0.75%× 362 Hz× 4 µs× (56%)2 = 3.4 · 10−6, ie. 1 in every
300,000 events.

If we assume the "intruder" decay to come from the 3 MeV level, that means
the original measured event has an energy between 11− 12 MeV. In the total
spectrum there are 4.5 · 106 events in that energy range, which means we would
see approximately 15 events of this type. Given that this is a very crude estimate,
is it seems reasonable that it is off by a factor of two compared to the actual
number of 31 events that we see.

There is another observation that supports this theory. Figure 3.8 shows the
time difference between the signals in a single pixel U2 and U6, as a function of
excitation energy. In general, one has to align each individual TDC channel, to be
able to compare them. However, by including only one pixel from each detector,
we achieve the best possible temporal resolution and avoid aligning all channels.
The energy dependency stems from the fact that U2 uses a Leading Edge (LE)
discriminator while U6 uses a Constant Fraction (CFD) discriminator. The LE
discriminator has an energy dependence on the trigger time. This has been
investigated by M. Munch from the Subatomic group at Aarhus University, and
is shown to be in very good correspondence with what is seen in Fig. 3.8. The
event highlighted by the arrow is one example of the high energy events. The
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dashed lines show the expected Ex for an event with the same time difference as
this particular event. That energy is found to be≈11.2 MeV, which is in excellent
agreement with the assumption that these events are due to double summing.
This also explains why the cut above 17 MeV does not fail the test in Section 3.5,
because the "intruder" decays have too low energy to trigger the detectors.

While there are a few of the events with Ex ≥ 17 MeV that does not show
this particular behavior, most of them do. The TDC analysis combined with
the estimation on the number of counts, leads us to believe that this is in fact
the right explanation and we will therefore exclude these events from further
analysis. It also means that the spectrum below 17 MeV probably has double α
summed events which has not been taken into account. However, this error is
extremely small and the reason we see it in the high energy range, is because it
is an otherwise empty spectrum.

3.7 Results

This section serves to present some initial results from the Ex spectrum extracted
in the previous sections. This will be done mostly without the use of R-matrix
theory. A more detailed R-matrix analysis of the spectrum is presented in the
following chapter.

3.7.1 Ex spectrum

The final excitation spectrum is shown in Fig. 3.9 (left), with the right figure
being the same spectrum, zoomed in on the region around the 2+ doublet. One
of the primary goals with the experiment IS633, was to measure the 16.922 MeV
level. The only other time this level has been measured through β-decay, only
five counts were seen in [Kir10]. The number of counts in the 16.922 MeV level
in this study is found from Fig. 3.9 to be approximately 284, a factor of 57 more
than the previous study. We can therefore conclude that the goal of measuring
the 16.922 MeV with more statistics has clearly been achieved. For the first
time, we have been able to measure 16.922 MeV level directly through β+-decay,
instead of inferring it from the low energy tails. This is of major advantage in
the next chapter when doing R-matrix fits. With this amount of statistics, it is
now possible to see if the fit is consistent with the data for that level specifically.

The present spectrum consists 1.21 · 108 coincidence events between 6 MeV
and 17 MeV. For comparison, the number of counts in the entire spectrum in
[Kir10] was 10.6× 106. Using the normalization method described in Section 4.3,
this corresponds to 1.30 · 105 events with 6 MeV ≤ Ex ≤ 17 MeV. This results in
a factor of 93 more in total statistics in this study, than any previous coincidence
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Figure 3.9: (Left) Final excitation spectrum of 8Be based on coincidence events.
The spectrum consists of 1.21 · 108 events. (Right) Excitation spectrum of 8Be,
zoomed in on the region around the 2+ doublet. In this plot, the 16.922 MeV
level is clearly seen.

analysis. As one may notice, this is not in perfect agreement with the fraction of
counts in the 16.922 MeV level. This is most likely due to statistical fluctuations
for the previous study, where a single count has a large impact.

The upper limit of the β+-decay window for 8B is situated only 36 keV above
the 16.922 MeV level and 332 keV above the 16.626 MeV level. The phase space
therefore skews the spectrum significantly, which is especially visible for the
16.626 MeV level, which is not very symmetric. The visible peak positions are
also shifted down by the phase space factor [Rii+15], and it is therefore difficult
to estimate the widths and positions of the levels on the basis of this spectrum. It
is therefore not very meaningful to determine level parameters directly from the
raw spectrum.

As mentioned in Section 1.2.3, the matrix elements for β+ and EC are the
same, and the total phase space be written as f (Ex) = fβ(Ex) + fEC(Ex). By
assuming total isospin mixing between the 2+ doublet levels, the matrix elements
are equal for the two levels. This means that the ratio of counts can be estimated
using only the phase space as:

rβ+EC(16.922/16.626) =
fEC(16.922) + fβ(16.922)
fEC(16.626) + fβ(16.626)

= 2.4 · 10−2, (3.17)

where the energies are in MeV, and the phase space is calculated using Eq. (1.16)
and the parametrization mentioned in Section 1.2.2. The number of counts in the
16.626 MeV level is not straightforward to find, because the peak does not have
as well defined boundaries as the 16.922 MeV level. However, it is estimated
that there are ≈ 1.6 · 104 counts in the 16.626 MeV peak, which gives a ratio of
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Figure 3.10: Ex spectrum converted into f t−1 and corrected for the L = 2 α− α
penetration factor. The figure in the middle is a zoom of the upper part of the
larger spectrum. The red line is a two-level interfering Breit-Wigner fit, which is
used to find the widths and positions of the 2+ doublet levels. The fit results are
seen in Table 3.2.

1.8 · 10−2. This is approximately 25% less than expected, but it does confirm
the order of magnitude difference between the levels. The estimate is extremely
dependent in the lower boundary of the 16.626 MeV level, and it is therefore
not surprising that the result does not agree fully with the estimate. Also, the
assumption that the levels are completely mixed in isospin is not correct, as the
mixing coefficient is ≈ 59%.

3.7.2 Phase space corrected Ex spectrum

Figure 3.10 shows the measured Ex spectrum, plotted as the inverse f t-value and
corrected for the α− α penetration function. This plot gives a clear image of the
pure 8Be structure through β-decay, because kinematic factors for the entry chan-
nel and the energy dependency of the exit-channel have been removed. A similar
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Parameter Adopted levels Fit R-matrix fit

Ea [MeV] 16.626(3) 16.599(3) 16.619(1)

Γa [keV] 108.1(5) 131(9) 108(2)

Eb [MeV] 16.922(3) 16.889(2) 16.901(3)

Γb [keV] 74.04(4) 67(4) 65(3)

Table 3.2: Energy position and widths of the 2+ doublet levels. Adopted levels
are obtained from [Til+04]. The middle column are results from the Breit-Wigner
fit seen in Fig. 3.10, while the right column are results from a simple R-matrix
model with only two levels fitted to Ex ≥ 16 MeV.

plot has can be found in [Hyl10], with a coincidence energy threshold as low as
1.5 MeV. As we are limited to 6 MeV, it is not possible to show 3 MeV level in this
plot. However, the high energy tail of this level is visible, and seen to dominate
up to Ex = 9 MeV. The maximum of the 3 MeV level is at approximately three
orders of magnitude below the maximum of the doublet levels3, and the width
of the 3 MeV level found in [Til+04] is Γ = (1.513± 0.015)MeV. The broadness
of the level is not enough to explain the β strength in the intermediate region.
Most of this strength can be explained by constructive interference between the
levels, but it is known not to be enough. The last missing strength is the origin
of Barker’s proposed intruder state, but is now most widely believed to be due
to the non-resonant direct decays discussed in Section 1.4.

The fit shown by a red line in Fig. 3.10, is two combined Breit-Wigner func-
tions including interference. This fit is seen to explain the structure very close
to the doublet quite well, and can be used to obtain the widths and positions of
the 2+ doublet levels. The result of this fit is shown in Table 3.2, along with the
adopted levels from [Til+04]. The doublet levels are seen to interfere destruc-
tively in between the levels and constructively outside. To extract precise values,
one would have to include the broadening of the coincidence response function
found in Section 2.6, which is not included in the Breit-Wigner fit. However,
this has been done with a simple R-matrix model, including only the 2+ doublet
levels for Ex ≥ 16 MeV. The result of this fit is shown in right column of Table 3.2.
For an explanation on R-matrix theory see Chapter 4, but for now we just use
results. The fit quality of the R-matrix fit is quite bad with χ2/do f = 1.18. This is
to be expected since the model is too simple to describe all effects in the spectrum,
as is shown in the next chapter. However, the fit is still valuable as a comparison

3Based on fig. 3.3 in [Hyl10].
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with the fit results from Fig. 3.10.
When comparing the Breit-Wigner fit with the R-matrix fit, we see that the

energies for both levels are lowered in the Breit-Wigner fit. The shift for the
16.6 MeV level is 8 keV larger than that of the 16.9 MeV level. A shift originating
from the response function, would not necessarily shift the two levels equally,
because the phase space changes to rapidly in this region. Γb is approximately
equal in the two fit, while Γa is changed by 23 keV. Again, the response function
does not necessarily have the same impact on the two levels due to the phase
space. In fact, a R-matrix fit identical to the previous, but with no response
function, confirms the parameters from the Breit-Wigner fit within the errors
of the fit. This shows that one have to be careful when analyzing the detector
response, as this can lead to significant errors in the resulting level parameters.

It seems very likely that the differences seen in the two fit, are well explained
by the response function. This correspondence suggests internal consistency
in the two models, when including the response function. However, even the
R-matrix fit is not in very good agreement with the literature values for the
doublet levels. The level energies for the 16.6 MeV and 16.9 MeV levels are 7 keV
and 21 keV lower than the literature values respectively. The width obtained in
the fit is equal to the literature value for the 16.6 MeV level and 9 keV too narrow
for the 16.9 MeV level.

There are two possible explanations for this. The first is a systematic error in
the spectrum. This has been investigated by adding an artificial energetic shift
in the spectrum. However, several values for this shift has been examined, and
none of them can be used to obtain literature values for both the energies and
widths in the two-level fit. Generally a negative shift decreases the energies and
broadens the levels, and vice versa for a positive shift.

A second explanation is the two-level fit itself. In the fit, contributions from
all other levels in the spectrum are neglected. If this is not a valid approximation,
this could lead to non-physical level parameters. However, a similar fit in
Section 3.4.2 in [Hyl10], obtains very precise doublet level parameters, which are
in agreement with the literature values within 3 keV.

The deviations in the fit parameters from the literature is most likely due to a
combination of systematic errors in the calibration and the fit itself. As a result,
the level parameters in the following R-matrix analysis can not be expected to
produce precise results for the doublet levels. It can, however, still be useful in
determining which models are best suited to describe the spectrum.





Chapter 4

R-Matrix Analysis

We saw in the previous chapter that the excitation spectrum measured from the
β-decay of 8B, exhibit broad features and the Breit-Wigner approximation is only
able to describe the 2+ doublet in a very local area. In this chapter we introduce
R-Matrix theory, which is a framework for describing nuclear resonances in
terms of physical meaningful parameters. In this chapter I will first give a brief
introduction to the R-Matrix theory and discuss some of the possible limitations
that we face with it. Next we will compare the excitation spectrum found in this
study to a similar experiment conducted at the IGISOL facility of the Jyväskylä
Accelerator Laboratory (JYFL) in 2008 and analyzed in [Kir10; Hyl10]. Lastly
an alternative R-Matrix analysis is made specifically to the 2+ doublet, in an
attempt to extract physical parameters and the Gamow-Teller strength for the 2+

doublet.

4.1 Theory

I this section, I will present a basic description of R-Matrix theory. For a complete
description of the theory on the general many-channel, multi-level scattering
process, I refer to the standard reference within the field [LT58] and the following
reviews by [Vog62; Vog04]. For a generalization to β-decay followed by a two-
body breakup, see [Bar69; Hyl10].

Let us first consider a nuclear decay A → B + C. In general we can divide
the interactions up in two parts, nuclear- and electromagnetic forces. Due to
the short range of the nuclear force, electromagnetic interactions dominate on
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large distances, while the nuclear forces are dominant on very short ranges.
The essence of R-Matrix theory can then be boiled down to separating the
configuration space into an internal and external part and matching the solutions
at the interface. The size of the internal region is described by a bounding sphere
with radius ac, which we will call the channel radius. The size of this sphere
is determined such that all nuclear interactions take place inside this region,
and only Coulomb interaction is left in the external part. The short range of
the nuclear force suggests that the channel radius should be only a few fm. In
the external region, we are dealing with a two-body Coulomb problem. In this
region one may write the wave function of a process with channels, c, as:

Ψ = ∑
c

ψcuc(r), (4.1)

where ψc contains all spin and angular momentum dependencies and uc(r) is a
solution to the radial Schrödinger equation. The solution to the radial part is a
linear combination of an ingoing wave (I) and outgoing wave (O):

uc = xcOc + yc Ic. (4.2)

The problem is now to determine the size and phase of the amplitudes, which
can be described by the relation:

xc = −∑
c

Uc′,cyc, (4.3)

where U is the collision matrix. The ultimate goal is to know this collision matrix,
as this is what describes the nuclear interaction. To do this, we need to know
what happens in the internal region.

The internal region can be described by the Hamiltonian:

H = K + V, (4.4)

where V is an unknown nuclear potential. As the exact form of V is not known,
we cannot solve for the full wave function:

HΨ = EΨ. (4.5)

However, we do know that there exists a complete basis of orthogonal eigen-
functions, Xλ, with eigenvalues, Eλ, from which the full wave function can be
written:

Ψ = ∑
λ

CλXλ. (4.6)
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We then combine the two solutions by matching the logarithmic derivative of
the wave functions at r = ac. The next step is a long and demanding calculation,
for which I will refer to [LT58]. In the end it turns out that the each internal
eigenstate or level, λ, contributes to the collision matrix with two quantities, its
energy, Eλ and reduced width amplitude, γλ,c. The subscript c indicates that
each channel contributes with its own reduced width, and in this case there is
only one outgoing channel, the 2α with L = 2, and two ingoing channels Fermi
and Gamow-Teller β-decay. The inclusion of β-decay is described in [Hyl10],
and instead of the reduced width it introduces the beta feeding parameter gi,x
with x = F, GT, which can converted into the matrix element as:

Mi,x =
gi,x(

1 + ∑c γ2
i,c

δSc
δE

∣∣∣
E=Ei

)1/2 , (4.7)

where Sc is the shift-function, which is the real part of the logarithmic derivative
of the outgoing wave Oc.

Since the collision matrix is not directly measurable, we need to convert
this information into something measurable. In this study a decay spectrum is
measured, which can be written in terms of the decay probability as N(E) =
(Nt1/2/ ln 2)w(E), where w(E) is the decay probability, N is the total number of
decays in the whole spectrum and t1/2 =(770± 3)ms is the half-life of 8B. The
final expression for the spectrum is:

N(E) =
Nt1/2

πB
fβ(Q− E)Pc(E)


∣∣∣∣∣∣∑i,j g̃iFγ̃jc Ãij

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∑i,j g̃iGTγ̃jc Ãij

∣∣∣∣∣∣
2
 , (4.8)

where B =(6147± 2) s, fβ is the β-decay phase-space, Pc is the penetration
function, i and j are the included levels, A is the level matrix which is connected
to the collision matrix, γ is the reduced width of the outgoing channel, and
finally gx (x = F, GT) is the beta feeding parameter. We see from Eq. (4.8), that
Fermi-contributions from all included levels interfere, and the same is true for
the Gamow-Teller contributions. However, the Fermi and Gamow-Teller parts
do not interfere with each other. The ∼ above g, λ and A in Eq. (4.8), indicates
that we use a different parametrization than the standard. This parametrization
provides observables directly from the fit and the derivation is found in [Hyl10;
Bru02].

4.1.1 Comments on R-matrix theory

In the previous section, the internal and external wave functions where matched
via their logarithmic derivatives at the surface of a sphere with channel radius,
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ac. In practice, one often determines the channel radius in terms of a nucleus
independent constant r0, as:

ac = r0(A1/3
1 + A1/3

2 ), (4.9)

where A1 and A2 are the mass number of the interacting nuclei. Previous studies
has shown that there is often times a dependency of the observables from the fit
on the channel radius. This effect is not necessarily a problem of the theory, but
comes from the practical use of R-matrix theory.

In principle we have to include all possible levels in the R-matrix model to
describe the internal interactions of two nuclei, which means including all inter-
nal basis-states. In practice the basis is truncated to a model with as few internal
eigenstates (levels) as possible, while still producing a good fit to the data. This
truncation corresponds to neglecting levels that are energetically far away from
the measured spectrum. By increasing the channel radius, the contribution from
the high-energy states becomes larger [Hyl10]. When using only the truncated
basis, the level-parameters for the low lying states will change to compensate for
this effect. To counter this, another level is often introduced which we will call
the background level. This level should not be interpreted as a physical level,
but more as a parametrization of the collective neglected effects that appears
when using the truncated basis. If this background level is able to compensate
for these effects, the remaining levels can be interpreted as physical levels and
their parameters should therefore not change with varying channel radius. How-
ever, depending on the physical significance, the background level does vary
in energy as a function of the channel radius. The background level discussed
in the following sections is believed to signify the non-resonant contributions
discussed in Section 1.4. For a more in-depth analysis of the background level,
see chapter 5 in [Hyl10] and [Rii+15].

4.1.2 Isospin mixed doublet

The two states at 16.6 MeV and 16.9 MeV can be described as two isospin mixed
states |a〉 and |b〉. These are linear combinations of two isospin eigenstates,
|T = 0〉 and |T = 1〉, where the T= 1 state is the isobaric analogue state of the
8Li and 8B ground states. We can therefore write the two states as:

|a〉 = α |T = 0〉+ β |T = 1〉, (4.10)
|b〉 = α |T = 1〉 − β |T = 0〉 (4.11)

with the condition α2 + β2 = 1. The mixing coefficients, α and β, can be found
by analyzing the observed widths of the doublet levels. α-decays with ∆T = 1
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are forbidden, and the observed widths are therefore T = 0 widths. This means
that Γ0 = Γa + Γb. Following the argument given in section 3.4.1 of [Hyl10], we
can write the mixing coefficients as:

α2 =
Γa

Γa + Γb
, (4.12)

β2 =
Γb

Γa + Γb
. (4.13)

The β-decay matrix elements for the doublet levels are a linear combination of
the isospin eigenstate matrix elements:

Ma,x = 〈a|Ox|8B〉 = αM0,x + βM1,x, (4.14)

Mb,x = 〈b|Ox|8B〉 = βM0,x − αM1,x, (4.15)

where |8B〉 is the ground-state of 8B. Because of isospin conservation in Fermi-
decay, M0,F = 0 and using Eq. (1.10): M2

1,F = T(T + 1) − T3(T3 + 1) = 2.
Shell-model calculations predict that M1,GT is very small compared to M0,GT
[War86b]. This results in the following equations:

Ma,F =
√

2β, Ma,GT = αM0,GT + βM1,GT, (4.16)

Mb,F = −
√

2α, Mb,GT = βM0,GT − αM1,GT. (4.17)

The 2+ doublet level parameters were determined by Hinterberger et al.
[Hin+78] using elastic scattering of α particles. They analyzed the 16 MeV dou-
blet using R-matrix theory in the single-channel, two level approximation with-
out contributions from other 2+ levels. The level parameters found directly from
the fit, are therefore not the physical doublet parameters. However, it is possible
to transform the fit parameters into physical level parameters via a non-trivial
transformation. The way to do this is described in Section 3.4.1 in [Hyl10].

4.2 Details of the analysis
In the following R-matrix analysis, we will use the Open R-Matrix (ORM) pro-
gram, developed by M. Munch, O.S. Kirsebom and J. Refsgaard in the AUSA-
group [MKR18]. ORM provides a library for doing R-matrix calculations, and a
command-line interface for performing fit to experimental data. The program
is an implementation of the R-matrix theory as summarized by [LT58], and is
able to handle β− and γ-decays experiments. At the time when this analysis
was started, the program was not yet complete for the case of β-decays. I have
therefore personally contributed with several functionalities to the program,
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both general and more specific to β-decay. These include, but are not limited to,
the calculation of Fermi- and Gamow-Teller matrix elements, coupling included
levels through Fermi- and Gamow-Teller decay channels, and added the possi-
bility of locking fit parameters with respect to each other. The last functionality
is still limited in the parameters that can be fixed, which in turn has limited the
possibilities in this analysis.

Each level included in the truncated R-matrix basis, creates one fit parameter
for each channel it couples to and one that determines the level energy. The
α-channel parameter can be converted into the width of the level, while those
for beta-decays can be translated into the matrix element fo the corresponding
decay. The BGT values listed in Tables 4.1 and 4.2 are corrected for the vector and
axial-vector coupling constants as shown in Section 1.2.2, while Ma+b,GT does
include the factor gA

gV
. The individual level contributions shown in each plot, are

calculated using Eq. (4.8), with the sums including only one level.
The spectrum we see from the data, is affected in part by the detector response

as discussed in Section 2.6. To account for this in the R-matrix function, the calcu-
lated spectrum is folded with the normalized coincidence-response function. The
calculated spectrum we see in the fit, is therefore not a pure R-matrix spectrum,
but includes experimental effects.

The fitting of experimental data is done through the Minuit program imple-
mented in ROOT and described in [JR75]. The function used to minimize is a
log-likelihood function:

χ2 = 2 ∑
i

ni,fit − ni,data + ni,data ln

(
ni,data

ni,fit

) , (4.18)

where ni,data and ni,fit are the experimental and calculated values respectively.
The standardized residuals shown below each fit are calculated as:

δi =

(
ni,fit − ni,data

)
√ni,fit

. (4.19)

4.3 Comparison to previous experiment
In this section, we compare the new measurements from IS633 with previous R-
matrix fits done to the same type of experiment. More specifically we consider the
β-delayed α-spectrum from an experiment done at JYFL in 2008. This experiment
and the analysis of it, is described in detail in [Kir10] and the following R-Matrix
analysis is found in [Hyl10; Kir+11]. This reason to use this particular experiment,
is because it has the most statistics of any previous experiments concerned with
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β-decay of the 8B ground-state. The data from JYFL 2008 will from now on be
mentioned as JYFL08, while the data from this study is mentioned as IS633.

4.3.1 Normalization

The difference in statistics in the two experiments is shown in Fig. 4.1, and
is roughly a factor of 8531. As one may notice, this factor is not the same as
discussed in Section 3.7. As the data from JYFL08 is from 2008, some aspects
of the data analysis has been lost. After talks with O.S. Kirsebom, who did the
analysis back then, he advised to use the dataset seen in Fig. 4.1 (left). The data
used for the R-matrix analysis in [Hyl10; Kir10], had roughly a factor of 10 more
statistics. This is the reason that the five counts in the 16.922 MeV level is not
seen in the present spectrum.

As a simple check to see whether the two spectra, JYFL08 and IS633, are
consistent, a linear fit is made to the fraction of counts in each bin. This fit
is shown as the red line in Fig. 4.1 where α = 853(6) + Ex · 0.7(5)/MeV. We
see here that the fraction of counts in each bin is almost constant within the
errors as a function of energy. If a small shift of one bin (20 keV) is made to
the IS633 spectrum, then the fit becomes α = 854− Ex · 0.4(5)/MeV, in which
case the slope changes sign. The non-zero slope could indicate that there may
be an energetic shift between the two spectra. A simple estimate of this shift
is 0.4/0.7·20 keV=11 keV. This observation is in agreement with the estimated
error in Section 2.7.

Equation (4.8) assumes that N is the total number of counts for the entire
spectrum all the way down to zero energy. The beta-strength parameters gi,x
therefore depends on the the number of counts as 1/

√
N. Because we are not

confident in our spectrum below 6 MeV, we have to ensure the normalization
of the fit in some other way. To do this, the excitation spectrum from [Kir10] is
used to get the fraction of counts between 0-17 MeV and 6-17 MeV. This factor is
multiplied with the number of counts in the IS633 spectrum between 6-17 MeV.
This way the assumed number of counts in our spectrum is:

NIS633 =
NJYFL08(0− 17)
NJYFL08(6− 17)

· NIs633(6− 17), (4.20)

where the numbers indicate the energy range in MeV. This method has been
tested by integrating the final R-matrix fits down to Ex = 0, and is found to be
equal within 1%.

1Based on the data above 6 MeV because of the low energy problems discussed in Section 2.5.6
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Figure 4.1: (Left) This plots shows the coincidence spectra obtained from JYFL08
(red) and IS633 (blue). (Right) The fraction of events for every 20 keV bins. The
red line is a linear fit, shown in the lower part of the plot.

4.3.2 R-matrix fit

Because of the limitations of the data below 6 MeV, the JYFL08 spectrum from
[Kir10; Hyl10] is included, as well as the IS633 data. The old spectrum has a lot
of statistics at the main peak and goes down to 1.5 MeV. This way, the new data
will dominate at 6 MeV and above, because there is so much more statistics. The
old data set can then be used to determine the position and width of the main
peak and will not influence the high-energy part of the spectrum significantly.
The main peak is already well known, and is not of particular interest in this
study, and it is therefore acceptable to use previous data for this part.

The truncated basis used in this analysis will consist of four 2+ levels. The
initial guesses for the energies of the first three levels are 3.03 MeV, 16.626 MeV,
and 16.922 MeV. These levels are interpreted as physical levels, while the fourth
acts as a background level.

In Model 2 of [Hyl10], the level parameters for the doublet are calculated on
the basis of the isospin eigenstates, and the parameters are then converted into
the physical doublet level parameters using the theory presented in Section 4.1.2.
More specifically the mixing coefficients are calculated from Eq. (4.12) using
literature values for the widths [Til+04]. The Fermi-strength parameters are
calculated from Eqs. (4.16) and (4.17), and the Gamow-Teller strength for the
T = 1 state is set to zero. The Fermi-strength for the 3 MeV- and background
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Figure 4.2: Combined R-matrix to data from JYFL08 (1.5 MeV ≤ Ex ≤ 17 MeV)
and IS633 (6 MeV ≤ Ex ≤ 17 MeV). The black, green, purple and thin blue lines
are the contributions from the 3 MeV, 16.6 MeV, 16.9 MeV and 37 MeV levels
respectively. The thick blue line is the data and the red is the total R-matrix fit.

levels are also fixed to zero, because they are both predicted to be very small
[Wir+13]. The energy of the background level was fixed to 37 MeV, while the
width was scanned manually and an optimal solution was found for 126 MeV.

In this study, we have more statistics in the doublet area, which makes it
possible to fit some of these variables instead. To compare with the results
from Model 2 in [Hyl10], the same levels and channel radius are used. We also
demand that the sum of Fermi matrix elements squared equal 2, but let the
mixing coefficients be free variables. The Fermi-strengths for the 3 MeV and
background levels are likewise fixed to zero, while the energy and width of the
background level are fixed to the same values as in [Hyl10].

The resulting fit is seen in Fig. 4.2 and the corresponding fit parameters
are shown in the right column of Table 4.1. The doublet levels are lower in
energy and around 3 times wider, than the adopted levels from [Til+04] in the
left column. This is not a problem in itself, because of the transformation into
doublet parameters discussed in Section 4.1.2. Unfortunately, this transformation
has not been made due to time constraints. This is an obvious next step in the
analysis. However, the values from [Hyl10] has not been corrected either, so
this comparison is still valid. The doublet level parameters found in this fit,
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Parameter Adopted Levels JYFL08 IS633

r0 (fm) 1.35 1.35

E3 (MeV) 3.03(10) 3.054(5) 3076(2)

Γ3 (MeV) 1.513(15) 1.47(2) 1.636(4)

B3,GT 0.0102(2) 0.0107(5)

Ma+b,GT 1.84(2) 1.75(8)

Ea (MeV) 16.626(3) 16.544 16.547(2)

Γa (keV) 108.1(5) 355 325(8)

Ba,F 1.46(3)†

Ba,GT 0.70(2)

Eb (MeV) 16.922(3) 16.887 16.874(5)

Γb (keV) 74.0(4) 120 195(10)

Bb,F 0.54†

Bb,GT 1.21(8)

EB (MeV) 37.0 37∗

ΓB (MeV) 126(3) 126∗

BB,GT 0.032(6) 0.034(1)

α2
Γ 59% 74% 60%

χ2/do f . 0.97 1.58

Table 4.1: Fit parameters from R-matrix fits. All levels are 2+ and the labeling
is the following: 3 is the 3 MeV, a and b are the doublet levels and B is the
background level. Left column are adopted levels from [Til+04], and the middle
column shows the results from [Hyl10]. The right column shows results from
the analysis based on data from IS633 and JYFL08. The mixing coefficient αΓ is
calculated using the doublet widths and Eq. (4.12). Parameters indicated with a
∗ are fixed in the fit, and parameters with a † are fixed with respect to each other
so they sum to 2.
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Figure 4.3: R-matrix fit to data from IS633 and JYFL08. The plot shows that IS633
data above 14 MeV. The black, green, purple and thin blue lines are the contribu-
tions from the 3 MeV, 16.6 MeV, 16.9 MeV and 37 MeV levels respectively. The
thick blue line is the data and the red is the total R-matrix fit.

are in quite good agreement with the ones from [Hyl10] in the middle column.
The energy positions are within a few keV for the doublet levels, and the total
Gamow-Teller strength of the 2+ doublet levels is barely equal within the errors.
The widths of the doublet levels are not equal in the two fit, but they are both
very large compared to the adopted widths. This leads us to believe that this
model is mostly in agreement with the results found in [Hyl10].

Another thing worth noting, is the distribution of Fermi strength between
the 2+ doublet levels. In this fit most of the Fermi strength lies in the 16.6 MeV
level, which is the opposite of what we expect based on the widths of the levels
and Eqs. (4.16) and (4.17).

In the fit from [Hyl10] there is such little data in the doublet region, that it
is difficult to see the structure of the doublet levels. However, if we zoom in on
the high energy region on the new spectrum, something interesting appears in
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Fig. 4.3. Neither of the doublet levels have the structure of a regular level, in the
sense that they do not show a peak. Instead they both have a broad "shoulder",
and the two resulting peaks are created from interference between the levels.
This leads us to believe that the doublet levels obtained in this model are not
physical levels, but instead they act merely as an effective parametrization of the
high energy part of the spectrum.

With χ2/do f . = 1.58, this fit is significantly worse than the one made in
[Hyl10]. This could in part be due to the effect of a small energetic shift between
the two spectra. However, it seems unlikely to explain the large systematic errors
on the IS633 residuals. More likely is it that due to the low statistics, the 16.9 MeV
level in the JYFL08 data, was able to act partly as a secondary background level.
Then the role of this level is not only to account for the actual 16.9 MeV level,
but also to mask deficiencies of the model in the lower part of the spectrum.
This would explain why the fit is so bad for the IS633 data, while describing the
JYFL08 data nicely above 6 MeV. It also explains why the fit is not well centered
around the visible peak at 16.9 MeV in the IS633 data. It therefore seems likely
that the background level used in this model might not be suited to describe the
non-resonant effects in the spectrum.

4.4 Fit to 2+ doublet

The individual level contributions shown in Fig. 4.2, show that the 3 MeV level
and the background level are approximately two orders of magnitude weaker
than the doublet levels above 14 MeV. New fits are therefore made with a low-
energy cut at 14 MeV, where only the 2+ doublet levels and a background level
is included. This means that the background level will have to account for the
small contribution from the 3 MeV level, as well as the non-resonant contribution.
Like in the previous fit, the sum of the doublet Fermi matrix elements squared,
is set to 2 and the Fermi strength for the background level is fixed to zero. Four
models have been fitted, with the energy and width of the background level
fixed for each fit. The fit parameters for all four models are shown in Table 4.2.
Each of model will briefly be discussed individually in Sections 4.4.1 to 4.4.4,
and a discussion of all four models will be given in Section 4.4.5.

4.4.1 Model 1

The first model to consider, is approximately the same as in the previous section.
The background level is at 37.0 MeV with a width of 126 MeV. The fit is shown in
Fig. 4.4, where the color scheme is the same as in Fig. 4.2. Comparing with Fig. 4.3,
the residuals are more evenly distributed around zero with little systematic
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Figure 4.4: R-matrix fit of model 1 to data from IS633 above 14 MeV. The green,
purple and thin blue lines are the contributions from the 16.6 MeV, 16.9 MeV and
37 MeV levels respectively. The thick blue line is the data and the red is the total
R-matrix fit.

deviation. With χ2/do f . = 1.05, the fit is generally better, which is not surprising,
given that the model has to describe a smaller region. The Fermi strength is
switched between the levels compared to the fit in Fig. 4.2, with the 16.9 MeV
level now having the largest part. This is in agreement with the literature. The
mixing coefficient α2

BF is too large, but the large errors on Ba,F, due to very large
correlations, could explain this. The doublet Gamow-Teller strength is equal to
that from the previous fit.

Visually it is clear that the position of the 16.9 MeV level and the immedi-
ate area around 16.6 MeV is better described in the present fit than in Fig. 4.3.
However, the individual levels are still broad with no peak-like structure, which
suggests that a very broad background level at 37 MeV does not give a physical
description of the region around the 2+ doublet levels.
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Figure 4.5: R-matrix fit of model 2 to data from IS633 above 14 MeV. The green,
purple and thin blue lines are the contributions from the 16.6 MeV, 16.9 MeV and
37 MeV levels respectively. The thick blue line is the data and the red is the total
R-matrix fit.

4.4.2 Model 2

The background level used in Model 1 is extremely broad, resulting in an approx-
imately constant background contribution. For a narrow background level, the
contribution gains an energy dependency. In Model 2 the background level is
still fixed at 37 MeV, but the width is changed to 24 MeV to add more structure
to the background level. A fit to this model is shown in Fig. 4.5.

The residuals in this plot do not show any significant systematic error, and
with χ2/do f . = 1.04, the fit quality is a bit better than that of the fit to model 1.
The individual contributions of the 2+ doublet levels show a clear peak structure
that was missing in the previous model. The resulting fit parameters for the 2+

doublet levels in this fit, are more similar to the values found in Section 3.7.2.
Both of the level energies are still too low for both levels, and Γa is too large. Γb

is now too narrow compared the literature values, but is in agreement with that
of Section 3.7.2. The contribution from the background level is approximately 25
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Figure 4.6: R-matrix fit of model 3 to data from IS633 above 14 MeV. The green,
purple and thin blue lines are the contributions from the 16.6 MeV, 16.9 MeV and
37 MeV levels respectively. The thick blue line is the data and the red is the total
R-matrix fit.

times greater than in model 1. This is not surprising since the width of this level
is much smaller, which means that the strength has to be larger, to get a similar
total background contribution around 16 MeV.

The mixing coefficient based on the widths and Fermi strength are both
reduced compared to model 1, and the one based on the Fermi strength, is now
equal to the expected value of 59%. The total doublet Gamow-Teller strength is
determined much more precisely than the two individual contributions, because
of a large negative correlation between the two parameters, Ba,GT and Bb,GT. The
total Gamow-Teller strength is constant within the errors to the value found in
model 1.

4.4.3 Model 3

As a natural continuation of models 1 and 2, model 3 includes a narrow back-
ground level at 37 MeV with a width of 1.5 MeV. The fit is shown in Fig. 4.6.
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Again the Gamow-Teller strength of the background level is increased, which
is expected due to the same reason as in model 2. The positions of the 2+ dou-
blet levels are moved up towards the adopted values, and are now in good
agreement with those found in Section 3.7.2. The width of the 16.9 MeV level is
almost unchanged from model 2, while the width of the 16.6 MeV level is equal
to the adopted value within the errors. The two mixing coefficients deviate with
5% of each other, but is showing better internal consistency than the previous
models. The total doublet Gamow-Teller Strength is approximately unchanged
from model 2.

The individual contributions show that they describe the doublet levels very
well. In this model, the background level mostly contributes at lower energies.
This also why the doublet parameters are in such good agreement with the two-
level fit from Section 3.7.2. This model is therefore able to describe the spectrum
very well, with nearly no change in the physical doublet levels.

4.4.4 Model 4

In the previous three models a background level with fixed energy at 37 MeV was
chosen. This was done to test the results obtained in [Hyl10], but is not believed
to be represent a physical level. In this model we let the background level
parameters be based on physical known levels in the 8Be spectrum. There are
only three levels above 17 MeV known to decay by α− α breakup, that couples to
the 2+ ground state in 8B through allowed β-decay to their low energy tail. These
are all 2+ : 0 levels, and the first two lies at 20.1 MeV, 22.2 MeV with widths
of (880± 2) keV, ≈ 800 keV respectively. The last level lies at 25.2 MeV and the
width is not know. To model the contributions from these levels, a background
level is introduced at 22.0 MeV with a width of 900 MeV. The resulting fit is
shown in Fig. 4.7, and the parameters are shown in Table 4.2.

The doublet energies in this model are 10 keV larger than those obtained
in model 3, and are in agreement with the literature values within the errors.
However, as the fit in Section 3.7.2 suggests an error in the determination of the
excitation energy, this is most likely just a coincidence. This is further supported
by the fact, that the β strength parameters are not correct. Also, in this model
Γb is much smaller than any of the previous fits. These observations and the
increased χ2/do f suggests that this model does not give a clear description of
the doublet levels. If the non-doublet contributions were due to higher-lying
physical levels, this model should give a clear description of the physical doublet
levels. This simple check is not enough to conclude anything, but model 4 does
not suggest that the non-doublet contributions are solely due to higher-lying
physical 2+ levels.
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Parameter Model 1 Model 2 Model 3 Model 4

r0 (fm) 1.35 1.35 1.35 1.35

Ma+b,GT 1.75(2) 1.71(3) 1.72(3) 1.80(3)

Ea (MeV) 16.499(3) 16.596(2) 16.615(2) 16625(2)

Γa (keV) 632(16) 132(2) 110(2) 116(2)

Ba,F 0.63(29)† 0.82(37)† 0.85(43)† 0.26(23)†

Ba,GT 1.45(17) 1.24(23) 1.19(26) 1.84(17)

Eb (MeV) 16.864(5) 16.898(4) 16.907(4) 16918(4)

Γb (keV) 145(13) 67(6) 65(6) 45(6)

Bb,F 1.37† 1.18† 1.15† 1.74†

Bb,GT 0.45(20) 0.59(24) 0.64(25) 0.17(18)

EB (MeV) 37.0∗ 37.0∗ 37.0∗ 22.0∗

ΓB (MeV) 126∗ 24.0∗ 1.50∗ 0.90∗

BB,GT 0.0061(9) 0.14(1) 2.35(10) 0.70(4)

α2
Γ 81% 66% 63% 72%

α2
BF

69% 59% 58% 87%

χ2/do f . 1.05 1.04 1.04 1.06

Table 4.2: Fit parameters from R-matrix fits. All levels are 2+ and the labeling is
the following: a and b are the doublet levels and B is the background level. The
mixing coefficient αΓ is calculated using the doublet widths and Eq. (4.12), while
αBF is calculated using Eq. (4.17). Parameters indicated with a ∗ are fixed in the
fit, and parameters with a † are fixed with respect to each other so they sum to 2.
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Figure 4.7: R-matrix fit of model 4 to data from IS633 above 14 MeV. The green,
purple and thin blue lines are the contributions from the 16.6 MeV, 16.9 MeV and
22 MeV levels respectively. The thick blue line is the data and the red is the total
R-matrix fit.

4.4.5 Discussion

Models 1, 2 and 3 are based on the background level used in model 2 in [Hyl10]
and Section 4.3. These are used to examine the doublet levels’ dependency on
the width of the background level. The analysis shows, that the form of the
background level has a large impact on the doublet level parameters. When com-
paring three models visually, we see that the individual contributions describe
the doublet levels better, when using a narrow background level. In Model 1 the
individual contributions do not describe the peak structure at all. In model 2,
the individual contributions describe the peaks better, but the 16.6 MeV level is
still lower than the visual peak. In model 3, the doublet levels are described very
well by the individual contributions.

The fit to model 4 is an attempt to model physical levels in 8Be. The back-
ground level is narrower than the one in model 3, but it also at lower energy
only 5 MeV from the doublet. The resulting fit is a bit worse quality than those in
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models 1-3, and the β strength parameters are almost purely placed in one level,
suggesting a small mixing coefficient. This is not consistent with the widths ob-
tained in the level. It is therefore not believed that the background contributions
near the 2+ doublet is due to higher-lying physical levels.

The two-level fit in Section 3.7.2 showed that a background contribution is
needed, as evident by the bad fit quality. A good fit can be achieved with many
different models, but this analysis shows that a narrow background level is well
suited to describe the background, without changing the physical doublet pa-
rameters much. R-Matrix fits with background level widths down to 10 keV has
also been made. All doublet parameters in these fits are in excellent agreement
with those in model 3, and are therefore left out. The agreement is due to the
fact that far away from the level when (E− EB)

2 � Γ2
B/4, the exact width of

the level does not change the shape of the level much. A similar convergence is
expected when broadening the level, but was not seen.

It it shown in Section 3.4.2 in [Hyl10], that it is possible to convert the doublet
fit parameters into physical level parameters, even when using a broad back-
ground level. This is done using the transformation discussed in Section 4.1.2.
However, a model that produces close to physical levels, is an advantage when
determining the real doublet parameters, because it reduces errors associated
with the parameter transformation. We can therefore say, that a narrow back-
ground level 37 MeV is very likely to be a good candidate for obtaining precise
doublet parameters.

The total Gamow-Teller β strength is almost constant in all three models,
which seems to indicate that it is not as model dependent as some of the other
level parameters. The beta strength parameters converge towards more evenly
distributed values between the doublet levels, for a narrow background. This cor-
responds to larger isospin mixing. For internal consistency in the fit, the mixing
coefficient calculated from the Fermi strength parameters and the widths should
be equal. This is not the case in any of the three models, as the mixing coefficient
based in widths is constantly larger. The difference in mixing coefficients may
indicate that the parametrization used (Eq. (4.8)) is not optimal. Mathematically
there is no difference between the two β-decay types in Eq. (4.8). The only way
they differ, is due to the interference with the background level. This may not
be enough to differentiate between them, which is partially confirmed by the
large correlations between Ba,F, Ba,GT and Bb,GT

2. The correlations lead to large
uncertainties on the individual values but a well determined total Gamow-Teller
strength.

An way to reduce these correlations, is to use Eqs. (4.16) and (4.17) in Eq. (4.8),
to express the strengths in terms of mixing parameters and total Gamow-Teller

2Bb,F is fixed with respect to Ba,F
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strength. As one of the goals with this analysis is to measure the total dou-
blet Gamow-Teller strength, this would likely give a more definitive answer.
Also, to reduce the number of free parameters, one could use the mixing coef-
ficients from the widths to force the aforementioned internal consistency. This
re-parametrization has been attempted, but technical difficulties in ORM and
lack of time prevented it from succeeding.

4.5 Summary
In this chapter we have introduced the theoretical framework R-matrix the-
ory, used to describe nuclear resonances. This theory was used to analyze the
extracted excitation energy spectrum for 8Be, populated through β-delayed α-
decay. Previous studies have shown that the three commonly known 2+ levels
are not enough to explain the strength of the spectrum, which led to the proposal
of an intruder state in 1969. It is now most widely recognized, that the extra
contributions are instead non-resonant and due to direct decay to the continuum.

The spectrum extracted in this study, is used to compare the results found in
[Hyl10; Kir+11]. It is found that the model using a broad background level at
37 MeV, does not reproduce doublet levels that we believe are physical. There are
two primary reasons for this conclusion. The first is that the individual doublet
level contributions do not show a regular peak structure. Secondly, the 16.9 MeV
shows signs of acting like a secondary background level. This is not visible in the
JYFL08 spectrum, because there were no measured events belonging to this level.
However, in the IS633 spectrum the R-matrix fit is seen to not be well centered
around the 16.9 MeV peak. This, together with the bad fit quality suggests that
the model is not able to describe the spectrum well.

Next, the doublet levels were analyzed using models with no 3 MeV level,
and with varying background level parameters. Four different models were
treated in this analysis. In the first three, the width of the background level was
varied, while keeping the channel radius and energy constant. This led to the
observation that when using a narrow background level, the doublet parameters
converged towards the values found in the two-level fit from Section 3.7.2. This
indicates that a narrow background level is able to describe the non-doublet
contributions very well, and that the obtained doublet levels can be treated as
almost pure physical levels.

Lastly, the 2+ doublet levels were examined using a background level rep-
resenting contributions from higher-lying known 2+ states. The β strength
parameters in this model were internally inconsistent and lead us to believe that
the non-resonant contributions in the doublet region are not primarily due to
higher-lying physical 2+ states.
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Conclusion and Outlook

Using coincidence detections of the β-delayed α − α breakup of 8B, we have
measured the 8Be excitation spectrum. The primary aim of this analysis was to
measure the level at 16.922 MeV, which is part of the isospin mixed 2+ doublet
at 16 MeV in 8Be. Previously, only five counts of this level has been measured,
which happened in 2008. In the spectrum from the present study, a clear and
well-defined peak is seen, approximately centered around Ex =16.9 MeV. We
have measured 284 coincidence events belonging to this peak, which is an im-
provement by a factor of 57. The estimated energy uncertainty of the spectrum
at the 2+ doublet is 11 keV. We also see indications that the spectrum is system-
atically lower at excitation energies around the 2+ doublet. Trigger levels for the
detectors limit the analyzed spectrum to excitation energies above 6 MeV, which
prevents analysis of the broad 2+ level at 3 MeV.

Two interfering Breit-Wigner levels have been fitted to data from both 2+

doublet levels, providing peak positions and widths when neglecting contri-
butions from other levels. Also, a two-level R-matrix fit was made, showing
consistency with the Breit-Wigner fit. The two-level fit in Section 3.7.2 suggests,
that the there may still be significant systematic errors in the Ex spectrum. This
makes it difficult, if not impossible, to obtain reliable level parameters for the 2+

doublet. There are two main concerns regarding the spectrum:
The first is concerned with the systematic error in the calibration. This could

be improved by using a more sophisticated fitting algorithm. The AUSAlib
Calibrator has the option to include secondary peaks in the calibration. This
would add more data points in the linear calibration fit, and thereby maybe
improve the calibration. However, as showed in Section 3.7.2, such an error can

79
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not explain the full systematic error in the spectrum.
The second concern is the data reduction algorithm. The analysis in Sec-

tions 3.3 and 3.4 shows that the spectrum may include a significant number of
false coincidences. It would be beneficial to conduct further analyses in order to
either validate or improve the spectrum. Suggestions for this would be to make
stricter conditions on the coincidence events. In particular, one could examine
the energy dependency of the coincidence efficiency on events where particles
hit the outermost pixels. Furthermore, another way to improve confidence in the
line shape, is to add constraints on the positron. This would allow for an even
more detailed kinematic analysis and a spectrum based on triple coincidences
with two αs and a positron. However, this constraint will decrease the statistics
significantly, and add a new layer of complexity to the analysis. Furthermore,
the low energy positrons near the 2+ doublet, are likely to be lost in the noise of
the detectors.

In addition, a more detailed R-matrix analysis was conducted to compare
the excitation energy spectrum to previous measurements. It was found that a
model including a broad background level at 37 MeV results in an unphysical
description of the 2+ doublet. Variations of this model were tested in a fit using
only part of the spectrum close to the doublet and neglecting the contribution
from the 3 MeV level. This showed that a narrow background level at 37 MeV
is better suited to describe effects not belonging to the doublet, in the region
around the doublet. This results in a more direct description of the doublet
levels.

Regarding the R-matrix analysis, we have barely scratched the surface in this
study. The inability to fit to excitation energies below 6 MeV presents a severe
problem for fitting the entire spectrum, because it is so heavily dominated by the
contributions at 3 MeV. A way to circumvent this, is to use existing data together
with the new spectrum, as in Section 4.3. If one were to investigate possible
minute differences in the 2+ spectrum from different probing mechanisms, an
extremely precise determination of the entire spectrum would be needed. The
intermediate region between the doublet and the 3 MeV level is especially crucial,
as the background level is seen to have the largest relative contribution there.
The greatest challenge with combining different datasets, is therefore to ensure
a precise energy scale and normalization for the datasets, such that they are in
perfect agreement. In addition to what was shown in Section 4.3, a comparison
could be made on the 16.626 MeV level, to check for differences in the peak
position.

The R-matrix analysis on the doublet levels showed extremely large cor-
relations on the β strength parameters, which leads to a large uncertainty in
the determination of the parameters. A way to improve this, is to change the
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parametrization of Eq. (4.8) as suggested in Section 4.4.5. The hope is that such a
re-parametrization would decrease the correlations in the β strength parameters,
which would improve the determination of the precise total β strength for the
doublet levels.
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