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Abstract

In this thesis, we construct and investigate a sequential model of
three-body nuclear decays using R-matrix theory. Since R-matrix the-
ory is originally designed for two-particle channels only, we have at-
tempted to combine two R-matrix expressions to calculate an ampli-
tude for a sequence of two-body decays. The model is compared to
earlier sequential models: specifically the one by Lane & Thomas in
[8], and the one by Balamuth et al. in [5]. Also, the effects of identi-
cal particle symmetrization are investigated. The model is shown to
produce a dramatic but unphysical symmetrization effect in the case
of 9Li decays to α+α+n, and we discuss how this may be an artifact
of the completely delocalized plane waves used in the construction of
the model. A solution is proposed by considering the effects of more
localized decay fragments.
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1 Introduction

This thesis investigates nuclear β-decays followed by fragmentation into three
bodies. Schematically, we might write:

i →
β
A → a+ b+ c (1)

where i represents the initial nucleus, which β-decays to the short-lived nu-
cleus A, which then in turn breaks apart into the three fragments a, b and c.
We would like to make a model that describes this kind of process, so that
it may be used in analysis of experiments.

The (very idealized) experiment we imagine in the development of our
model of three-body decays measure the momenta of all three final state
fragments - both magnitude and direction. A stylized representation of an
experiment like this has three detectors - one measuring each of the particles.
A drawing of this idealized experiment is seen in figure 1.

Three-body problems are notoriously hard, and it is not the aim of this
thesis to present a full three-body treatment of these types of decays. Instead
we shall investigate a subset of processes: namely those that can be modeled
by sequences of two-body decays. We shall assume that one of the fragments
a, b or c splits off of the product of the β-decay (nucleus A in equation 1)
first, leaving a recoil nucleus (let’s call it B). Since this ”first fragment” has
split off before the others we label it 1:

i →
β
A → 1 +B (2)

i

a

bc

α

βγ

Figure 1: A stylized drawing of the experiment. A nucleus i decays to three
particles labeled a, b and c. Three detectors, labeled α, β and γ measure the
momenta of the three particles.
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After this two-body process the fragments 1 and B move away from each
other, before the recoil B breaks apart resulting in the remaining two frag-
ments (let’s label them 2 and 3 since they are emitted after 1):

i →
β
A → 1 +B → 1 + 2 + 3 (3)

Since we don’t observe the recoil nucleus B we don’t know which of the frag-
ments was emitted first - hence we must sum the amplitudes of the three
sequential decay paths. This sequential model allows us to adapt existing
two-body models to this special class of three-body decays, as an approxima-
tion. Specifically we shall build our model on the R-matrix theory introduced
by Wigner and Eisenbud in 1947 (see e.g. [13]).

Since some of the topics used in developing our model are not considered
a part of the standard curriculum in a Master’s Degree of physics, we shall
include some theoretical prerequisites:

� Section 2 is a brief reminder of relativistic kinematics, including some
important results for three-body decays, such as the Dalitz plot.

� Section 3 is a (very) brief discussion of the quantum mechanical three-
body problem, and it mainly serves to introduce the Jacobi coordinates,
which are ubiquitous in describing three-body systems.

� Section 4 is an overview of the general ideas and central results of
R-matrix theory needed for the development of our model.

These sections of theoretical prerequisites are followed by section 5, in which
our model is developed and presented. The results of section 3 are used to
build a description of the problem, while the results of section 4 are used to
derive an expression for the amplitude of a sequential decay. The develop-
ment of the model is of a phenomenological nature - it is not ”real theory”
build on our most fundamental understanding of reality, but instead it tries
to adapt existing theory to a broader range of phenomena, based partly on
existing models and partly on experiment. For instance, the final model
contains several parameters that must be fitted to experiment.

The motivation to develop this model comes from a couple of nuclear
processes of the form described in equation 1, that are being studied ex-
perimentally. The triple-α decay of excited states in 12C have been studied
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extensively because of its importance in understanding stellar fusion beyond
4He (see e.g. [2]). Another process is the β-decay of 9Li:

9Li →
β

9Be → α + α + n (4)

Lastly, experiments at the ISOLDE facility at CERN on the decay of 8He
resulting in α, t (triton) and n are being conducted as well. All of these
experiments would be interesting to analyze using a sequential model of 3-
body decays.

Other sequential models of three body decays have been proposed in the
past. We will focus on two notable contributions: One treatment is found in
the important review article on R-matrix theory by Lane and Thomas [8],
focusing on a simplified case of isolated levels in both decays. We show that
our model can reproduce their result in section 7, and that our work is in
fact a quite natural generalization of their approach.

The other contribution is specifically on the triple-α decay of 12C and
is found in an article by Balamuth et al. [5]. The case of 12C is special
in several ways: 1) The final fragments have 0 spin, making the angular
momentum coupling less troublesome, and 2) since the final fragments are
identical particles the amplitude must be symmetric under interchange of
any two fragments. Balamuth et al. are not very precise in this distinction
between interfering sequential decay paths and symmetrization effects due to
identical particles. In section 8 we investigate the consequences of identical
particles in our model, and in section 9 we compare the work of Balamuth
et al. to our model.

2 Kinematics of sequential three body decays

The following section is a brief reminder of the kinematics of two- and three-
body decays, as well as some specific results arising from sequential decays.
It is largely based on [7], and we use the (+,−,−,−) metric.

If a mass M at rest decays into two fragments, 1 and B say, we may
express the conservation of 4-momentum as:

(M, 0) = (E1,p1) + (EB,pB) (5)

where the notation (E,p) refers to a four momentum with energy component
E, and spatial components p. From this we may calculate the energy of
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one of the fragments, by evaluating squares of 4-momenta (remember these
are independent of the chosen frame of reference). E.g. if we isolate the
4-momentum of particle B in equation 5 we have ((M, 0) − (E1,p1))

2 =
((EB,pB))

2 = m2
B, and we can isolate the energy of particle 1:

E1 =
M2 +m2

1 −m2
B

2M
(6)

For a sequential three-body decay A → 1 + B → 1 + 2 + 3 we don’t know
the mass of the recoil fragment B, but we do know the energy. Then we
can instead calculate the mass of the recoil from the energy by inverting the
above expression:

mB =
√

M2 +m2
1 − 2ME1 (7)

For a mass M at rest decaying to three bodies the conservation of four-
momentum means that all linear momenta p1,p2,p3 lie in a plane (the vec-
tors must form a closed triangle since they sum to zero). Furthermore, with
a total of 3×3 = 9 degrees of freedom, and with four of them specified by the
conservation of four momentum, we have 9 − 4 = 5 degrees of freedom left.
These may be chosen as follows: We may specify two of the final energies,
E1, E2, since the third is then given from energy conservation. Then we may
specify the direction of the first fragment by two angles, (θ1, ϕ1) and then
the last degree of freedom will be used to specify the rotation of the plane
of momenta around the axis of the first momentum p1. If a z-axis is chosen
before the decay happens, the three angles correspond to the Euler angles
rotating the initial z-axis to p1.

Another important aspect of the three-body decay is that the conservation
of 4-momentum puts non-trivial limits on the allowed choices of the two ”free
energies”, say E1 and E3. One of the energies may be chosen freely within
certain limits. For instance, the energy of fragment 3 could be chosen between
the case where the fragment is stationary, E3 = m3, and the other case where
it has all the kinetic energy of the system: E3 = M − m1 − m2. But, the
limits on the second energy, E1, depend on this choice. To see this we change
to a new set of variables. If the four momentum of particle i is denoted by
pi, and the total four-momentum of the three particle system is denoted by
P we define the new quantity m2

ij as:

m2
ij = (pi + pj)

2 = (P − pk)
2 = M2 +m2

k − 2MEk. (8)
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m2
ij is the norm-square of the four momentum of the composite particle con-

sisting of i and j. This quantity turns out to be easier to work with, and
we note that it is linearly dependent on the energy of one of the fragments
(with a negative slope; large values of m2

12 means small values of E3 and vice
versa)1. The limits on E3 just put forth are now limits on m2

12 instead:

(m1 +m2)
2 ≤ m2

12 ≤ (M −m3)
2 (9)

and E1 is now translated to:

m2
23 = (p2 + p3)

2 = m2
2 +m2

3 + 2E2E3(1− p2 · p3/(E2E3))

The limits on this expression are seen to occur when the linear momenta
of particle 2 and 3 are parallel and antiparallel, and the exact values depend
on E3, as claimed. The limits can be calculated by changing to the system
where p1 + p2 = 0. We shall not perform the calculation here, but simply
quote the result from [7]:

(m23)max = (E∗
2 + E∗

3)
2 −

(√
E∗2

2 −m2
2 −

√
E∗2

3 −m2
3

)2

(10)

(m23)min = (E∗
2 + E∗

3)
2 −

(√
E∗2

2 −m2
2 +

√
E∗2

3 −m2
3

)2

(11)

with

E∗
2 =

m2
12 −m2

1 +m2
2

2m12

(12)

E∗
3 =

M2 −m2
12 −m2

3

2m12

(13)

Two examples of these allowed regions are plottet in figure 2.
These plots of m2

12 against m2
23 are not just interesting because of the

allowed region of energies. They have another quite interesting property.
Let us write out the partial decay rate for a three body decay dΓ as given in
[7]:

dΓ =
1

(2π)5
1

16M
|M|2dE1dE3dαd(cos(β))dγ (14)

1This is not surprising; the more four-momentum the composite fragment of i and j
have, the less is left for the last fragment k.
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Figure 2: Two examples of the allowed regions of m2
ij, corresponding to

allowed regions of energies of two of the fragments. The plot on the left
corresponds to equal masses m3 (the horizontal axis) and m1 (the vertical
axis) and gives a symmetric region, while the plot on the right has m1 = 2m3

resulting in an asymmetric region. When events are plotted on axes like
these the resulting plot is called a Dalitz plot.

where α, β and γ represent the Euler angles, and M is the matrix element
of the process. If we average over the spin states of the decaying particle,
there are no preferred Euler angles (the partial rate is independent of the
orientation of the plane of linear momenta when the initial state has full
rotation symmetry) and the integration over them becomes trivial. We get:

dΓ =
1

(2π)3
1

8M
|M|2dE1dE3 =

1

(2π)3
1

32M3
|M|2dm2

12dm
2
23 (15)

where the last equality follows from the definition of m2
ij. This means that

if the matrix element M does not depend on the energies of the fragments
(the point in the allowed region), we will see a uniform distribution of events
over the entire region - in other words: any structure in the plot must be
structure in the matrix element. This kind of plot is called a Dalitz plot after
R. H. Dalitz who introduced this technique for studying matrix elements in
three-body processes.

It is also worth mentioning that for a given choice of m2
12 - i.e. a given

vertical line in the Dalitz plot - the different values of m2
23 correspond to

different angles between the two fragments 3 and 1. That is, the Dalitz plot
contain information on the angular correlation between fragments.
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3 Three-body quantum mechanics

Since we will be dealing a whole lot with three particles, we will briefly sketch
some fundamental three-body quantum mechanics to familiarize the reader
with central concepts and notation.

Let us consider three particles a, b and c, with masses ma, mb and mc.
Their positions are described by vectors ra, rb and rc respectively (see figure
3 on the left), with corresponding momenta pa, pb and pc. They interact
with each other through a potential V (ra, rb, rc). The Hamiltonian of this
system is:

H =
p2
a

2ma

+
p2
b

2mb

+
p2
c

2mc

+ V (ra, rb, rc) (16)

We remind the reader that in the quantum mechanical two-body problem the
next step would be to perform a coordinate transformation that separates the
center of mass movement from the relative movement of the two particles.
A similar thing can be done here. However, in the two-body problem the
coordinate transformation effectively leaves us with a single particle described
by the relative coordinate and the reduced mass. This is not the case in the
three-body system as is evident from a quick count of the degrees of freedom:
3 × 3 = 9 total, and reserving 3 for the center of mass we are left with 6
internal degrees of freedom - or two relative position vectors. Furthermore; in
the two-body problem the choice of relative position vector is fairly obvious
and almost unambiguous (the only choice we have to make is the direction
of the relative position vector), while there are several equally good options
for choosing the relative position vectors in the three-body problem, as we
shall see shortly.

The usual approach is to define a subsystem of two of the particles within
the three-body system. Let us call this subsystem B. Then we can describe
the lone particle relative to the subsystem (effectively a two-body system),
and the two particles in the subsystem relative to each other (another two
body system). Let us write out the coordinates if we (arbitrarily) choose the
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a
b

c
ra

rb

rc

a
b

c

B

rbc
raB

R

Figure 3: The coordinates where all positions are tracked relative to the
origin are shown on the left, the relative coordinates of equations 17, 18 and
the center of mass coordinate in equation 19 are shown on the right. The
coordinates on the right is one possible set of coordinates. We might as well
have chosen the subsystem B to consist of particles a and c, giving us two
new relative position vectors, or any other permutation of abc in equations
17 and 18.

subsystem B to consist of particles b and c:

rbc = rb − rc (17)

raB = ra −
mbrb +mcrc
mb +mc

≡ ra − rB (18)

R =
mara +mbrb +mcrc

ma +mb +mc

(19)

Here rbc is the relative coordinate of the two particles b and c, rB is the center
of mass coordinate of the b + c subsystem, raB is the relative coordinate of
particle a and the subsystem B, and R is the center of mass coordinate of
the entire three-body system [12]. These coordinates are often referred to as
Jacobi coordinates. They are plotted on the right in figure 3. To progress
further we must find the canonical momenta so that we can write out our
Hamiltonian in our new Jacobi coordinates. We shall simply state the result
here referring to [12]:

pbc = µbc (pb/mb − pc/mc) (20)

paB = µaB (pa/ma − pB/mB) (21)

P = pa + pb + pc (22)
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where µbc =
mbmc

mb+mc
is the reduced mass of particles b and c (and analogously

for µaB), pB = pb + pc is the momentum of the subsystem B (consisting of
b + c), and mB = mb + mc is the mass of the subsystem B (still b + c in
this case). Inverting these momentum relations and inserting them in the
Hamiltonian (equation 16) one can show that [12]:

H =
P2

2(ma +mb +mc)
+

p2
bc

2µbc

+
p2
aB

2µaB

+ V (R, raB, rbc) (23)

Assuming that the potential does not depend on the total center of mass
coordinate, we see that the center-of-mass motion separates from the internal
coordinates, as in the two-body case.

Of course the choice of particle a as the lone particle and b + c as the
subsystem is completely arbitrary, and we might as well have chosen any
permutation of a, b and c in equations (17-22) to obtain a valid separable
Hamiltonian. In fact, a certain choice of coordinate transformation might
make specific calculations easier: for instance if we want to calculate an am-
plitude where particle a breaks off leaving the remaining two particles b and
c in a (temporarily) bound system, the coordinates appearing in equations
(17-22) would be much better than any other set because the subsystem
appears explicitly in these coordinates.

A complete solution of the quantummechanical three-body problem would
then proceed from here: in the case of scattering one might write out integral
equations for the scattering states (analogous to the Lippmann-Schwinger
equation), or in other ways try to generalize the methods of two-body scat-
tering (see [12] for a detailed discussion). However, we shall not attempt a
complete three-body treatment - instead we shall investigate the possibility
of sequential two-body processes in this thesis and so we stop our discussion
of the quantum mechanical three-body problem here.

4 A brief introduction to R-matrix theory

The theory development in this thesis builds on the R-matrix framework by
Wigner and Eisenbud. To increase the readability of the thesis we shall give
a brief introduction to R-matrix theory, based on chapter 16 in [10] and the
seminal review article on R-matrix theory by Lane and Thomas [8]. The
following section is by no means a complete development of the theory - it is
merely a summary containing the most important features, and most results
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Sc

Xλ

ac
Fc, Gc

Figure 4: An illustration of the two regions of physical space in R-matrix
theory. The circle represents the surface of the division, the channel surface
Sc. It has a radius ac, and inside of this circle the Schrödinger equation
contains nuclear forces and has solutions Xλ. Outside this region, the two
particles are too far away from each other for the short-range nuclear forces,
and the solutions to the Schrödinger equation in this region are the Coulomb
wave functions Fc and Gc.

are simply stated, and not derived. The interested reader is referred to the
review article [8] for further details.

4.1 The broad picture of R-matrix theory

R-matrix theory is designed to calculate amplitudes of reactions and scat-
tering experiments where two nuclei 1 + 2 enter in a channel c, interact, and
continue out as two (possibly) different nuclei 3 + 4 in a (possibly) different
channel c′. In bra-ket notation, we could imagine coupling these different
channels through an operator T :

Ac′,c = ⟨c′|T |c⟩. (24)

The R-matrix approach to calculating this amplitude is to split physical space
into two distinct regions: one where the nuclei do not interact (other than
through Coulomb forces), and one where they do. This split of the region
is purely a theoretical trick. As R-matrix theory is formulated in terms of
wave functions, the consequence of this split is that we solve the Schrödinger
equation in two separate domains: The outside region beyond the range of
nuclear forces, and the inside region where nuclear forces are present. See
figure 4 for an illustration.

The outer region where no nuclear forces are present is simply a two-
body Coulomb problem - a problem that has been solved, with solutions in
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the form of Coulomb wave functions F (the one regular at the origin) and
G (the irregular one) for a continuum of energies E. These solutions are of
course wave functions in the relative coordinate between the two particles.
The known solutions to this problem is one of the reasons we perform the
split of physical space. We shall use the following notation for the Coulomb
wave functions:

Fl(kr, η), Gl(kr, η). (25)

I.e. the Coulomb functions depend on the relative orbital angular momen-
tum between the two fragments, l, and the Sommerfeld parameter η =
αZ1Z2

√
µc2/2K, where α is the fine structure constant, Zi are the nuclear

charge numbers of the two nuclei, µ is the reduced mass of the two nuclei, c is
the speed of light, and K is the kinetic energy of the two nuclei. Their argu-
ment is the dimensionless distance k ·r which is a product of the wavenumber
k and the radial distance r. The wavenumber is related to the kinetic energy
(for positive energy channels) as:

k =

√
2µK

h̄
. (26)

The regular and irregular solutions are combined to form incoming (Ic) and
outgoing (Oc) wave functions for all channels c:

Ic = (Gc − iFc) e
iωc (27)

Oc = (Gc + iFc) e
−iωc (28)

where ωc is the Coulomb phase shift, given by:

ωc =
l∑

n=1

arctan
ηc
n
, ωc = 0 for l = 0. (29)

The total external wave function of the scattering problem can be written as
a superposition of Ic and Oc for all channels c:

Ψ =
∑
c

(xcOc + ycIc). (30)

Solving the scattering problem comes down to relating the coefficients of the
incoming waves (i.e. the incoming channels which we control in an experi-
ment), to the coefficients of the outgoing waves (i.e. the outgoing channels
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we measure as the result of the experiment). A collision matrix U contain-
ing this relation between the incoming and outgoing coefficients is defined
implicitly by the following relation:

xc = −
∑
c′

Uc,c′yc′ . (31)

The collision matrix must of course depend on the physics in the inner re-
gion where the scattering actually happens. Here nuclear forces enter the
Schrödinger equation resulting in an unsolvable problem (at least for most
nuclei). The beauty of R-matrix theory is that instead of solving the internal
nuclear problem (which generally we can’t), we attempt to work out as much
of the energy dependence as we can without explicit reference to the details
of the inner system, leaving us with a few energy independent parameters
that can be fitted to experiment. Let us elaborate on the specifics.

The introduction of a boundary on the inner region means we know there
is a set of discrete states2. These states are called the internal levels λ (with
wave functions Xλ), with energies Eλ. In principle an infinite number of
internal levels should be used, but in practice this is luckily not necessary
because only the levels close to the specific energy contribute. A channel (i.e.
a solution in the outer region) can couple into the internal levels ”through”
the boundary surface. The interaction radius might depend on the channel,
hence each channel has its own boundary surface defined by the channel
radius ac. The channel radii ac can be chosen freely as long as they are
larger than the range of the nuclear potentials - otherwise the outside region
would not be a Coulomb problem. The division of physical space is somewhat
artificial, and most quantities within the theory depend on the exact value
of this channel radius, but their dependence cancel out in the end leaving
observable quantities (such as cross-sections) independent of this (somewhat)
arbitrary choice. For example, the evaluation of the (outer) Coulomb wave
funtions on the channel surface depend on the channel radius ac. Echoing
the notation in equation 24 where c and c′ refer to external states (channels),
the strategy of R-matrix theory is to represent the coupling between channels
not through an operator T , but instead through the set of internal states λ:

Ac′,c =
∑
λ

⟨c′|λ⟩⟨λ|c⟩ (32)

2The matching procedure on the boundary surface puts restrictions on the eigenvalues,
as is seen e.g. in the infinite square well, making the spectrum discrete.
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We must stress that equation 32 is dangerous in its simplicity. The channel
wave functions and the internal wave functions are not defined in the same
domain, and the bra-ket notation hides this very important fact. Hence, this
expressions is only included to guide the intuition of the reader, and it is not
to be understood as a rigorous result or definition.

To solve the scattering problem we must match the internal wave func-
tions to the external wave functions. This is usually done by matching the
logarithmic derivatives, since this matching ensures that both the wave func-
tion and its derivative is continuous across the boundary surface. Since we
do not know the internal wave functions we parametrize their logarithmic
derivatives and their value on the surface. Specifically, the value of the wave
function on the surface is denoted by γλ,c, and is referred to as the reduced
width. More precisely the value of the internal wave function on the surface
S, called γλ,c, can be expressed as the overlap between the internal state λ
(with wave function Xλ), and the external channel c (with ”surface wave
function”3 ϕc) on the boundary surface:

γλ,c =
h̄√
2µcac

∫
ϕcXλdS (33)

This integral representation of the value of Xλ on the surface is not obvious,
and we encourage the reader to remember that the reduced width γλ,c is the
value of the internal wave function on the surface.

The value of the logarithmic derivative of the internal state wave func-
tion Xλ on the channel surface of channel c is defined as a parameter Bc.
This definition locks the value of the actual derivative of the internal wave
function on the surface (usually called δλ,c). Bc must be the same for all
internal levels4. Just like the channel radius ac could be chosen freely (but
not too small), so we can choose the value of the logarithmic derivative on
the surface freely for each channel. Of course, the values of quantities inside
the theory depend on this choice, but the dependencies cancel out exactly in

3The quantity is the non-radial part of the channel wave function. For a rigorous
mathematical definition we refer to [8], page 270

4To solve the Schrödinger equation we must choose a boundary condition, and for
any choice of boundary condition we get the whole set of internal levels. It is then not
surprising that all internal levels must share the same boundary condition. And, since
the different channels don’t define the same inner regions (the channel radii are not all
the same) it is also not surprising that the different channels can have different boundary
conditions.
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the expressions for measurable quantities. The logarithmic derivatives of the
external (channel) wave functions pose no problem, as these wave functions
are known.

4.2 Collision matrix

The collision matrix U must of course depend on the inner region. It turns out
that the combination of reduced widths γλ,c, boundary condition parameters
Bc and channel radii ac along with the energies Eλ are in fact sufficient to
determine the collision matrix unambiguously. The collision matrix can be
expressed explicitly in terms of these quantities. We shall not derive such an
expression here, but simply state one particular form suited for our purposes
(see [6] eq. 2.43):

Uc′,c = Ωc′Ωc

[
δc′,c + 2iP

1/2
c′ P 1/2

c

∑
λ,µ

γc′,λAλ,µγµ,c

]
. (34)

Here the matrix Aλ,µ is called the level matrix. It is a symmetric matrix in
the internal levels, and it can be calculated from its inverse:

(A−1)λ,µ = δλ,µ × (Eλ − E)−
∑
c

γλ,cγµ,c(Sc −Bc + iPc) (35)

where Sc is called the shift function and Pc is called the penetrability5. They
are given in terms of the Coulomb wave functions by (dots denote differen-
tiation with respect to the dimensionless argument):

Sc = kcac
FcḞc +GcĠc

F 2
c +G2

c

(36)

Pc =
kcac

F 2
c +G2

c

(37)

The Ω’s are phases containing contributions from the introduction of a chan-
nel radius (the so-called ”hard sphere scattering phase shift”) as well as from
Coulomb scattering. It can be calculated as:

Ωc = exp (i(ωc − ϕc)) (38)

5They are in fact the real and imaginary parts of the logarithmic derivate of the external
channel wave function.
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where ωc is the Coulomb phase shift we already met in the expression for
the incoming and outgoing waves, and ϕc is the hard sphere scattering phase
shift given by:

ϕc = arctan
Fc

Gc

(39)

R-matrix theory has at this point parametrized the collision matrix in
terms of the internal energies Eλ, the overlap integrals γλ,c, the boundary
condition parameter Bc and the channel radius ac. The former two quantities
are not known, and must be either calculated or inferred from experiment6,
the latter two are essentially chosen freely - however it is (usually) most
convenient to choose the radius and boundary condition as follows:

ac = r0

(
A

1/3
1 + A

1/3
2

)
(40)

Bc = Sc(E = Eλ0) (41)

where Eλ0 is the lowest eigen-energy of the internal states and r0 is a distance
scale. It is often chosen as ∼ 1.5 fm. Since Eλ and γλ,c must be fitted from
experiment the model can not make predictions ”on its own” - but it does
put constraints on the energy dependence of the cross section, and this can
be tested through a fit to experiment.

For our purposes it is useful to rewrite equation 34 as a matrix equation
in the following way (ignoring the extra diagonal contribution, which is okay
in our case, since we will not investigate processes that end in the initial
state):

U = iΩf

√
2Pfγf,λAγλ,iΩi

√
2Pi (42)

Please note that the reduced widths γ appearing in this equation are matrices
- their indices don’t refer to entries, but to the fact that they couple different
sets of states: e.g. the reduced width matrix γf,λ couple the set of states λ
and the set of final states f .

At this point we shall include a comment on the interpretation of the
collision matrix expression: the right most part γiΩi

√
2Pi is a coupling from

the initial states to the internal R-matrix levels, containing a phase change
Ω, a penetrability P and an overlap integral γ. Then the level matrix A

6Note that both the energies and overlap integrals in the theory depend on the par-
ticular choice of boundary condition parameter Bc and channel radius ac, because the
observed energies and widths depend on all four parameters.
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mixes the internal states (corresponding essentially to a broadening of these
states, since they couple to states in the continuum), followed by a coupling
from the internal states to the final states Ωf

√
2Pfγf .

It still remains to relate the collision matrix to the amplitude. In gen-
eral the relation between the collision matrix and the amplitude is compli-
cated in R-matrix theory. However, in our specific case the relation is quite
simple. We would like to calculate the R-matrix amplitude between states
i = (Si,mSi

) and c = (S1,mS1 , S2,mS2 , l,ml), where the states i populate the
internal levels λ = (Sλ,mSλ

) through a Gamow-Teller dominated β-decay. In
the special case we have here, where the initial channel is a single particle
channel, and where the final channel is a state of definite angular momentum
l,ml we have:

Ac,i = −i
√
πUc,i (43)

Since the initial state is a single particle state populating the λ-states via a
β-decay we omit the ki appearing in [8]. This result follows from [8], chapter
VIII, equation 1.10, when our specific case is considered. We will not show
it here.

This concludes the discussion of standard R-matrix theory. The rest of
this section introduces some extensions that are necessary in the development
of our model.

4.3 R-matrix formalism for β-decays

Since our initial state is not a two particle state it is not treatable in the
standard formulation of R-matrix theory. Luckily the theory can be gener-
alized to include this case. We shall not derive this here, but simply quote
the result from [6], page 21, which is based on the photon-channel section
in chapter XIII in [8]. The relevant substitution is in the coupling from the
initial state to the internal states:

γA,iΩi

√
2Pi →

√
fgA,i (44)

where f is the integrated Fermi-function (a phase space factor), and gA,i is
the β-strength from the initial state to the internal states [6].

The collision matrix for a process initiated by a β-decay is given in [6] on
page 22 as:

Uc,i = Ωc

√
2Pc

∑
λ,λ′

γc,λAλ,λ′gλ′,i

√
f (45)
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In matrix notation, writing out the collision matrix as a vector in final chan-
nels c:

U⃗c,i = Ωc

√
2Pcγc,λAg⃗i

√
f (46)

where γc,λ is now understood to be a matrix. This is analogous to the ex-
pression in equation 42.

It is worth noting that for scattering and reaction experiments we are in-
terested in the cross-section, while for decays we want to calculate a rate. The
substitution above almost corrects this automatically, except for a normal-
ization constant as described in [6], p. 22. We shall not delve into this here
because it amounts to a scaling and does not alter the energy dependence,
but note that the procedure is necessary to obtain the correct rate.

4.4 Treatment of unbound fragments

We remind the reader that we aim to apply the R-matrix theory to processes
like:

i →
β
A → 1 +B (47)

where the fragment B then subsequently decays to fragments 2 and 3. We
also remind the reader that the internal energies Eλ and the reduced widths
γλ,c - parameters in the theory - are determined from fits to experimental
data.

There is a very important issue in this decay that must be treated: The
fragment B is not a stable fragment - it decays, and so it is not trivially
treated in R-matrix theory. In essence, the mass of B (mB) is not locked
to something specific, but can vary appreciably if the states of B are not
very narrow. This results in a continuum of final channels for the first frag-
mentation. This is not a theoretical problem, as shown in [8] chapter XIII,
section 2, but it is indeed a practical one: whereas before we had a countable
number of couplings γ between external and internal states, each coupling is
now a continuous function of the mass of fragment B. Since these couplings
are not calculated, but instead are taken from experiments, this makes the
theory useless. Let us elaborate on the issue and see how it may be solved.
Though the mass of the recoil B is fully determined by the final state (as
shown in section 2), we have to acknowledge that the coupling γ1B,A and the
phase and penetrabililty all depend on the mass of the recoil:

Ui,1+B = iΩ1B,mB

√
2P1B,mB

γ1B,A(mB)A
√
fβgA,i (48)
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Also, we must include an integral overmB in the definition of the level matrix
A, so that we indeed sum / integrate over all outgoing channels:

(A−1)i,j = δi,j × (Ei−E)−
∑
c

∫
dmBγi,c(mB)γj,c(mB)(Sc−Bc+ iPc) (49)

Here of course, the shift functions, boundary conditions and penetrabilities
also depend on the mass of mB. We want to eliminate the dependence on
mB in the expression for the level matrix. To do so, let us examine where
exactly mB enters the expression for Sc, Bc and Pc. Remember that the shift
function is given in terms of the Coulomb wave functions (see equation 36):

Sc = kcac
FcḞc +GcĠc

F 2
c +G2

c

Here, k is the wavenumber of the channel (it depends on the kinetic energy),
and F and G are the Coulomb wave functions (they also depend on the
kinetic energy of the channel) evaluated at the channel radius ac. So, the
shift function is a function of the kinetic energy in the channel:

Sc = Sc(Kc), Kc = mA −m1 −mB (50)

We want to eliminate the dependence on mB: we can try to eliminate this
dependency by integrating. Let us define a mean shift function S̄c:

S̄c(mA) ≡
∫

dmBSc(mA −m1 −mB)ρc(mB) (51)

Note that m1 is suppressed on the left hand side, as this is simply a constant.
The symbol ρc(mB) is the shape of the B-state accessed in the channel c. It is
included as a weight in the integral. Though it is not known7, a first approx-
imation might be to use a Breit-Wigner shape with experimental position
and width - parameters related to the internal energies Eλ and the reduced
widths γλ,c that we already need in our model:

ρc(mB) =
1

2π

Γc

|E0
c −mB + iΓc/2|2

(52)

7The shape of the level is one of the things we hope to describe using our model.
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Inspired by this ”trick”, we might attempt removing the integral in the ex-
pression for the level matrix as well: We propose the following approximation
for the γ’s:

γi,c(mB) ≈ γ̄i,c
√

ρc(mB) (53)

The intuition for the approximation is this: The further from the resonance
the outgoing channel is, the smaller the wave function - hence also a smaller
overlap integral on the surface. The Breit-Wigner shape is normalized such
that the integral over equation 53 gives the averaged reduced width γ̄i,c.
Using this expression in the level matrix formula we get:

(A−1)i,j = δi,j × (Ei − E)−
∑
c

γ̄i,cγ̄j,c(S̄c −Bc + iP̄c) (54)

where P̄c is defined completely analogously to S̄c. The boundary condition
parameter can now also be defined (without any relation to mb) as:

Bc = S̄c(mA = m0
A) (55)

where m0
A refers to the position of the lowest resonance in A. This method is

inspired by the discussion in [6], but expands the intuition for the definition
of the mean shift and penetrability.

We also must discuss the mass dependent couplings γ1B,A(mB) appearing
directly in the amplitude. We can not simply use equation 53 because it
includes the fragmentation of the recoil fragment B (the fragmentation is
what produces the width), and we will describe that part of the process
separately. Instead we use the averaged reduced widths γ̄1B,A.

4.5 Conservation of angular momentum

We shall include a comment on the appearence of angular momentum cou-
pling coefficients in the theory. The coupling coefficients must of course ap-
pear somewhere to ensure conservation of angular momentum. Some choose
to include these couplings in the link between the amplitude and the collision-
matrix (e.g. [8]), but we shall instead contain them in the reduced widths
γc,λ and gλ,i. That is, in our formulation the reduced widths contain angular
momentum coupling coefficients such as:

γc,λ ∝ ⟨S1,mS1 , S2,mS2 , l,ml|Sλ,mSλ
⟩ (56)
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where S1 and S2 refer to intrinsic spins of the two channel fragments, l refer
to the relative orbital angular momentum in the channel, and Sλ refer to
the intrinsic spin of the internal state λ. This means that even though we
work in a basis of all the spin-projection substates we do not have freedom to
fit independent reduced widths between all of these as many of the reduced
widths are related to one another through angular momentum coupling rules.
These couplings are not just Clebsch-Gordan coefficients since we couple three
angular momenta (S1, S2 and l) to one. However, they can be calculated. We
shall demonstrate with a more general example. We would like to calculate
products of the form:

⟨S1,m1;S2,m2; l,ml|Si,mi⟩ (57)

We begin by coupling S⃗1 + S⃗2 = S⃗ by inserting a resolution of identity:

S1+S2∑
S=|S1−S2|

⟨S1,m1;S2,m2; l,ml|S,m1+m2; l,ml⟩⟨S,m1+m2; l,ml|Si,mi⟩ (58)

We have explicitly used the conservation of angular momentum projection,
removing the sum over mS. We split out the l,ml part from the first factor,
leaving a Clebsch-Gordan coefficient:∑

S

⟨S1,m1;S2,m2|S,m1 +m2⟩⟨S,m1 +m2; l,ml|Si,mi⟩ (59)

We recognize the second factor as another Clebsch-Gordan coefficient, cou-
pling S⃗ + l⃗ = S⃗i. Hence, we conclude mi = m1 + m2 + ml. In total, we
define:

T1+2+l→i(S1,m1;S2,m2; l,ml;Si,mi) = δm1+m2+ml,mi

×
∑
S

⟨S1,m1;S2,m2|S,m1 +m2⟩⟨S,m1 +m2; l,ml|Si,mi⟩ (60)

This sum over products of Clebsch-Gordan coefficients is included in the
reduced widths. The observant reader may have noticed that this section is
closely related to Racah’s W -coefficients, or Wigner’s 6j-symbols. Both the
W -coefficients and the 6j-symbols deal with angular momentum recoupling:
they convert between bases with different orders of coupling [14]. We chose to
couple the two intrinsic spins first, and then the orbital angular momentum,
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and the work of Racah and Wigner allows to relate these coefficients to those
where we couple one of the intrinsic spins to the orbital angular momentum
first, and then couple the sum to the other intrinsic spin. We don’t need
these recoupling coefficients (the 6j and the W ) in the development of our
model.

5 Calculating the rate

Armed with an understanding of three-body quantum mechanics and R-
matrix theory we shall now delve into the problem at hand: We want to
calculate the rate of a process where a nucleus i β-decays to a nucleus A,
which then decays to three fragments a, b and c. Schematically:

i →
β
A → a+ b+ c (61)

If the initial nucleus has spin Si and the final fragments have spins Sa, Sb, Sc

we may write:

d3w

dΩadΩbdΩc

=
1

2Si + 1

∑
mSi

,mSa ,mSb
,mSc

|AmSi
,mSa ,mSb

,mSc
|2 (62)

for an unpolarized initial state, and unpolarized measurements of the final
fragments, when AmSi

,mSa ,mSb
,mSc

is the total amplitude of the process with a

given set of spin projections8. We shall imagine that the final fragments are
detected by momentum measurements pa,pb,pc

9, and hence the amplitude
is a function of these momenta - both their magnitude and direction.

Three-body problems are very hard, and so we shall try to treat this
problem as a sequence of two two-body processes instead. Specifically, we
imagine that one fragment (either a, b or c) breaks off first leaving a recoil
B (that is not measured), which then subsequently breaks apart into the
remaining fragments. Schematically:

i →
β
A → 1 +B → 1 + 2 + 3. (63)

8The observant reader may notice that the expression on the right has no unit, while the
expression on the left clearly do. This is related to the normalization constant mentioned
in section 4.3.

9There is no such thing as a ”momentum detector” - in a real experiment the energy
would be measured in a specific point. Then, the momentum is reconstructed from the
energy, the point of measurement and the (known) point of the source.
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Figure 5: A diagram of the sequential process. A state of the nucleus i β-
decays to a set of states of the nucleus A. Nucleus A breaks up into two
fragments 1 and B, and then at last B breaks up into the remaining two
fragments 2 and 3. The total process is modelled as a sequence of two-body
fragmentations.

It is important that the second fragmentation happens after the first fragment
is sufficiently far away for it to not affect the second fragmentation in any way.
Otherwise the process would not be sequential and a two-body treatment of
the second decay would not be justified.

This sequential model of the total process is illustrated in figure 5. Note
that the recoil nucleus B may change depending on which fragment is emitted
first. Since we do not measure which fragment breaks off first we must
sum over all processes. That is, we decompose the final state into three
parts. Each part is described in the appropriate set of Jacobi coordinates as
described in section 3 (see figure 6), e.g. the sequence where a is emitted first
is described in the coordinates where the subsystem consists of b and c and
so forth. We remind the reader that the canonical momenta of the Jacobi
coordinates are given by:

p1 = µa,B(pa/ma − pB/mB), p23 = µb,c(pb/mb − pc/mc),

µb,c =
mbmc

mb +mc

(64)

where the notation has been slightly changed compared to section 3 to em-
phasize that p1 describes the first fragment. We mentioned earlier that any
permutation of the three fragments could be used (we may switch a,b and c
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Figure 6: The three different sets of Jacobi coordinates, corresponding nicely
to the three different sequences of break-ups. Note that the scaling of the
momentum vectors is not indicated in this drawing, only the direction.

in equation 64), but we shall only include three here: (a, b, c), (b, c, a), (c, a, b)
- i.e. all cyclic permutations. We do so following [9]. Note that the acyclic
permutations are almost identical to the cyclic ones - they only differ in the
direction of the relative coordinate of the two fragments in the quasi-bound
system, and so describe the same physics, but in a slightly different way10.
We also remind the reader that here B is the recoil, i.e. the quasi-bound
state of fragments 2 + 3, and mB refers to the rest energy of the recoil. The
reduced mass of a and the recoil B is not written out explicitly, but is defined
in analogy with µb,c.

Armed with this description we shall write out the total amplitude (for
given projections of initial and final states) as a sum over the three sequential
contributions, which we call the sequential amplitudes A1:

AmSi
,mSa ,mSb

,mSc
=

∑
1=a,b,c

⟨p1,p23,mS1 ,mS2 ,mS3|mSi
⟩ ≡

∑
1=a,b,c

A1 (65)

If we suppress the initial and final state spin projections in our notation (and
use shorthand notation dΩ = ΠjdΩj), we may express the differential rate as

10The same issue arises in the two-body problem: consider for example the hydrogen
atom, where an electron and a proton orbit. Should we choose the relative coordinate as
going from the proton to the electron or vice versa? We can of course do either, but one is
sufficient. Since we include three different contributions in the three-body version we must
take care to be internally consistent (the amplitudes may depend on the direction of the
relative coordinate of the subsystem), and we can not choose any three sets of coordinates.
It turns out that whichever one we choose first, the following two must be chosen as the
cyclic permutations. See [9], bottom of page 380.
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a function of the sequential amplitudes:

dw

dΩ
=

1

2Si + 1

∑
mSi

,mSa ,mSb
,mSc

|A|2 = 1

2Si + 1

∑
mSi

,mSa ,mSb
,mSc

∣∣∣∣∣ ∑
1=a,b,c

A1

∣∣∣∣∣
2

(66)
Our task is now to calculate the sequential amplitude, A1.

5.1 Sequential Amplitude

We want to calculate the sequential amplitude of going from a state i, via our
sequential process (represented by an operator T ), to a three-particle final
state of definite linear momentum (a plane wave state):

A1 = ⟨p1,p23|T |i⟩. (67)

Here the spin projections of the initial state and final fragments are implicit,
to not overload the notation. We know the process goes through a β-decay
to states in a nucleus A; hence we shall represent the operator T as set of
states of this nucleus, in analogy with equation 32. Let us characterize these
states by their spin-parity Sπ

A and their spin projection mSA
, and name the

collection of these two quantum numbers λ = (Sπ
A,mSA

). We write:

A1 =
∑
λ

⟨p1,p23|λ⟩⟨λ|i⟩ (68)

Since we are going to model this process sequentially, we now introduce
another set of states: namely a set of states of the first fragment 1, and the
recoil nucleus B, that we don’t measure directly in the experiment. These
states contain relative degrees of freedom: orbital angular momentum l and
its projection ml; as well as internal degrees of freedom of the recoil nucleus
B: Sπ

B,mSB
. Collectively we shall name these four quantum numbers as

µ = (l,ml, S
π
B,mSB

). We write:

A1 =
∑
λ,µ

⟨p1,p23|µ⟩⟨µ|λ⟩⟨λ|i⟩ (69)

Now we examine the matrix element ⟨p1,p23|µ⟩ more closely:

⟨p1,p23|µ⟩ = ⟨p1,p23|l,ml, S
π
B,mSB

⟩ (70)
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Assuming the final state fragments do not interact we may split the final state
into a product state: ⟨p1,p23| = ⟨p1|⟨p23|. Now, the product in equation 70
represents the decay of the recoil fragment B into the fragments 2 + 3, and
in our sequential model we assume this process to happen only when the
first fragment is far away; hence we may also split the state |l,ml, S

π
B,mSB

⟩
appearing here into a product state: |l,ml, S

π
B,mSB

⟩ = |l,ml⟩|Sπ
B,mSB

⟩. We
may now write:

⟨p1,p23|µ⟩ = ⟨p1|l,ml⟩⟨p23|Sπ
B,mSB

⟩ (71)

Now, the first matrix element is often seen in scattering theory; see e.g. [11]
p. 392. It can be calculated using a spherical harmonic:

⟨p1|l,ml⟩ =
h̄√

µ1,Bk1
Y ml
l (p̂1), h̄k1 = |p1| (72)

The other matrix element demands a little more attention: We insert a basis
of spherical waves |l2,ml2⟩ in the relative coordinates of the fragments 2 and
3:

⟨p23|Sπ
B,mSB

⟩ =
∑
l2,ml2

⟨p23|l2,ml2⟩⟨l2,ml2|Sπ
B,mSB

⟩ (73)

and note that the first matrix element (from the left) appearing here is famil-
iar: it is also a spherical harmonic. The second matrix element represents the
coupling from a state of the recoil nucleus B to a state of 2 + 3 with definite
angular momentum. We shall treat this coupling in the center-of-mass sys-
tem of the recoil nucleus, and hence the orbital angular momentum will also
be evaluated in this system. For completeness, the momentum p23 should
also be transformed to this system via a Lorentz transformation (since it is
used in calculations in this system). However, unless we are dealing with
relativistic energies the relative momentum p23 is in a sense already in the
recoil center of mass system.

Instead of equation 70 we now have:

⟨p1,p23|µ⟩ =
∑
l2,ml2

h̄√
µ1,Bk1

Y ml
l (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)⟨l2,ml2|Sπ
B,mSB

⟩

(74)
Now, we propose something that might seem slightly odd. We would like to
perform the same calculation again, but slightly different. Let us insert a

25



larger basis |l′,ml′ , l2,ml2⟩ where l′ refers to the orbital angular momentum
of 1 and B, and l2 still refers to the orbital angular momentum of 2 and 3
instead of the one we just used:

⟨p1,p23|µ⟩ =
∑

l′,ml′ ,l2,
′ml2

⟨p1,p23|l′,ml′ , l2,
′ml2⟩⟨l′,ml′ , l2,

′ml2|µ⟩ (75)

The difference between this step and the one leading to equation 73 is that
here we insert a set of three-particle states, while the states in 73 are only
two-particle states. We know that only terms with l′ = l and ml′ = ml will
contribute to the sum, i.e. the coupling from B to 2 + 3 should not alter
the state of 1 - otherwise it wouldn’t be a sequential process. We repeat the
above arguments and arrive now at:

⟨p1,p23|µ⟩ =
∑

l′,ml′ ,l2,ml2

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× ⟨l′,ml′ , l2,ml2|µ⟩ (76)

Now, if we define c = (l′,ml′ , l2,ml2) we may write:

⟨p1,p23|µ⟩ =
∑
c

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)⟨c|µ⟩ (77)

Now, let us return to the sequential amplitude expression, and substitute our
result:

A1 =
∑
c

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)
∑
λ,µ

⟨c|µ⟩⟨µ|λ⟩⟨λ|i⟩ (78)

We have now coupled the outgoing spherical waves from the break-up pro-
cess (the channels c, with definite angular momentum in both relative coor-
dinates) to plane waves of definite linear momenta in the two relative coordi-
nates (the p1,p23 states). The double sum over λ, µ describing the coupling
from the initial state to the spherical waves must now be calculated.

A word on the angular dependence is in place here. We mentioned in
section 2 that the amplitude must be independent of the direction of the
first emitted fragment if the initial state is isotropic. The observant reader
may have noticed that the sequential amplitude is explicitly dependent on
the direction of the first emitted fragment. This is because the sequential
amplitude we have just calculated assumes a specific spin projection of the
initial state, and the directional dependence doesn’t vanish until the sum
over initial state projections is carried, as we did in equation 66.
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5.2 Three-body R-matrix amplitude

Now, why did we go through this strange extra step in the end? We did so
because the last sum has a specific form:

Ac,i =
∑
λ,µ

⟨c|µ⟩⟨µ|λ⟩⟨λ|i⟩ (79)

where c is a channel of definite angular momenta - unlike the expression in
equation 69 with a channel of definite linear momenta. This amplitude looks
much like the amplitudes treated in R-matrix theory. Specifically, we remind
the reader of equation 32:

Ac′,c =
∑
λ

⟨c′|λ⟩⟨λ|c⟩

We note that equation 79 looks like a combination of two R-matrix amplitudes
like the one in equation 32, with the outgoing channels of the first process
becoming the internal levels of the second process. Schematically we might
represent this idea as follows:

i → A → 1 +BA → 1 +B → 1 + 2 + 3

The upper left (red) box is the first R-matrix process, a β-decay through
states of A resulting in fragments 1 + B, while the lower right (blue) box
is the second R-matrix process, a state A breaking apart sequentially first
by emitting fragment 1 leaving a recoil B, which then subsequently breaks
apart into 2 + 3. As indicated by the boxes the two processes overlap: The
internal levels of the second process (the states in B) are fed by the decay of
the internal levels of the first process (the states in A). We must be careful
to not include this overlap twice.

Let us follow this idea and calculate the amplitude in equation 79 by
combining two R-matrix expressions. First we write out the amplitude for
the first decay:

Aµ,i =
∑
λ

⟨µ|λ⟩⟨λ|i⟩ (80)

where a channel µ specifies the quantum numbers µ = S1,mS1 , S2,mS2 , l,ml

and where the sum over λ is a sum over all states of the internal system.
Including the corrections for β-decay channels, and the corrections needed
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to compensate for unbound final state fragments we may write an expression
for the collision matrix of going from initial state i to a state µ, as defined
in section 4:

U⃗µ,i = Ωµ

√
2Pµγµ,λAg⃗λ,i

√
f (81)

We remind the reader that the states i are characterized by quantum numbers
i = Sπ

i ,mSi
, the states λ are characterized by quantum numbers λ = Sπ

A,mSA

and the states µ are characterized by quantum numbers µ = Sπ
1 ,mS1 , S

π
B,mSB

, l,ml.
Also, the matrices Ωµ and

√
2Pµ are diagonal matrices. Also, the sum over

states appearing in the level matrix A must of course include all accessible
states from A, i.e. states of all the possible recoil nuclei (the different B’s),
not just the ones available in the sequence we are currently calculating11.

For the full process i → c we must generalize the collision matrix. The
states µ changes from being channels as they were in the first part of the
process, to being internal levels in the second part of the process. We have
already coupled into these states - what remains is the broadening of these
states, and the coupling out of them. So, to avoid redundancy we must
simply include a level matrix B, and a coupling from the internal states µ to
the final channels c. We propose the following expression based on this idea:

Uc,i = Ωc

√
2Pcγc,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f (82)

where of course the couplings γc,µ vanish unless l = l′ and ml = ml′ - i.e. we
only couple states µ to final channels c if the first fragment remains in the
same state. The above expression is in essence two R-matrix processes in
succession - with the added complication that the final channels of the first
process become the internal levels of the second process.

Returning to the amplitude in equation 79, we remember that this am-
plitude is (essentially) equal to the collision matrix we just calculated up
to a constant of proportionality which must be fitted to the half-life of the
β-decay anyway. Hence, we shall simply insert equation 82 into equation 78
and write out the expression for the sequential amplitude A1 as:

11This is because the sum over states in the definition of the level matrix is essentially
what causes the broadening (because it couples the internal states to the continuum), and
the widths of the internal levels depend on all accessible continuum states.
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A1 =
∑
c

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× Ωc

√
2Pcγc,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f (83)

This is the main result of this thesis.

6 Example

To make our proposed sequential model more concrete we shall include an
example that may be treated by this model. Hopefully, this example also
indicates how fast the size and complexity of the model grows.

As the triple-α break up of 12C reduces some of the complexity since all
fragments are spin-0, we shall use this as an example. Note that this is also
the subject of the investigations by Balamuth et al. [5] mentioned in the
introduction. Contrary to Balamuth et al. we imagine populating states in
12C by a β−-decay from 12B. The triple-α threshold is 7.276 MeV above
the ground state of 12C, meaning we will only consider states above this
threshold energy. Three 12C states above this threshold are populated by
the β-decay, meaning we consider the states 0+, 0+, 1+ at 7.654 MeV (the so-
called Hoyle state), 10.3 MeV and at 12.71 MeV (one of the states considered
by Balamuth) respectively. These states all decay through α-emission to 8Be,
followed by a fragmentation into two α-particles. We shall include two states
in 8Be: the 0+ ground state, and the first excited 2+ state at 3.03 MeV.
Since all three fragments are identical, all sequences go through the same
recoil (8Be). This also simplifies the model. The allowed values of angular
momentum of both the first fragment (l) and the last two fragments (l2) can
be calculated to be either 0 (s-wave) or 2 (d-wave). See figure 7.

The rate is then computed as a sum over the initial and final state pro-
jections:

d3w

dΩadΩbdΩc

=
1

2Si + 1

∑
mSi

,mSa ,mSb
,mSc

|AmSi
,mSa ,mSb

,mSc
|2 (84)

However, since all final state fragments are spin 0 the sums over their pro-
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Figure 7: A level diagram of the relevant levels in the β-decay of 12B to 12C,
followed by a sequential triple-α decay through 8Be. l refers to the angular
momentum of the first α relative to the recoil nucleus (8Be), while l2 refers to
the relative angular momentum between the two last α’s. The spin-projection
substates have not been shown on the diagram, to avoid confusion.
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jections drop out.

d3w

dΩadΩbdΩc

=
1

2 · 1 + 1

1∑
mSi

=−1

|AmSi
|2 (85)

The example has 5 λ-levels in 12C: one level for each 0+ state, and 3 levels
for the 1+ state. Note that only 3 reduced widths are indeed independent
in gλ,i, since the couplings to the different substates in 1+ are related by
angular momentum coupling. The number of µ-levels in this example is 26:
one level from the 0+, l = 0 state and 5 × 5 levels from the 2+, l = 2 state
corresponding to all combinations of projections of the spin of 8Be and l.
Again, we do not need 5 × 26 independent reduced widths to describe the
coupling γµ,λ - we only need 6 (3 λ-states times 2 µ-states). Finally, we have
6 = 1 + 5 final channels available for the 8Be → α + α decay (1 from l = 0
and 5 from l = 2). Four reduced widths are necessary here (and two of them
are even zero, since the 0+-state can only couple to l2 = 0 and so on!).

Even though this is one of the simplest use-cases for this model, the
calculation of the sequential amplitude is already quite involved. Now, had
we instead considered the β-decay of 9Li to 9Be followed by a break-up to
α+α+n the complexity of a fragment with non-zero spin would be added, and
the different sequential amplitudes would go through different recoil nuclei
(when the neutron breaks off first the reaction goes through 8Be as in this
example, whereas when an α breaks off first the reaction goes through levels
in 5He) overall resulting in a rather more complicated calculation. In all cases,
one should not be fooled by the rather simple formulas - the notation hides
a lot of the complications that appear when one actually tries to implement
the model.

7 Relation to the three-body model of Lane

& Thomas

We shall show that our sequential amplitude expression reproduces a notable
result from the literature on sequential three-body decays: namely one from
the aforementioned R-matrix review by Lane & Thomas [8]. Their treatment
of sequential three-body decays is found in chapter XIII. It is in many ways
quite similar to the model proposed in this thesis, but their treatment is
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not quite as elaborate, and focuses on the simple case of two single level
processes.

Lane and Thomas start by including unbound fragments in their channel
space, analogous to what we did in section 4.4. Then they calculate the
amplitude for going from a ”normal” channel c to a channel containing three
particles, where two of them came from an unbound fragment. This channel
is no longer sufficiently described by the same quantum numbers used for
the regular (two-body) channels - instead they further specify the energy of
the unbound fragment, as well as a label of the open channel of the unbound
fragment that produced the last two fragments. Let us call the unbound
fragment B to match our notation. It’s energy will then be EB. Let us also
name the open channels of B r following the notation in [8]. A channel c′

with an unbound fragment decaying to a channel r is then called (c′, EB, r) -
this is the channel containing three particles, and it corresponds to the final
channels c in our notation. Lane and Thomas then proceed to describe the
process by a single R-matrix expression, including the corrections from an
unbound fragment. This gives an expression for the amplitude analogous to
our equation 48 in section 4.4, without the β-decay correction, and with only
one final state:

Ac,(c′,EB ,r) = Ω(c′,EB ,r)

√
2P(c′,EB ,r)γλ,(c′,EB ,r)AΩc

√
2Pcγc,λγ1B,A(mB) (86)

Lane and Thomas only consider a single level λ in the process producing the
unbound fragment, and hence the level matrix reduces to a single number.
That makes the inversion trivial, and the level ”matrix” is given by:

A =
1

Eλ − E −
∑

c′′,r′

∫
dE ′

Bγ
2
λ,(c′′,E′

B ,r′) [Sc′′ −Bc′′ + iPc′′ ]
(87)

where the sum over channels appearing in the denominator has been gener-
alized to a continuum of channels, like we did in section 4.4. This expression
is then used in the amplitude:

Ac,(c′,EB ,r) =
Ωc

√
2Pcγc,λΩ(c′,EB ,r)

√
2P(c′,EB ,r)γλ,(c′,EB ,r)

Eλ − E −
∑

c′′,r′

∫
dE ′

Bγ
2
λ,(c′′,E′

B ,r′) [Sc′′ −Bc′′ + iPc′′ ]
(88)
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At this point Lane and Thomas introduce a bit of notation:

Γc,λ = 2Pcγ
2
c,λ (89)

∆λ = −
∑
c,r

∫
γ2
λ,(c,EB ,r)[Sc −Bc]dEB (90)

Γλ =
∑
c,r

∫
2Pcγ

2
λ,(c,EB ,r)dEB (91)

which makes the amplitude expression look like:

Ac,(c′,EB ,r) =
Ωc

√
Γc,λΩ(c′,EB ,r)

√
Γλ,(c′,EB ,r)

Eλ +∆λ − E − i
2
Γλ

(92)

and makes the norm-square of the amplitude:

|Ac,(c′,EB ,r)|2 =
Γc,λΓλ,(c′,EB ,r)

(Eλ +∆λ − E)2 + Γ2
λ/4

(93)

Lane and Thomas then proceed to point out that the coupling γλ,(c′,EB ,r) is
an unknown function of EB, like we mentioned in section 4.4. To solve this
problem, they consider a single intermediate level µ in B ”between” the level
λ in A and the final channel (c′, EB, r). In their model, the second decay
is hence included as an energy dependence in the reduced width γλ,(c′,EB ,r).
Schematically:

c → λ → (c′, µ) with energy EB → (c′, EB, r). (94)

Then they describe the decay through the level µ with a single level expres-
sion:

γ2
λ,(c′,EB ,r) ≈

1

2π
γ2
λ,(c′,µ)

Γµ,r

(Eµ +∆µ −mB)2 + Γ2
µ/4

(95)

where mB refers to the rest energy of the unbound fragment B. Note the
factor of 1/2π included in the definition of the reduced width. This is to
ensure that our interpretation of the reduced width is intact. To see this,
assume that the level µ is relatively narrow, compared to the variations of
the shift and penetrability. Then we may integrate over the energy of the
unbound fragment and sum out all open channels of the unbound fragment
r: ∑

r

∫
γ2
λ,(c′,EB ,r)dEB = γ2

λ,(c′,µ) (96)
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Had we not included the 1/2π they would have appeared here (from the
integral of the Breit-Wigner shape), meaning the total width would no longer
be given by Γ = 2Pγ2. Hence, the 1/2π is a normalization of the second level.
In total the norm square of the amplitude is then:

|Ac,(c′,EB ,r)|2 =
Γc,λΓλ,(c′,µ)

(Eλ +∆λ − E)2 + Γ2
λ/4

1

2π

Γµ,r

(Eµ +∆µ −mB)2 + Γ2
µ/4

(97)

This is completely analogous to our expression in equation 82, except the
level matrices A and B have been given explicitly for the case of one level
(and some notation has been introduced). We have a coupling from the initial
state to the first internal state (Γc,λ), then a coupling from the first internal
state to the internal channel containing the unbound fragment (Γλ,(c′,µ)),
and lastly the coupling from the unbound fragment to its decay products
(Γµ,r). Lane and Thomas reaches the same result as we did, but instead of
explicitly combining two R-matrix expressions they produced the expression
for the second process from one of the couplings in the expression for the
first process.

Since the article by Lane and Thomas is from 1958, they were limited by
computational power, and so they proceed to integrate this expression over
the energy of the unbound fragment, showing that the sequential three-body
break-up may in fact be modelled by a simple one-level expression, provided
that the decay of the unbound fragment may be described by a single-level
formula, and that this single level is sufficiently narrow for the integration to
be simple:

|Ac,(c′,EB ,r)|2 ≈
Γc,λΓλ,(c′,µ)

(Eλ +∆λ − E)2 + Γ2
λ/4

(98)

In essence, Lane and Thomas show that the three-body fragmentation through
isolated levels is described by a single fragmentation with one level if the fol-
lowing fragmentation is narrow. Our sequential amplitude expression is very
much a natural generalization of this approach, where instead of isolated
levels we have the full level matrix.

8 Identical particle symmetrization

Since many of the interesting use cases for this model involve identical parti-
cles (e.g. 12C and 9Be), we must investigate how our amplitude behaves under
the interchange of final fragments. Lane and Thomas do not investigate this
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in their sequential decay analysis, while Balamuth et al. do mention sym-
metrization. But, the analysis of Balamuth et al. is not very precise in their
distinction between different sequences of emission and exchange symmetry
of identical particles. Hence, a more detailed analysis of identical particle
symmetrization in sequential decays is much needed.

To not confuse the labels of the particles (a, b, c) with the measured mo-
menta (until now pa,pb,pc), we shall name the detectors α, β, γ, and hence-
forth name the momenta after the detector in which they were registered:
pα,pβ,pγ. This puts emphasis on the fact that the final state ⟨pα,pβ,pγ|
also carries information in the order in which the momenta are listed; the
first momentum is the momentum of particle a, the second that of particle
b and the third that of particle c. When the particles are not identical this
distinction is not necessary, since we could simply name the detectors un-
ambiguously after the particle they detected. But, when the particles are
identical we must keep track of both detector and particle labels.

8.1 Two identical spin-0 bosons

Let us begin with a simple case, where a and b are identical spin-0 bosons.
In this case the spin-part of the final state is trivially symmetric under ex-
change, and we can focus on the spatial part. We first write out the ampli-
tude for measuring the final state ⟨pα,pβ,pγ| (remember that the two first
entries correspond to particles a and b) - we shall denote this amplitude by
⟨pα,pβ,pγ|i⟩, suppressing the operator (earlier T ) that couple them:

⟨pα,pβ,pγ|i⟩ = ⟨p1=α,pβγ|i⟩+ ⟨p1=β,pγα|i⟩+ ⟨p1=γ,pαβ|i⟩ (99)

This corresponds to the three Jacobi coordinates shown in figure 6. We also
refer to figure 8, pane 1-3, where each sequential contribution has been drawn
with both particle and detector labels shown. Now we interchange particles
a and b:

⟨pβ,pα,pγ|i⟩ = ⟨p1=β,pαγ|i⟩+ ⟨p1=α,pγβ|i⟩+ ⟨p1=γ,pβα|i⟩ (100)

The sequential contributions from this amplitude is shown in figure 8,
pane 4-6, where we note that only the particle labels have changed: the
momentum in detector α is still pα, but it is now (in our state) associated with
particle b. We have also drawn the canonical momenta of the corresponding
Jacobi coordinates in figure 9. If we reorder the sequential amplitudes in
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Figure 8: All six possible decays resulting in the same measurement. In the
top row (1-3) we see the three decay paths where (we imagine) particle a
is detected in detector α and particle b is detected in detector β. In the
bottom row (4-6) we see the same three decay paths but a and b have been
interchanged. Since a and b are identical and we can not tell them apart we
must add all six contributions to our final amplitude.
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equation 100 we see that the three amplitudes are almost equal to the ones
appearing in equation 99 (just above it). E.g. pane 1 is very similar to pane
5, and so forth. The only difference is in the sign of the relative momentum
vectors (e.g. pαγ = −pγα), because this depends on the order in which the
momenta are listed in our states. Compare figure 9 to figure 6. We note that
the interchange of two fragments corresponds to using Jacobi coordinates of
all the acyclic permutations, instead of the cyclic ones.

To progress further we examine one of these sequential amplitudes. Let
us choose ⟨p1=β,pαγ|i⟩ from equation 100 where a is emitted first (this cor-
responds to pane 4 in figure 8). This sequential amplitude can be calculated
using equation 83. To avoid confusion we shall label the final channels (for-
merly c) by the letter t:

⟨p1=β,pαγ|i⟩ =
∑
t

h̄√
µa,Bk1=β

Y
ml′
l′ (p̂1=β)

h̄√
µb,ckαγ

Y
ml2
l2

(p̂αγ)

× Ωt

√
2Ptγt,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f (101)

Let us now compare to ⟨p1=β,pγα|i⟩ from equation 99, where b is emitted
first:

⟨p1=β,pγα|i⟩ =
∑
t

h̄√
µb,Bk1=β

Y
ml′
l′ (p̂1=β)

h̄√
µc,akγα

Y
ml2
l2

(p̂γα)

× Ωt

√
2Ptγt,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f (102)

Since the fragments a and b are identical, their masses, and the entire ”R-
matrix” part of the expressions, are too, and so the only place where these two
expressions differ is in the direction of pαγ = −pγα. This direction appears
in the spherical harmonic Y

ml2
l2

. As is well known, the parity of the spherical
harmonics is (−1)l, so the contribution for all odd values of l2 in the c-sum
picks up a sign relative to the corresponding amplitude in equation 99. This
means that each term in the t-sum in equation 102 picks up a sign (−1)l2

when changing the order of the last emitted fragments, e.g. pαγ → pγα.
However, unless all terms in the sum have either even or odd values of l2,
this doesn’t result in a symmetry of the entire sequential amplitude under
this change. The values of l2 are constrained by the conservation of parity.

The conservation of parity between the initial state Pi and the final state
Pf may be expressed as:

Pi = (−1)l(−1)l2PaPbPc (103)
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Figure 9: The three different sets of Jacobi coordinates of the interchanged
system a ↔ b. Note that the relative momenta point the opposite way of
what they do in figure 6.

where Pa is the parity of fragment a and so forth. Assuming that all final
state fragments have positive parity we have:

Pi = (−1)l(−1)l2 (104)

restricting the allowed values of the orbital angular momenta. Furthermore,
parity must also be conserved in the first decay:

Pi = (−1)lPB (105)

In the case that parity conservation restricts the values of l2 to be either even
or odd for all channels c in a sequential amplitude in equation 99 they have
symmetry under exchange, for example:

⟨p1=β,pαγ|i⟩ = ±⟨p1=β,pγα|i⟩ (106)

where the ”+” is for even l2-values and the ”−” is for odd l2-values. When
both odd and even l2-values contribute to the sequential amplitudes they are
not symmetric under exchange of two particles. Generally, one must use a
symmetric final state to calculate the amplitudes when identical particles are
involved:

A =
1√
2
(⟨pα,pβ,pγ|i⟩+ ⟨pβ,pα,pγ|i⟩) (107)

8.2 The case of 9Li

The β-decay of 9Li to 9Be followed by a break-up to α + α + n is a case
of exactly the type described above: the final state has two identical spin-0
bosons (the two α-particles). The sequential model has two different decay
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Figure 10: A diagram of levels in 9Be and 5He involved in the α + α + n
break-up following the β-decay of 9Li. The level in 9Li is not shown, and the
process ”runs from right to left” here.
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Figure 11: A diagram of levels in 9Be and 8Be involved in the α + α + n
break-up following the β-decay of 9Li. The process ”runs from left to right”.

paths: one through 5He and one through 8Be. See figures 10 and 11 for an
example of what levels to include.

Let us name the first α a, the second α b and the neutron c, and let us in-
dex the measured momenta as pα, pα′ and pn. Then the proper symmetrized
amplitude we need to calculate is:

A =
1√
2
(⟨pα,pα′ ,pn|i⟩+ ⟨pα′ ,pα,pn|i⟩) (108)

Writing out the different Jacobi components:

A =
1√
2

(
⟨p1=α,pα′n|i⟩+ ⟨p1=α′ ,pnα|i⟩+ ⟨p1=n,pαα′|i⟩

+⟨p1=α′ ,pαn|i⟩+ ⟨p1=α,pnα′ |i⟩+ ⟨p1=n,pα′α|i⟩
)

(109)

The first line corresponds to the three sequential contributions from the first
term in the amplitude in equation 108, analogous to pane 1, 2 and 3 in figure
8. The second line are the corresponding contributions where the two alpha
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particles have been interchanged (analogous to pane 4, 5 and 6 in figure 8).
Now, looking at figure 10 we note that all final states accessible from 5He have
odd l2 (specifically, l2 = 1). Hence, the sequential amplitudes ⟨p1=α,pnα′ |i⟩
have definite symmetry under a sign change of the relative momentum pnα′ .
Specifically:

⟨p1=α,pnα′ |i⟩ = −⟨p1=α,pα′n|i⟩ (110)

This means that the amplitude in which particle a is sent out first with
momentum pα (corresponding to pane 1 in figure 8) is exactly canceled by
the amplitude where particle b is sent out first with the same momentum
(pane 5 in figure 8). The same goes for the other two 5He contributions.
Hence all contributions from 5He drop out, leaving us with:

A =
1√
2
(⟨p1=n,pαα′ |i⟩+ ⟨p1=n,pα′α|i⟩) (111)

Now, the final states accessible from 8Be are all of even l2 (see figure 11), and
hence the two sequential amplitudes left are in fact equal, and so the initial
symmetrization step was not necessary because the amplitude was already
symmetric. We conclude:

A = ⟨p1=n,pαα′|i⟩ (112)

Hence, the sequential model predicts that the α’s can not be emitted first.
This result is rather striking, especially since experiments clearly show the
contributions of 5He resonances in this decay (see e.g. [4] where the 5He
ground state is seen quite clearly, or [3] for a Dalitz plot, showing the same
thing). Something went wrong - but what? Returning to equation 109 we
note that the contributions that cancel each other out completely are those
corresponding to two distinct physical situations - namely one of them cor-
responds to fragment a being ejected first and the other corresponds to frag-
ment b being ejected first. Do these processes interfere?

To answer this question we point out that the model is built on steady
state scattering theory. That is, the model does not work with wave-packets,
but instead in plane and spherical waves, meaning that the final state frag-
ments are completely delocalized - they inhibit all physical space, and time
has been ignored. A proper treatment of this problem would demand a
wave packet description, and we expect such a model to show that the time-
difference between the two decays means that the two α-particles are too far
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away from one another to interfere12 unless they form the 8Be recoil nucleus,
meaning that the extreme symmetrization effect where the 5He contributions
completely cancel would disappear. That is, the first emitted α-particle is far
away from the recoil before the second α-particle enters the scene, meaning
their wave functions never overlap. Of course, if the momenta of the two
α-particles are the same (pα = pα′) we expect to see symmetrization effects
between the two cases where the same particle is emitted first - e.g. pane 1
and 4 in figure 8, but the dramatic complete cancellation happening between
cases where two different particles are emitted first would not be expected
to persist. This much more limited symmetrization effect would only lead to
complete cancellation in a line in the Dalitz plot. If the axes of the Dalitz
plot are chosen as the energies of the α-particles this line will be a straight
line with slope 1. In conclusion, we believe that the interference between
identical fragments emitted in different steps of the sequence is not treatable
in our model because in reality the fragments are sufficiently localized for
their wave functions to not overlap.

One way to improve the model in a quite ad hoc fashion, could be to
eliminate the symmetric contributions that we do not expect to contribute
”by hand” - i.e. we simply don’t perform the symmetrization of the 5He
contributions. This would of course also destroy the correct symmetrization
effect for pα = pα′ , but it might be acceptable to knowingly make this error
in such a limited region of the Dalitz plot. It would be interesting to test
the model in the regime where the symmetrization can be ignored, either
through simulation or by application to experimental data.

As we have just discussed, identical particle symmetrization effects be-
tween different decay paths can not contribute unless the two decays happen
very close in time. Should the model not be able to treat cases where the
two decays do happen very close in time, that is very broad (short-lived)
levels in the recoil? The answer is no: any sequential model breaks down in
this limit, because direct three particle effects will contribute. For example,
our model does not take the Coulomb force of the first emitted particle on
the other two into account. This deficiency has been pointed out for the
sequential model attributed to Balamuth [5] as well, see for example [1] on
page 3. Other effects such as ”rescattering” where say fragment 2 scatters
off of fragment 1 after the second fragmentation has happened also break the

12Symmetrization effects are only present when the wave functions overlap. See e.g. [11]
section 7.3.
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model in this limit (see [12]).
There might be an intermediate region, before the sequential model breaks

down completely, but close enough to it that interference between different
sequences of emission could interfere. If such an intermediate region exists,
our model could suggest that certain odd l2 decays might be suppressed there.
However, nothing definitive can be concluded from this analysis, since this
regime is beyond the applicability of our model.

It is a little disheartening that our model can not treat both interference
between different sequential paths as well as indentical particle symmetry
effects, as a detailed description combining the two effects would have been
quite illuminating. We do remark however, that the model still has its mer-
its: For instance the decay of 8He resulting in an α-particle, a triton t and
a neutron n would only contain effects of different sequential paths, while
no identical particle symmetry effect is present to further complicate mat-
ters. Based on this analysis we expect that a model accurately describing
both interference between different orders of emission and identical particle
symmetrization effects must contain direct three-particle contributions.

9 Relation to Balamuth et al.

Balamuth et al. [5] studied the fragmentation of 12C into three α-particles
through a sequential model. They present both a formula for calculating the
sequential amplitude, as well as a procedure for symmetrizing this amplitude
since the final state contains three identical α-particles. First we shall see how
their sequential amplitude expression is a simplified version of our main result
(equation 83); then we shall examine the effect of three identical bosons in our
model and compare to the symmetrization procedure outlined by Balamuth
et al.

9.1 The sequential amplitude in Balamuth et al.

Balamuth et al. examine a simpler process, only going through a single level
in 8Be. They split up the amplitude into three components corresponding
to the different Jacobi coordinates just like we do, and state the following
expression for the sequential amplitude (slightly adapted to the notation used
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in this thesis):

A1 ∝
∑
mSB

⟨l′,mSA
−mSB

;SB,mSB
|SA,mSA

⟩

× Y
mSA

−mSB

l′ (p̂1)Y
mSB
l2

(p̂23)

× [Ω
√
2P ]µγµ,λ[Ω

√
2P ]cγc,µ

E0 − γ2
c,µ [Sc(K23)− Sc(K0) + iPc(K23)]−K23

1√√
K1BK23

(113)

This expression is a special case of our main result, equation 83. Let us see
why. Matching the notation, our sequential amplitude expression reads:

A1 =
∑
c

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× Ωc

√
2Pcγc,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f

The expression in Balamuth et al. only includes a single level in B (i.e.
in 8Be), and only allows for a single orbital angular momentum in both
fragmentations. This means that only one channel is available for the first
fragmentation, and only one level is available for the second fragmentation.
Specifically, the diagonal matricesΩµ

√
2Pµ are no longer matrices but simply

numbers (the sum over the projection of B is written out explicitly, contrary
to our expression). Also, the level-matrix B is 1-dimensional (since there is
only 1 level). That makes the inversion trivial (as we saw in section 7):

B =
1

E0 −K23 − γ2
23,B(S23 −B23 + iP23)

(114)

Furthermore, only 1 final channel c is considered, removing the c-sum. Bala-
muth et al. also write out the angular momentum coupling explicitly instead
of including it in the reduced width, like we did in section 4.5. This is the first
factor in equation 113. Since all final state fragments are spin 0 the coupling
is simply a Clebsch-Gordan coefficient coupling the angular momentum of
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fragment 1 to the spin of the recoil. This reduces our expression to:

A1 =
∑
mSB

⟨l′,mSA
−mSB

;SB,mSB
|SA,mSA

⟩

h̄√
µ1,Rk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× [Ω
√
2P ]µγµ,λ[Ω

√
2P ]cγc,µ

E0 − γ2
c,µ [Sc(K23)− Sc(K0) + iPc(K23)]−K23

Ag⃗λ,i
√

f (115)

Now, Balamuth et al. don’t populate the states in 12C by a β-decay. They
consider the rate at which it is populated to be a sort of beam intensity and
simply absorb this rate in the proportionality constant. Balamuth et al. also
don’t investigate the effects of different levels in 12C, meaning that the level
matrix of 12C, A, is also absorbed in the proportionality constant. This can
be done provided that the levels in 12C are narrow, otherwise the proportion-
ality constant would vary over a range of energies in 12C. This is essentially
the opposite situation to the one treated by Lane and Thomas, where the
second fragmentation was assumed to so narrow it could be integrated away.
With this, we arrive at:

A1 ∝
∑
mSB

⟨l′,mSA
−mSB

;SB,mSB
|SA,mSA

⟩

h̄√
µ1,Rk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× [Ω
√
2P ]µγµ,λ[Ω

√
2P ]cγc,µ

E0 − γ2
c,µ [Sc(K23)− Sc(K0) + iPc(K23)]−K23

(116)

The only thing left to account for is the double square-root of the kinetic
energies, appearing in the expression from Balamuth et al. These are related
to the factors of 1/

√
k appearing in our sequential amplitude expression since:

k =

√
2µK

h̄
(117)

Hence, these energy factors arise from the projection of definite angular mo-
mentum states onto states of definite linear momentum. This shows that the
expression from Balamuth et al. is a special case of our sequential amplitude
expression, using single-level R-matrix theory and considering spin-0 final
state fragments.
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9.2 Triple-α symmetrization

Let us consider how symmetrization of three α-particles in the final state
(the case of Balamuth et al.) would be treated in our sequential model. Here
we off course have three identical particles, not two like we had in section 8,
but they are all spin-0 bosons, similar to our discussion there, reducing the
problem to only including spatial parts. To ensure proper symmetry under
exchange of any two α’s the standard approach would be to use a final state
consisting of all six permutations:

⟨pα,pβ,pγ|+⟨pβ,pγ,pα|+⟨pγ,pα,pβ|+⟨pα,pγ,pβ|+⟨pβ,pα,pγ|+⟨pγ,pβ,pα|
(118)

This results in 6 sets of Jacobi coordinates. First we note that any cyclic
permutation of the labels of the α’s results in the exact same sequential
amplitudes, since they result in the same set of Jacobi coordinates. This
allows us to reduce our final state to a sum of one of the cyclic and one of
the acyclic permutations:

⟨pα,pβ,pγ|+ ⟨pα,pγ,pβ| (119)

As we have seen, a sum like this corresponds to six Jacobi coordinates, related
to each other in pairs by a sign change of the relative momentum p23. Since
only even values of l2 are allowed (see figure 7) we know that these sequential
amplitudes are in fact identical, meaning that the amplitude:

⟨pα,pβ,pγ|i⟩ = ⟨p1=α,pβγ|i⟩+ ⟨p1=β,pγα|i⟩+ ⟨p1=γ,pαβ|i⟩ (120)

is in fact symmetric under exchange of any two of the α’s. Our model predicts
that if we include all three sequences of decays, our amplitude is automatically
symmetric under interchange of any two fragments, in this particular case.

Balamuth et al. perform this sum over the three distinct sequences and
calls it ”order of emission interference effects” at the bottom of page 9, but
refers to it as boson symmetrization later in the same paragraph. Though it
is in fact both (as we have just shown), the reasoning is not very precise and
we must emphasize that generally, the interference effects between different
orders of emission (corresponding to decomposing the amplitude into the
three Jacobi-coordinates) is not the same as interchange symmetrization due
to identical particles, as we clearly saw in the example on 9Li. They just
so happen to be solved by the same trick in the case of the particularly
simple triple-α case. As mentioned earlier, sequential models might not be
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particularly well suited to treating identical particle symmetrization effects
generally, and we believe a more realistic three-body treatment might be
necessary to fully capture both effects of symmetrization and interference
between different sequential decay paths.

10 Conclusion

In this thesis we have investigated three-body decays. Specifically we have
tried modeling three-body decays as sequences of two-body decays, in the
hope that the sequential treatment could capture much of the relevant physics
of these interesting processes, without dealing with the complicated three-
body physics of the direct three-body decays omitted in this treatment. A
model was presented, and an expression for a sequential amplitude A1 was
derived in section 5. The expression for the sequential amplitude (equation
83) was obtained by combining two R-matrix expressions in sequence. The
result was:

A1 =
∑
c

h̄√
µ1,Bk1

Y
ml′
l′ (p̂1)

h̄√
µ2,3k23

Y
ml2
l2

(p̂23)

× Ωc

√
2Pcγc,µBΩµ

√
2Pµγµ,λAg⃗λ,i

√
f

An example was included in section 6, to concretize the model, and in
section 7 the sequential amplitude expression was shown to reproduce the
result in the R-matrix review by Lane & Thomas, [8] chapter XIII in the
single level limit they consider.

The consequences of identical particle symmetrization was then investi-
gated in chapter 8. First a general example of two identical spin-0 bosons
was included, then a more concrete application of the model to the case of
9Li was presented. The prediction of the model was in strict discordance
with experiments, and we hypothesized that the sequential nature of the
model might make symmetrization between different sequential decay paths
problematic.

Lastly, our model was compared to the work of Balamuth et al. on the
triple-α decay of 12C. We showed that our sequential amplitude expression
can reproduce the formula by Balamuth et al. and we point out that Bal-
amuth et al. are not very precise in their article [5], on what effects arise
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from summing different sequential decay paths, and what effects arise from
identical particle symmetrization. We show that in the case of the triple-α
process investigated by Balamuth et al. these two effects are indistinguish-
able (according to our model).

The model developed in this thesis could be useful in studying sequential
three-body decays when no identical particles are present, or when sym-
metrization effects between distinct sequential decay paths can be ignored.
We suggest the decay of 8He as a candidate for a decay with no identical
particles.
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